New insights into repurposing of renin-angiotensin system inhibitors against Alzheimer’s disease

Sunita Mishra Swagata Pattanaik Sonali Sahoo Shakti Ketan Prusty Pratap Kumar Sahu Debajyoti Das   

Open Access   

Published:  Dec 12, 2024

DOI: 10.7324/JAPS.2024.194605
Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by a complex and multidimensional pathology, including amyloid-β plaques, hyperphosphorylated tau, neurofibrillary tangles, neuroinflammation, and oxidative stress. The renin-angiotensin system (RAS) plays a multifaceted role in the brain, with elevated levels of Angiotensin II (Ang II) and the up-regulation of angiotensin-converting enzyme (ACE) and angiotensin-1 (AT1) receptors being potential contributors to AD. ACE inhibitors such as Captopril, Fosinopril, Lisinopril, Perindopril, Trandolapril, and Zofenopril, along with angiotensin receptor blockers (ARBs) such as Azilsartan, Candesartan, Telmisartan, and Valsartan, are capable of crossing the blood–brain barrier. Pre-clinical and clinical studies have demonstrated that these RAS inhibitors exhibit anti-Aβ plaque, anti-tauopathy, free radical scavenging, and anti-inflammatory activities, making them highly reliable and effective potential therapeutic approaches for AD.


Keyword:     ACE inhibitors Angiotensin II (Ang II) AT1 receptor blockers (ARBs) anti-inflammatory antioxidant memory


Citation:

Mishra S, Pattanaik S, Sahoo S, Prusty SK, Sahu PK, Das D. New insights into repurposing of renin-angiotensin system inhibitors against Alzheimer’s disease. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.194605

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Ramachandran AK, Das S, Joseph A, Shenoy GG, Alex AT, Mudgal J. Neurodegenerative pathways in Alzheimer's disease: a review. Curr Neuropharmacol. 2021 Apr 1;19(5):679-92. https://doi.org/10.2174/1570159X18666200807130637

2. Srivastava S, Ahmad R, Khare SK. Alzheimer's disease and its treatment by different approaches: a review. Eur J Med Chem. 2021 Apr 15;216:113320. https://doi.org/10.1016/j.ejmech.2021.113320

3. Ding E, Wang Y, Liu J, Tang S, Shi X. A review on the application of the exposome paradigm to unveil the environmental determinants of age-related diseases. Hum Genomics. 2022 Dec;16(1):1-6. https://doi.org/10.1186/s40246-022-00428-6

4. Sahu PK, Tiwari P, Prusty SK, Subudhi BB. Past and present drug development for Alzheimer's disease. Front Clin Drug Res Alzheimer Disord. 2018 Nov 2;7:214-53. https://doi.org/10.2174/9781681085609118070009

5. Behera A, Sa N, Pradhan SP, Swain S, Sahu PK. Metal nanoparticles in Alzheimer's Disease. J Alzheimer's Dis Rep. 2023 Aug 4(Preprint):1-20. https://doi.org/10.3233/ADR-220112

6. Nunes D, Loureiro JA, Pereira MC. Drug delivery systems as a strategy to improve the efficacy of FDA-approved Alzheimer's drugs. Pharmaceutics. 2022 Oct 26;14(11):2296. https://doi.org/10.3390/pharmaceutics14112296

7. Wilhelm I, Krizbai IA. In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm. 2014 Jul 7;11(7):1949-63. https://doi.org/10.1021/mp500046f

8. Loera-Valencia R, Eroli F, Garcia-Ptacek S, Maioli S. Brain renin-angiotensin system as novel and potential therapeutic target for Alzheimer's disease. Int J Mol Sci. 2021 Sep 20;22(18):10139. https://doi.org/10.3390/ijms221810139

9. Subudhi BB, Sahu PK. Targeting renin-angiotensin system: a strategy for drug development against neurological disorders. In: Pilowsky, Angiotensin. Academic Press; 202 3. pp. 107-50. https://doi.org/10.1016/B978-0-323-99618-1.00025-8

10. Moloney CM, Lowe VJ, Murray ME. Visualization of neurofibrillary tangle maturity in Alzheimer's disease: a clinicopathologic perspective for biomarker research. Alzheimer's Dementia. 2021 Sep;17(9):1554-74. https://doi.org/10.1002/alz.12321

