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INTRODUCTION
Alzheimer’s disease (AD) is a progressive neuro­

degenerative disease. It is the most common form of dementia. 
Generally, it affects older people above 65 years of age. 
However, it can occur at any age. Clinical symptoms of AD 
include progressive loss of memory, irritability, impairment 
in cognitive function, and a mess in thinking and decision-
making ability [1]. AD is characterized by the deposition of 
neurofibrillary tangles (NFTs) resulting from the aggregation 
of hyperphosphorylated tau protein and amyloid-β (Aβ1-42) 
peptides. In addition, hyperactivation of the acetylcholinesterase 
enzyme (AChE), upregulation of glutamate transmission, glial 
cell activation, oxidative stress, mitochondrial dysfunction, 
and neuro-inflammation also occur in the AD brain. There is 
neuronal death, loss of synaptic plasticity, and shrinkage in the 
hippocampal region [2]. Age, chronic diseases, cardiovascular 

diseases, hypertension, diabetes, genetic, and environmental 
changes are some triggering factors for AD [3,4,5].

Only four medications are approved by FDA for the 
treatment of AD. Based on the mechanism of action, they are 
anti-cholinesterase inhibitors (Galantamine, Donepezil, and 
Rivastigmine) and NMDA (N-methyl-D-aspartate) receptor 
antagonists (Memantine). These medications only address the 
symptoms rather than the disease progression [6]. So, there is a 
need for new therapeutic approaches for AD. Again, the blood–
brain barrier (BBB) plays a key role in drug delivery. Not all 
active drug moieties can cross BBB. So, it is necessary to target 
BBB during drug development against neurodegenerative 
diseases including AD [7]. 

Enormous shreds of evidence show aging and raised 
blood pressure are important risk factors for AD progression. 
The renin-angiotensin system (RAS) is an endocrinal hormonal 
system that mediates several physiological and pathological 
functions by controlling salt and water retention, blood volume, 
and systemic vascular resistance. Hypertension arises due to 
an imbalance of the RAS. Hyperactivation of RAS in the brain 
is responsible for the induction of AD. It generates oxidative 
stress and neuronal inflammation. In the AD brain, there is an 
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anti-tauopathy, free radical scavenging, and anti-inflammatory activities, making them highly reliable and 
effective potential therapeutic approaches for AD.
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II, MAS1, and the AT2 receptor reverse the neurodegenerative 
effects of ACE and the AT1 receptor [9,25,26]. 

Stress, age, and chronic vascular disorders are 
major risk factors for up-regulating the brain RAS through 
the hypothalamic-pituitary-adrenocortical axis. Evidence of 
chronic unpredictable mild stress on a non-transgenic model 
found the hyperactivity of ACE protein, p-tau, and oligomerized 
Aβ in the hippocampal region [27]. From a meta-analysis, it is 
revealed that there is a synchronized correlation found between 
ACE 1 and ApoE ε4 allele [28]. The modified ApoE ε4 gene 
allele has a significant role in the development of sporadic AD 
due to the unbalancing lipid level in the brain [29]. An age-
related cognitive impaired brain down-regulates the ACE II 
and AT2 receptors. Activation of AT1 and nicotinamide oxidase 
(NOX) activate the nuclear factor kappa B (NF-kB), RhoA/Rho 
kinase pathway and inhibit PI3K/Akt signaling and glycogen 
synthase kinase- 3 beta (GSK-3β). Oxidative stress is mediated 
by nicotinamide adenine dinucleotide phosphate (NADPH) 
NOX which further stimulates superoxide production. Free 
radicals cause neuronal dysfunction, and neuronal death [30] 
and encourage neuronal inflammation by upregulating tumor 
necrosis factor α (TNFα), and proinflammatory cytokines 
like IL-1β and IL-6 [31]. Apoptosis cascade and neuronal 
inflammation induce neuronal death, reduction in ACh, and 
impaired G-protein signaling [32] (Fig. 2).

RAS INHIBITORS IN AD
A lot of RAS components are altered in the AD brain. 

Arterial hypertension is a major contributor to the development 
of AD. So, anti-hypertensive drugs inhibiting RAS are now 

inadequate blood supply and insufficient clearance of metabolic 
waste products. So, inhibition of RAS in the brain can enhance 
cognition in AD patients [8,9]. The review aims to insight into 
the novel use of RAS inhibitors against AD. It describes all 
the preclinical and clinical studies using search engines such 
as Scopus, Google Scholar, Science Direct, and PubMed with 
the keywords AD, Angiotensin, ACE, and angiotensin receptor 
blockers (ARBs), mainly from 2015 to 2024.

ALZHEIMER’S DISEASE
There is no exact etiology of AD established to date. 

However, NFTs inside neurons and amyloid plaques between 
neurons are the hallmarks of AD [10]. NFTs are formed by the 
hyperphosphorylation of Tau protein (p-tau). Tau is an important 
protein for stabilizing microtubules [11]. Insoluble β-Amyloid 
(Aβ1-42) is a neurotoxic substance produced by cleaving amyloid 
precursor proteins (APPs). Deposition of Aβ peptide causes the 
aggregation of soluble oligomers and the formation of senile 
plaque. In the AD brain, there is a decline in the clearance of 
oligomerized Aβ [12]. Aβ-oligomer is capable of producing 
reactive oxygen or nitrous species (ROS/RNS) by postponing 
scavenging activity. The presence of ROS/RNS activates the 
microglia cells leading to mitochondrial dysfunction and the 
generation of pro-inflammatory markers [13,14].

