Type 2 diabetes mellitus is a major metabolic condition that poses a serious risk and a significant public health concern worldwide. Vildagliptin is a new class of antidiabetic drugs used to treat type 2 diabetes mellitus. In the current work, Chitosan-Vildagliptin nanoparticles (CS-VLD NPs) were developed by simple desolvation technique. A 32 factorial design and response surface methodology were used for optimization. The prepared nanoparticles underwent characterization to determine their particle size (PS), polydispersity index (PDI), entrapment efficiency (EE), FTIR, transmission electron microscopy (TEM), in vitro drug release, and release kinetics. A 3-month accelerated stability study was performed for the optimized formulation (N6). The PDI value of CS-VLD NPs was varied from 0.24 ± 0.025 to 0.39 ± 0.037, while the PSs were ranged from 118.24 ± 2.26 nm to 232.84 ± 6.79 nm. The EE values were varied from 26.54 ± 3.61 to 51.57% ± 1.52%. FTIR study had shown the compatibility of drug and polymer. TEM images were shown spherical-shaped nanoparticles. During the in vitro drug release study, sustained drug release was found up to 24 hours, followed by Higuchi kinetics. During the stability study, the optimized (N6) formulation proved its stability. The study concludes that the developed CS-VLD NPs may be a more effective approach than conventional drug delivery for the sustained release of Vildagliptin in the treatment of diabetes mellitus.
Ammanage AS, Mastiholimath VS. Quality by design approach assisted development and optimization of Chitosan-vildagliptin nanoparticles using a simple desolvation technique. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.202888
1. Tyagi R, Waheed A, Kumar N, Mujeeb M, Naved T, Khan MR, et al. In-vitro and ex-vivo antidiabetic, and antioxidant activities of Box-Behnken design optimized Solanum xanthocarpum extract loaded niosomes. Saudi Pharm J. 2023;31(10):1–12. doi: https://doi.org/10.1016/j.jsps.2023.101785
2. Skelin M, Rupnik M, Cenci? A. Pancreatic beta cell lines and their applications in diabetes mellitus research. ALTEX. 2010;27(2):105–13. doi: https://doi.org/10.14573/altex.2010.2.105
3. Odei Addo F, Shegokar R, Müller RH, Levendal RA, Frost C. Nanoformulation of Leonotis leonurus to improve its bioavailability as a potential antidiabetic drug. 3 Biotech. 2017;7:1–9. doi: https://doi.org/10.1007%2Fs13205-017-0986-0
4. Gudise V, Chowdhury B, Manjappa AS. Antidiabetic and antihyperlipidemic effects of Argyreia pierreana and Matelea denticulata: higher activity of the micellar nanoformulation over the crude extract. J Tradit Complement Med. 2021;11(3):259–67. doi: https://doi.org/10.1016/j.
5. Fayyaz S, Ahmed D, Khalid S, Khan SN, Shah MR, Choudhary MI. Synthesis of vildagliptin conjugated metal nanoparticles for type II diabetes control: targeting the DPP-IV enzyme. New J Chem. 2020;44(47):20853–60. doi: https://doi.org/10.1039/D0NJ04202A
6. Kushwaha RN, Srivastava R, Mishra A, Rawat AK, Srivastava AK, Haq W, et al. Design, synthesis, biological screening, and molecular docking studies of piperazine-derived constrained inhibitors of DPP-IV for the treatment of type 2 diabetes. Chem Biol Drug Des. 2015;85(4):439–46. doi: https://doi.org/10.1111/cbdd.12426
7. Nagaraja SH, Al-Dhubiab BE, Tekade RK, Venugopala KN, Ghorpade RV, Meravanige G, et al. Novel preparation and effective delivery of mucoadeshive nanoparticles containing anti-diabetic drug. Indian J Pharm Edu Res. 2019;53(2):43–9. doi: https://doi.org/10.5530/ijper.53.2s.47
8. Sreeharsha N, Rajpoot K, Tekade M, Kalyane D, Nair AB, Venugopala KN, et al. Development of metronidazole loaded chitosan nanoparticles using QbD approach—A novel and potential antibacterial formulation. Pharmaceutics. 2020;12(10):1–22. doi: http://dx.doi.org/10.3390/pharmaceutics12100920
9. Hamed R, Jodeh S, Hanbali G, Safi Z, Berisha A, Xhaxhiu K, et al. Eco-friendly synthesis and characterization of double-crossed link 3D graphene oxide functionalized with chitosan for adsorption of sulfamethazine from aqueous solution: experimental and DFT calculations. Front Environ Sci. 2022;10:1–19. doi: https://doi.org/10.3389/fenvs.2022.930693
10. Agnihotri SA, Aminabhavi TM. Chitosan nanoparticles for prolonged delivery of timolol maleate. Drug Dev Ind Pharm. 2007;33(11):1254–62. doi: https://doi.org/10.1080/03639040701384942
11. Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm. 2005;290(1-2):155–9. doi: https://doi.org/10.1016/j.ijpharm.2004.10.026
12. De Campos AM, Sánchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224(1-2):159–68. doi: https://doi.org/10.1016/S0378-5173(01)00760-8
13. De Campos AM, Sánchez A, Gref R, Calvo P, Alonso MJ. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci. 2003;20(1):73–81. doi: https://doi.org/10.1016/S0928-0987(03)00178-7