11. Otero-Garcia M, Mahajani SU, Wakhloo D, Tang W, Xue YQ, Morabito S, et al. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer's disease. Neuron. 2022 Sep 21;110(18):2929-48. https://doi.org/10.1016/j.neuron.2022.06.021

12. Gehlot P, Kumar S, Vyas VK, Choudhary BS, Sharma M, Malik R. Guanidine-based β amyloid precursor protein cleavage enzyme 1 (BACE-1) inhibitors for the Alzheimer's disease (AD): a review. Bioorg Med Chem. 2022;74:117047. https://doi.org/10.1016/j.bmc.2022.117047

13. Misrani A, Tabassum S, Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer's disease. Front Aging Neurosci. 2021 Feb 18;13:57. https://doi.org/10.3389/fnagi.2021.617588

14. Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019 Mar;20(3):148-60. https://doi.org/10.1038/s41583-019-0132-6

15. Ju Y, Tam KY. Pathological mechanisms and therapeutic strategies for Alzheimer's disease. Neural Regen Res. 2022 Mar;17(3):543. https://doi.org/10.4103/1673-5374.320970

16. Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Progress Neurobiol. 2022 Jul 21;217:102331. https://doi.org/10.1016/j.pneurobio.2022.102331

17. Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019 Sep;15(9):501-18. https://doi.org/10.1038/s41582-019-0228-7

18. Galla L, Redolfi N, Pozzan T, Pizzo P, Greotti E. Intracellular calcium dysregulation by the Alzheimer's disease-linked protein presenilin 2. Int J Mol Sci. 2020 Jan 24;21(3):770. https://doi.org/10.3390/ijms21030770

19. Yasar S, Varma VR, Harris GC, Carlson MC. Associations of angiotensin converting enzyme-1 and angiotensin II blood levels and cognitive function. J Alzheimer's Dis. 2018 Jan 1;63(2):655-64. https://doi.org/10.3233/JAD-170944

20. Gebre AK, Altaye BM, Atey TM, Tuem KB, Berhe DF. Targeting renin-angiotensin system against Alzheimer's disease. Front Pharmacol. 2018 Apr 30;9:440. https://doi.org/10.3389/fphar.2018.00440

21. Ouk M, Wu CY, Rabin JS, Edwards JD, Ramirez J, Masellis M, et al. Associations between brain amyloid accumulation and the use of angiotensin-converting enzyme inhibitors versus angiotensin receptor blockers. Neurobiol Aging. 2021 Apr 1;100:22-31. https://doi.org/10.1016/j.neurobiolaging.2020.12.011

22. Labandeira-Garcia JL, Labandeira CM, Guerra MJ, Rodriguez-Perez AI. The role of the brain renin-angiotensin system in Parkinson's disease. Translat Neurodegen. 2024 Apr 15;13(1):22. https://doi.org/10.1186/s40035-024-00410-3

23. Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Hamad RS, Alexiou A, et al. Role of brain renin-angiotensin system in depression: a new perspective. CNS Neurosci Therap. 2024 Apr;30(4):e14525. https://doi.org/10.1111/cns.14525

24. Kehoe PG, Wong S, Al Mulhim N, Palmer LE, Miners JS. Angiotensin-converting enzyme 2 is reduced in Alzheimer's disease in association with increasing amyloid-β and tau pathology. Alzheimer's Res Ther. 2016 Dec;8:1-0. https://doi.org/10.1186/s13195-016-0217-7

25. Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Therap. 2021 Feb 1;218:107684. https://doi.org/10.1016/j.pharmthera.2020.107684

26. Mishra S, Prusty SK, Sahu PK, Das D. Irbesartan protects against aluminium chloride induced amyloidogenesis and cognitive impairment. JKIMSU. 2022 Apr 1;11(2):18-30.

27. De Dios L, Collazo C, Inostroza-Nieves Y. Renin-angiotensin-system increases phosphorylated tau and reactive oxygen species in human cortical neuron cell line. Biochem Biophys Rep. 2022 Dec 1;32:101355. https://doi.org/10.1016/j.bbrep.2022.101355

28. Xin XY, Lai ZH, Ding KQ, Zeng LL, Ma JF. Angiotensin-converting enzyme polymorphisms and Alzheimer's disease susceptibility: an updated meta-analysis. PLoS One. 2021 Nov 24;16(11):e0260498. https://doi.org/10.1371/journal.pone.0260498

29. Xu C, Garcia D, Lu Y, Ozuna K, Adjeroh DA, Wang K. Alzheimer's Disease Neuroimaging Initiative. Levels of Angiotensin-Converting Enzyme and Apolipoproteins Are Associated with Alzheimer's Disease and Cardiovascular Diseases. Cells. 2021 Dec 23;11(1):29. https://doi.org/10.3390/cells11010029

30. Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, et al. Brain renin-angiotensin system at the intersect of physical and cognitive frailty. Front Neurosci. 2020 Sep 30;14:586314. https://doi.org/10.3389/fnins.2020.586314

31. Torika N, Asraf K, Roasso E, Danon A, Fleisher-Berkovich S. Angiotensin converting enzyme inhibitors ameliorate brain inflammation associated with microglial activation: possible implications for Alzheimer's disease. J Neuroimmune Pharmacol. 2016 Dec;11:774-85. https://doi.org/10.1007/s11481-016-9703-8

32. Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J. Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer's disease. eNeuro. 2017 Mar 1;4(2):0149-16. https://doi.org/10.1523/ENEURO.0149-16.2017

33. Quitterer U, AbdAlla S. Improvements of symptoms of Alzheimers disease by inhibition of the angiotensin system. Pharmacol Res. 2020 Apr 1;154:104230. https://doi.org/10.1016/j.phrs.2019.04.014

34. Sanchis-Gomar F, Lavie CJ, Perez-Quilis C, Henry BM, Lippi G. Angiotensin-converting enzyme 2 and antihypertensives (angiotensin receptor blockers and angiotensin-converting enzyme inhibitors) in coronavirus disease 2019. Mayo Clin Proc. 2020 Jun;95(6):1222-30. https://doi.org/10.1016/j.mayocp.2020.03.026

35. Fazal K, Perera G, Khondoker M, Howard R, Stewart R. Associations of centrally acting ACE inhibitors with cognitive decline and survival in Alzheimer's disease. BJPsych Open. 2017 Jul;3(4):158-64. https://doi.org/10.1192/bjpo.bp.116.004184

36. Salim H, Jones AM. Angiotensin II receptor blockers (ARBs) and manufacturing contamination: a retrospective National Register Study into suspected associated adverse drug reactions. Br J Clin Pharmacol. 2022 Nov;88(11):4812-27. https://doi.org/10.1111/bcp.15411

37. Gouveia F, Camins A, Ettcheto M, Bicker J, Falcao A, Cruz MT, et al. Targeting brain Renin-Angiotensin System for the prevention and treatment of Alzheimer's disease: Past, present and future. Ageing Res Rev. 2022 May 1;77:101612. https://doi.org/10.1016/j.arr.2022.101612

38. Drug Bank, n.d. [cited 2021 Nov 1] Available from: https://go.drugbank.com/

39. Asraf K, Torika N, Apte RN, Fleisher-Berkovich S. Microglial activation is modulated by captopril: in vitro and in vivo studies. Front Cell Neurosci. 2018 May 1;12:116. https://doi.org/10.3389/fncel.2018.00116

40. Kozin SA, Polshakov VI, Mezentsev YV, Ivanov AS, Zhokhov SS, Yurinskaya MM, et al. Enalaprilat inhibits zinc-dependent oligomerization of metal-binding domain of amyloid-beta isoforms and protects human neuroblastoma cells from toxic action of these isoforms. Mol Biol. 2018 Jul;52:590-7. https://doi.org/10.1134/S0026893318040106

41. Abbassi YA, Mohammadi MT, Foroshani MS, Sarshoori JR. Captopril and valsartan may improve cognitive function through potentiation of the brain antioxidant defense system and attenuation of oxidative/nitrosative damage in STZ-induced dementia in rat. Adv Pharm Bull. 2016 Dec;6(4):531. https://doi.org/10.15171/apb.2016.067

42. AbdAlla S, El Hakim A, Abdelbaset A, Elfaramawy Y, Quitterer U. Inhibition of ACE retards tau hyperphosphorylation and signs of neuronal degeneration in aged rats subjected to chronic mild stress. BioMed Res Int. 2015 Oct;2015:917156. https://doi.org/10.1155/2015/917156

43. Sahin B, Ergul M. Captopril exhibits protective effects through anti-inflammatory and anti-apoptotic pathways against hydrogen peroxide-induced oxidative stress in C6 glioma cells. Metabo Brain Dis. 2022 Apr;37(4):1221-30. https://doi.org/10.1007/s11011-022-00948-z