14. Mohammed MA, Syeda JY, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):1–26. doi: https://doi.org/10.3390/pharmaceutics9040053
15. Xu X, Khan MA, Burgess DJ. A quality by design (QbD) case study on liposomes containing hydrophilic API: I. Formulation, processing design and risk assessment. Int J Pharm. 2011;419(1-2):52–9. doi: https://doi.org/10.1016/j.ijpharm.2011.07.012
16. Shah B, Khunt D, Bhatt H, Misra M, Padh H. Intranasal delivery of venlafaxine loaded nanostructured lipid carrier: risk assessment and QbD based optimization. J Drug Deliv Technol. 2016;33:37–50. doi: https://doi.org/10.1016/j.jddst.2016.03.008
17. Li Z, Cho BR, Melloy BJ. Quality by design studies on multi-response pharmaceuticalformulation modeling and optimization. J Pharm Innov. 2013;8(1):28–44. doi: https://doi.org/10.1007/s12247-012-9145-7
18. Mishra V, Thakur S, Patil A, Shukla A. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin Drug Deliv. 2018;15(8):737–58. doi: https://doi.org/10.1080/17425247.2018.1504768
19. Praveen A, Aqil M, Imam SS, Ahad A, Moolakkadath T, Ahmad FJ. Lamotrigine encapsulated intra-nasal nanoliposome formulation for epilepsy treatment: formulation design, characterization and nasal toxicity study. Colloids Surf B Biointerfaces. 2019;174:553–62. doi: https://doi.org/10.1016/j.colsurfb.2018.11.025
20. Moolakkadath T, Aqil M, Ahad A, Imam SS, Iqbal B, Sultana Y, et al. Development of transethosomes formulation for dermal fisetin delivery: box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies. Artif Cells NanomedBiotechnol. 2018;46(2):755–65. doi: https://doi.org/10.1080/21691401.2018.1469025
21. Shirsath NR, Goswami AK. Vildagliptin-loaded gellan gum mucoadhesive beads for sustained drug delivery: design, optimisation and evaluation. Mat Technol. 2021;36(11):647–59. doi: https://doi.org/10.1080/10667857.2020.1786783
22. Abolhasani A, Heidari F, Abolhasani H. Development and characterization of chitosan nanoparticles containing an indanonic tricyclic spiroisoxazoline derivative using ion-gelation method: an in vitro study. Drug Dev Ind Pharm. 2020;46(10):1604–12. doi: https://doi.org/10.1080/03639045.2020.1811304
23. Malatesta M. Transmission electron microscopy for nanomedicine: novel applications for long-established techniques. Eur J Histochem. 2016;60(4):8–12. doi: https://doi:10.4081/ejh.2016.2751
24. Wallenwein CM, Nova MV, Janas C, Jablonka L, Gao GF, Thurn M, et al. A dialysis-based in vitro drug release assay to study dynamics of the drug-protein transfer of temoporfin liposomes. Eur J Pharm Biopharm. 2019;143:44–50. doi: https://doi:10.1016/j.ejpb.2019.08.010
25. Deshmukh RK, Naik JB. Optimization of sustained release aceclofenac microspheres using response surface methodology. Mater Sci Eng C. 2015;48:197–204. doi: http://dx.doi.org/10.1016/j.msec.2014.12.008
26. Hernandez Patlan D, Solis Cruz B, Cano Vega MA, Beyssac E, Garrait G, Hernandez Velasco X, et al. Development of chitosan and alginate nanocapsules to increase the solubility, permeability and stability of curcumin. J Pharm Innov. 2019;14:132–40. doi: https://doi.org/10.1007/s12247-018-9341-1
27. Mehravar R, Jahanshahi M, Saghatoleslami N. Fabrication and evaluation of human serum albumin (HSA) nanoparticles for drug delivery application. Int J Nanosci. 2009;8(03):319–22. doi: https://doi.org/10.1142/S0219581X09006080
28. Aktas Y, Andrieux K, Alonso MJ, Calvo P, Gursoy RN, Couvreur P, et al. Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. Int J Pharm 2005;298:378–83. doi: https://doi.org/10.1016/j.ijpharm.2005.03.027
29. Banerjee T, Mitra S, Singh AK, Sharma RK, Maitra A. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm 2002;243:93–105. doi: https://doi.org/10.1016/s0378-5173(02)00267-3
30. Avadi MR, Sadeghi AM, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R, et al. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomed: Nanotechnol Biol Med. 2010;6(1):58 63. doi: https://doi.org/10.1016/j.nano.2009.04.007
31. Nagarajana E, Shanmugasundarama P, Ravichandirana V, Vijayalakshmia A, Senthilnathanb B, Masilamanib K. Development and evaluation of chitosan based polymeric nanoparticles of an antiulcer drug lansoprazole. J Appl Pharm Sci. 2015;5(4):20–5. doi: https://doi.org/10.7324/JAPS.2015.50404
32. Waghulde MR. Naik JB. Comparative study of encapsulated vildagliptin microparticles producedby spray drying and solvent evaporation technique. Dry Technol. 2017;35:1644–55. doi: https://doi.org/10.1080/07373937.2016.1273230
33. Jain D, Banerjee R. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J Biomed Mater Res B Appl Biomater. 2008;86(1):105–12. doi: https://doi.org/10.1002/jbm.b.30994
Year
Month