44. de Oliveira FF, Chen ES, Smith MC, Bertolucci PH. Pharmacogenetics of angiotensin-converting enzyme inhibitors in patients with Alzheimer's disease dementia. Curr Alzheimer Res. 2018 Apr 1;15(4):386-98. https://doi.org/10.2174/1567205014666171016101816

45. Ababei DC, Bild V, Ciobic? A, Lefter RM, Rusu RN, Bild W. A Comparative study on the memory-enhancing actions of oral renin-angiotensin system altering drugs in scopolamine-treated mice. Am J Alzheimer's Dis Other Demen. 2019 Aug;34(5):329-36. https://doi.org/10.1177/1533317519847042

46. Mohapatra D, Kanungo S, Pradhan SP, Jena S, Prusty SK, Sahu PK. Captopril is more effective than Perindopril against aluminium chloride induced amyloidogenesis and AD like pathology. Heliyon. 2022 Feb 1;8(2):e08935. https://doi.org/10.1016/j.heliyon.2022.e08935

47. Youssef MM, Abd El-Latif HA, El-Yamany MF, Georgy GS. Aliskiren and captopril improve cognitive deficits in poorly controlled STZ-induced diabetic rats via amelioration of the hippocampal P-ERK, GSK3β, P-GSK3β pathway. Toxicol Appl Pharmacol. 2020 May 1;394:114954. https://doi.org/10.1016/j.taap.2020.114954

48. Beheshti F, Akbari HR, Baghcheghi Y, Mansouritorghabeh F, Mortazavi Sani SS, Hosseini M. Beneficial effects of angiotensin converting enzyme inhibition on scopolamine-induced learning and memory impairment in rats, the roles of brain-derived neurotrophic factor, nitric oxide and neuroinflammation. Clin Exp Hypertens. 2021 Aug 18;43(6):505-15. https://doi.org/10.1080/10641963.2021.1901112

49. Rygiel K. Can angiotensin-converting enzyme inhibitors impact cognitive decline in early stages of Alzheimer's disease? an overview of research evidence in the elderly patient population. J Postgrad Med. 2016 Oct;62(4):242. https://doi.org/10.4103/0022-3859.188553

50. Bernstein KE, Khan Z, Giani JF, Zhao T, Eriguchi M, Bernstein EA, et al. Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response. F1000Res. 2016;5:F1000. https://doi.org/10.12688/f1000research.7508.1

51. Lee TC, Greene-Schloesser D, Payne V, Diz DI, Hsu FC, Kooshki M, et al. Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment. Radiation Res. 2012 Jul 1;178(1):46-56. https://doi.org/10.1667/RR2731.1

52. Liu Z, Zhu H, Fang GG, Walsh K, Mwamburi M, Wolozin B, et al. Characterization of insulin degrading enzyme and other amyloid-β degrading proteases in human serum: a role in Alzheimer's disease?. J Alzheimer's Dis. 2012 Jan 1;29(2):329-40. https://doi.org/10.3233/JAD-2011-111472

53. Singh B, Sharma B, Jaggi AS, Singh N. Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer's disease type: possible involvement of PPAR-γ agonistic property. J Renin-Angiotensin-Aldosterone Syst. 2013 Jun;14(2):124-36. https://doi.org/10.1177/1470320312459977

54. Thomas J, Smith H, Smith CA, Coward L, Gorman G, De Luca M, et al. The angiotensin-converting enzyme inhibitor lisinopril mitigates memory and motor deficits in a drosophila model of alzheimer's disease. Pathophysiology. 2021 Jun 18;28(2):307-19. https://doi.org/10.3390/pathophysiology28020020

55. Collu R, Giunti E, Daley S, Chen M, Xia W. Angiotensin-converting enzyme inhibitors and statins therapies-induced changes in omics profiles in humans and transgenic tau mice. Biomed Pharmacother. 2023 Dec 1;168:115756. https://doi.org/10.1016/j.biopha.2023.115756

56. Yang WN, Han H, Hu XD, Feng GF, Qian YH. The effects of perindopril on cognitive impairment induced by d-galactose and aluminum trichloride via inhibition of acetylcholinesterase activity and oxidative stress. Pharmacol Biochem Behav. 2013 Dec 1;114:31-6. https://doi.org/10.1016/j.pbb.2013.10.027

57. Messiha BA, Ali MR, Khattab MM, Abo-Youssef AM. Perindopril ameliorates experimental Alzheimer's disease progression: role of amyloid β degradation, central estrogen receptor and hyperlipidemic-lipid raft signaling. Inflammopharmacology. 2020 Oct;28:1343-64. https://doi.org/10.1007/s10787-020-00724-4

58. Yang W, Shi L, Chen L, Zhang B, Ma K, Liu Y, et al. Protective effects of perindopril on d-galactose and aluminum trichloride induced neurotoxicity via the apoptosis of mitochondria-mediated intrinsic pathway in the hippocampus of mice. Brain Res Bull. 2014 Oct 1;109:46-53. https://doi.org/10.1016/j.brainresbull.2014.09.010

59. Mashhoody T, Rastegar K, Zal F. Perindopril may improve the hippocampal reduced glutathione content in rats. Adv Pharm Bull. 2014 Jun;4(2):155.

60. Yamada K, Uchida S, Takahashi S, Takayama M, Nagata Y, Suzuki N, et al. Effect of a centrally active angiotensin-converting enzyme inhibitor, perindopril, on cognitive performance in a mouse model of Alzheimer's disease. Brain Res. 2010 Sep 17;1352:176-86. https://doi.org/10.1016/j.brainres.2010.07.006

61. Bhat SA, Goel R, Shukla R, Hanif K. Angiotensin receptor blockade modulates NFκB and STAT3 signaling and inhibits glial activation and neuroinflammation better than angiotensin-converting enzyme inhibition. Mol Neurobiol. 2016 Dec;53:6950-67. https://doi.org/10.1007/s12035-015-9584-5

62. Ali MR, Abo-Youssef AM, Messiha BA, Khattab MM. Tempol and perindopril protect against lipopolysaccharide-induced cognition impairment and amyloidogenesis by modulating brain-derived neurotropic factor, neuroinflammation and oxido-nitrosative stress. Naunyn-Schmiedeberg's Arch Pharmacol. 2016 Jun;389:637-56. https://doi.org/10.1007/s00210-016-1234-6

63. Deb D, Bairy KL, Nayak V, Rao M. Comparative effect of lisinopril and fosinopril in mitigating learning and memory deficit in scopolamine-induced amnesic rats. Adv Pharmacol Pharm Sci. 2015 Jan 1;2015:521718. https://doi.org/10.1155/2015/521718

64. Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Imboden H, Hamel E. Enalapril alone or co-administered with losartan rescues cerebrovascular dysfunction, but not mnemonic deficits or amyloidosis in a mouse model of Alzheimer's disease. J Alzheimer's Dis. 2016 Jan 1;51(4):1183-95. https://doi.org/10.3233/JAD-150868

65. Israili ZH. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J Hum Hypertens. 2000 Apr;14(1):S73-86. https://doi.org/10.1038/sj.jhh.1000991

66. Villapol S, Saavedra JM. Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens. 2015 Mar 1;28(3):289-99. https://doi.org/10.1093/ajh/hpu197

67. Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the brain: the renin angiotensin system. Int J Mol Sci. 2018 Mar 15;19(3):876. https://doi.org/10.3390/ijms19030876

68. Choi H, Choi NY, Lee KY, Lee YJ, Koh SH. Candesartan restores the Amyloid Beta-inhibited proliferation of neural stem cells by activating the phosphatidylinositol 3-kinase pathway. Dementia Neurocognitive Disord. 2017 Sep 1;16(3):64-71. https://doi.org/10.12779/dnd.2017.16.3.64

69. Trigiani LJ, Royea J, Lacalle-Aurioles M, Tong XK, Hamel E. Pleiotropic benefits of the angiotensin receptor blocker candesartan in a mouse model of Alzheimer disease. Hypertension. 2018 Nov;72(5):1217-26. https://doi.org/10.1161/HYPERTENSIONAHA.118.11775

70. Elkahloun AG, Hafko R, Saavedra JM. An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer's disease. Alzheimer's Res Therap. 2016 Dec;8:1-8. https://doi.org/10.1186/s13195-015-0167-5

71. Torika N, Asraf K, Danon A, Apte RN, Fleisher-Berkovich S. Telmisartan modulates glial activation: in vitro and in vivo studies. PLoS One. 2016 May 17;11(5):e0155823. https://doi.org/10.1371/journal.pone.0155823

72. Wang ZF, Li J, Ma C, Huang C, Li ZQ. Telmisartan ameliorates Aβ oligomer-induced inflammation via PPARγ/PTEN pathway in BV2 microglial cells. Biochem Pharmacol. 2020 Jan 1;171:113674. https://doi.org/10.1016/j.bcp.2019.113674

73. Wang J, Pang T, Hafko R, Benicky J, Sanchez-Lemus E, Saavedra JM. Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT1 receptor blockade and PPARγ activation. Neuropharmacology. 2014 Apr 1;79:249-61. https://doi.org/10.1016/j.neuropharm.2013.11.022

74. Torika N, Asraf K, Apte RN, Fleisher-Berkovich S. Candesartan ameliorates brain inflammation associated with Alzheimer's disease. CNS Neurosci Therap. 2018 Mar;24(3):231-42. https://doi.org/10.1111/cns.12802

75. Sohn YI, Lee NJ, Chung A, Saavedra JM, Turner RS, Pak DT, et al. Antihypertensive drug Valsartan promotes dendritic spine density by altering AMPA receptor trafficking. Biochem Biophys Res Commun. 2013 Oct 4;439(4):464-70. https://doi.org/10.1016/j.bbrc.2013.08.091

76. Khalifa M, Safar MM, Abdelsalam RM, Zaki HF. Telmisartan protects against aluminum-induced Alzheimer-like pathological changes in rats. Neurotox Res. 2020 Feb;37:275-85. https://doi.org/10.1007/s12640-019-00085-z

77. Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Papadopoulos P, Rosa-Neto P, et al. Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer's disease model. Neurobiol Dis. 2014 Aug 1;68:126-36. https://doi.org/10.1016/j.nbd.2014.04.018

78. Drews HJ, Yenkoyan K, Lourhmati A, Buadze M, Kabisch D, Verleysdonk S, et al. Intranasal losartan decreases perivascular beta amyloid, inflammation, and the decline of neurogenesis in hypertensive rats. Neurotherapeutics. 2019 Jul 15;16:725-40. https://doi.org/10.1007/s13311-019-00723-6

79. Torika N, Asraf K, Cohen H, Fleisher-Berkovich S. Intranasal telmisartan ameliorates brain pathology in five familial Alzheimer's disease mice. Brain, Behav Immunity. 2017 Aug 1;64:80-90. https://doi.org/10.1016/j.bbi.2017.04.001

80. Abo-Youssef AM, Khallaf WA, Khattab MM, Messiha BA. The anti-Alzheimer effect of telmisartan in a hyperglycemic ovariectomized rat model; role of central angiotensin and estrogen receptors. Food Chem Toxicol. 2020 Aug 1;142:111441. https://doi.org/10.1016/j.fct.2020.111441

81. Quan W, Xu CS, Li XC, Yang C, Lan T, Wang MY, et al. elmisartan inhibits microglia-induced neurotoxic A1 astrocyte conversion via PPARγ-mediated NF-κB/p65 degradation. Int Immunopharmacol. 2023 Oct 1;123:110761. https://doi.org/10.1016/j.intimp.2023.110761

82. Abd El Aziz AE, Sayed RH, Sallam NA, El Sayed NS. Neuroprotective effects of telmisartan and nifedipine against cuprizone-induced demyelination and behavioral dysfunction in mice: roles of NF-κB and Nrf2. Inflammation. 2021 Aug;44:1629-42. https://doi.org/10.1007/s10753-021-01447-6

83. Affram KO, Janatpour ZC, Shanbhag N, Villapol S, Symes AJ. Telmisartan reduces LPS-mediated inflammation and induces autophagy of microglia. Neuroglia. 2024 Jun 20;5(2):182-201. https://doi.org/10.3390/neuroglia5020014

84. Tayler HM, Skrobot OA, Baron DH, Kehoe PG, Miners JS. Dysregulation of the renin-angiotensin system in vascular dementia. Brain Pathol. 2024 Mar 7;34(4):e13251. https://doi.org/10.1111/bpa.13251

85. Pang T, Wang J, Benicky J, Sánchez-Lemus E, Saavedra JM. Telmisartan directly ameliorates the neuronal inflammatory response to IL-1β partly through the JNK/c-Jun and NADPH oxidase pathways. J Neuroinflamm. 2012 Dec;9:1-9. https://doi.org/10.1186/1742-2094-9-102

86. Malik S, Suchal K, Gamad N, Dinda AK, Arya DS, Bhatia J. Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis. Eur J Pharmacol. 2015 Feb 5;748:54-60. https://doi.org/10.1016/j.ejphar.2014.12.008

87. Kehoe PG, Turner N, Howden B, Jarutyte L, Clegg SL, Malone IB, et al. Safety and efficacy of losartan for the reduction of brain atrophy in clinically diagnosed Alzheimer's disease (the RADAR trial): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2021 Nov 1;20(11):895-906. https://doi.org/10.1016/S1474-4422(21)00263-5

88. Liu H, Liu X, Wei X, Chen L, Xiang Y, Yi F, et al. Losartan, an angiotensin II type 1 receptor blocker, ameliorates cerebral ischemia-reperfusion injury via PI3K/Akt-mediated eNOS phosphorylation. Brain Res Bull. 2012 Oct 1;89(1-2):65-70. https://doi.org/10.1016/j.brainresbull.2012.06.010

89. Drews HJ, Klein R, Lourhmati A, Buadze M, Schaeffeler E, Lang T, et al. Losartan improves memory, neurogenesis and cell motility in transgenic Alzheimer's mice. Pharmaceuticals. 2021 Feb 20;14(2):166. https://doi.org/10.3390/ph14020166

90. Subudhi BB, Sahu PK, Singh VK, Prusty S. Conjugation to ascorbic acid enhances brain availability of losartan carboxylic acid and protects against parkinsonism in rats. AAPS J. 2018 Oct 22;20(6):110. https://doi.org/10.1208/s12248-018-0270-1

91. Royea J, Zhang L, Tong XK, Hamel E. Angiotensin IV receptors mediate the cognitive and cerebrovascular benefits of losartan in a mouse model of Alzheimer's disease. J Neurosci. 2017 May 31;37(22):5562-73. https://doi.org/10.1523/JNEUROSCI.0329-17.2017

92. Trofimiuk E, Wielgat P, Braszko JJ. Candesartan, angiotensin II type 1 receptor blocker is able to relieve age-related cognitive impairment. Pharmacol Rep. 2018 Feb 1;70(1):87-92. https://doi.org/10.1016/j.pharep.2017.07.016

93. Bhat SA, Goel R, Shukla S, Shukla R, Hanif K. Angiotensin receptor blockade by inhibiting glial activation promotes hippocampal neurogenesis via activation of Wnt/β-catenin signaling in hypertension. Mol Neurobiol. 2018 Jun;55:5282-98. https://doi.org/10.1007/s12035-017-0754-5

94. Ishrat T, Pillai B, Soliman S, Fouda AY, Kozak A, Johnson MH, et al. Low-dose candesartan enhances molecular mediators of neuroplasticity and subsequent functional recovery after ischemic stroke in rats. Mol Neurobiol. 2015 Jun;51:1542-53. https://doi.org/10.1007/s12035-014-8830-6

95. Khedr NF, Werida RH, Abo-Saif MA. Candesartan protects against d-galactose induced-neurotoxicity and memory deficit via modulation of autophagy and oxidative stress. Toxicol Appl Pharmacol. 2022 Jan 15;435:115827. https://doi.org/10.1016/j.taap.2021.115827

96. Lin WY, Li LH, Hsiao YY, Wong WT, Chiu HW, Hsu HT, et al. Repositioning of the angiotensin II receptor antagonist candesartan as an anti-inflammatory agent with NLRP3 inflammasome inhibitory activity. Front Immunol. 2022 May 20;13:870627. https://doi.org/10.3389/fimmu.2022.870627

97. Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X, et al. Valsartan lowers brain β-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Investig. 2007 Nov 1;117(11):3393-402. https://doi.org/10.1172/JCI31547

98. Yang WN, Hu XD, Han H, Shi LL, Feng GF, Liu Y, et al. The effects of valsartan on cognitive deficits induced by aluminum trichloride and d-galactose in mice. Neurol Res. 2014 Jul 1;36(7):651-8. https://doi.org/10.1179/1743132813Y.0000000295

99. Wang J, Zheng B, Yang S, Zhou D, Wang J. Olmesartan prevents Oligomerized amyloid β (Aβ)-Induced cellular Senescence in neuronal cells. ACS Chem Neurosci. 2021 Mar 12;12(7):1162-9. https://doi.org/10.1021/acschemneuro.0c00775

100. Nakagawa T, Hasegawa Y, Uekawa K, Senju S, Nakagata N, Matsui K, et al. Transient mild cerebral ischemia significantly deteriorated cognitive impairment in a mouse model of Alzheimer's disease via angiotensin AT1 receptor. Am J Hypertens. 2017 Feb 1;30(2):141-50. https://doi.org/10.1093/ajh/hpw099

101. Zhong MZ, Peng T, Duarte ML, Wang M, Cai D. Updates on mouse models of Alzheimer's disease. Mol Neurodegen. 2024 Mar 11;19(1):23. https://doi.org/10.1186/s13024-024-00712-0

102. Mishra S, Prusty SK, Sahu PK, Das D. Azilsartan ameliorates aluminum chloride-induced Alzheimer's disease-like pathology. Curr Issues Pharm Med Sci. 2023;36(3):151-7. https://doi.org/10.2478/cipms-2023-0026

103. Yasar S, Xia J, Yao W, Furberg CD, Xue QL, Mercado CI, et al. Antihypertensive drugs decrease risk of Alzheimer disease: Ginkgo evaluation of memory study. Neurology. 2013 Sep 3;81(10):896-903. https://doi.org/10.1212/WNL.0b013e3182a35228

104. Wharton W, Goldstein FC, Zhao L, Steenland K, Levey AI, Hajjar I. Modulation of renin-angiotensin system may slow conversion from mild cognitive impairment to Alzheimer's disease. J Am Geriatr Soc. 2015 Sep;63(9):1749-56. https://doi.org/10.1111/jgs.13627

105. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer's disease drug development pipeline: 2020. Alzheimer's Dementia: Translat Res ClinInterven. 2020;6(1):e12050. https://doi.org/10.1002/trc2.12050

106. Hajjar I, Okafor M, Wan L, Yang Z, Nye JA, Bohsali A, et al. Safety and biomarker effects of candesartan in non-hypertensive adults with prodromal Alzheimer's disease. Brain Commun. 2022 Dec 1;4(6):fcac270. https://doi.org/10.1093/braincomms/fcac270

107. Wharton W, Goldstein FC, Tansey MG, Brown AL, Tharwani SD, Verble DD, et al. Rationale and design of the mechanistic potential of antihypertensives in preclinical Alzheimer's (HEART) trial. J Alzheimer's Dis. 2018 Jan 1;61(2):815-24. https://doi.org/10.3233/JAD-161198

108. Ihara M, Saito S. Drug repositioning for Alzheimer's disease: finding hidden clues in old drugs. J Alzheimer's Dis. 2020 Jan 1;74(4):1013-28. https://doi.org/10.3233/JAD-200049

109. Kehoe PG. The coming of age of the angiotensin hypothesis in Alzheimer's disease: progress toward disease prevention and treatment?. J Alzheimer's Dis. 2018 Jan 1;62(3):1443-66. https://doi.org/10.3233/JAD-171119

110. Szabo-Reed AN, Vidoni E, Binder EF, Burns J, Cullum CM, Gahan WP, et al. Rationale and methods for a multicenter clinical trial assessing exercise and intensive vascular risk reduction in preventing dementia (rrAD Study). Contemp Clin Trials. 2019 Apr 1;79:44-54. https://doi.org/10.1016/j.cct.2019.02.007

111. Law CS, Yeong KY. Repurposing antihypertensive drugs for the management of Alzheimer's disease. Curr Med Chem. 2021 Mar 1;28(9):1716-30. https://doi.org/10.2174/0929867327666200312114223

112. Fuller SJ, Shah T, Chatterjee P, Dias CB, Hillebrandt H, Sohrabi HR, et al. Physical activity can reduce hypertension and the long-term benefits may contribute toward a lower risk of cognitive decline and dementia. Hypertension. 2020 Jul;6(3):133-41. https://doi.org/10.15713/ins.johtn.0199

113. Wharton W, Stein JH, Korcarz C, Sachs J, Olson SR, Zetterberg H, et al. The effects of ramipril in individuals at risk for Alzheimer's disease: results of a pilot clinical trial. J Alzheimer's Dis. 2012 Jan 1;32(1):147-56. https://doi.org/10.3233/JAD-2012-120763

Article Metrics
61 Views 17 Downloads 78 Total

Year

Month

Related Search

By author names