Another hypothesis is on the role of neurotransmitters 
in AD. Acetylcholine (ACh) is a major neurotransmitter in 
the hippocampal area. In AD, the amount of ACh declines 
due to over activity of the AChE. Less availability of ACh 
causes improper synaptic transmission through muscarinic and 
nicotinic receptors leading to cognitive impairment [15]. In 
a normal brain, glutamate acts as an NMDA receptor agonist 
and plays a role in maintaining synaptic plasticity. Excessive 
production and release of glutamate cause neuronal damage 
[16]. Genetically, AD is developing due to the mutations in Apo 
lipoprotein E4, presenilin-1, and presenilin-2 genes [17,18].

Brain Renin-angiotensin system and Alzheimer’s 
diseaseThe brain also contains the peripheral RAS components. 
Conversion of angiotensinogen to Ang I is done by renin-
mediated cleavage. Ang I is then converted to Ang II by ACE-I. 
Ang II activates the angiotensin type-1 (AT1 R) receptor. 
RAS causes neurodegeneration through Ang II- AT1 receptor 
stimulation inside the brain. Ang II induces the production of 
neurotoxic oligomerized Aβ and hyperphosphorylated tau [19]. 
The activated brain RAS uplifts the production of ROS and 
RNS. ACE-I is associated with neuroinflammation, oxidative 
stress, glial cell activation, elevated γ-secretase activity, and 
brain atrophy [20,21]. Binding of Ang II with AT1 R activates 
the mitogen-activated protein kinase (MAPK), NRF2 and 
the JNK signaling pathway prompts vascular resistance, 
inflammation, and oxidative stress [22,23]. Hence, excessive 
Ang II concentrations, and up-regulation of ACE and AT1 
receptors are the potential contributors (Fig. 1) to AD [9,24]. 

On the other hand, Ang II is inactivated by ACE II 
to produce angiotensin 1-7, which can activate the MAS1 
receptor and exert vasodilator effects. Ang II also activates the 
AT2 receptor. AT2 receptors mediate anti-inflammatory and 
anti-fibrotic effects. Mas receptors mediate anti-inflammatory 
effects. So, the components of the angiotensin system like ACE 

Figure 1. RAS in neurodegeneration and neuroprotection [The neuro­
degenerative effects of Ang II are associated with ACE-I and AT1 receptors. 
The neuroprotective effects of Ang II are associated with the AT2 receptor and 
that of Ang 1-7 are associated with ACE-II and Mas receptor].
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repurposed for AD management. Notably, the AD patient’s 
brain has a higher amount of ACE-I, which produces Ang II 
and aldosterone [33]. Targeting these two components can be 
useful in RAS-induced AD. Anti-hypertensive drugs like ACE 
inhibitors and Ang II receptor (AT1 receptor)ARBs are the first-
line treatment options due to their indication and safety profile 
[34]. These two classes of drugs down-regulate the RAS. ACE 
inhibitors inhibit the ACE-I and ARBs block the AT1R.

The ACE inhibitors such as Benazepril, Enalapril, 
Moexepril, Quinapril, and Ramipril cannot cross the BBB. 
In contrast, Captopril, Fosinopril, Lisinopril, Perindopril, 
Trandolapril, and Zofenopril are the drugs that penetrate BBB 
[35]. Similarly, ARBs such as Eprosartan, Irbesartan, Losartan, 
and Olmesartan do not cross BBB whereas the drugs such as 
Azilsartan, Candesartan, Telmisartan, and Valsartan can cross 
the BBB [36]. 

Preclinical studies
The in-vitro and in-vivo studies on ACE inhibitors and 

ARBs are given in Table 1.

ACE inhibitors
ACE inhibitors are structurally and chemically 

different. Based on the presence of different chemical groups 
they are classified into three groups such as sulfhydryl-
containing ACE inhibitor (Captopril), dicarboxyl-containing 
ACE inhibitor (Enalapril), and phosphorus-containing ACE 
inhibitor (Fosinopril). Different ACE inhibitors have different 
pharmacokinetic properties and potency based on chemical 
structure. According to the drug bank data, lisinopril and 
captopril exhibit 30%–75% bioavailability, respectively. 
Other ACEIs are considered prodrugs due to their very low 
bioavailability ranging from 4% to 60%. All are orally absorbed 
but show different rates of crossing the BBB. Lipophilicity 
is denoted in log p value. This property strongly decides the 
BBB permeability of ACEIs. An increase in log p enhances the 

permeability. Fosinopril has the highest log p value (4.71) with 
the highest BBB permeability among ACEIs whereas Lisinopril 
has the lowest (−1.2) log p value [37,38].

In vitro studies
Both Perindopril and Captopril reduce NO production 

and activate the transregulation and translation of microglial 
cells. Both reduce bradykinin production, and neuronal 
inflammation and improve neurodegeneration [39,40]. Enalapril 
reduces Aβ-peptide formation, ROS production, and TNFα. It 
decreases the mortality of cells in human neuroblastoma cells. It 
declines apoptotic measurement, decreases nitrite concentration, 
and scavenges the activity of free radical and peroxy nitrate 
[41]. In an LPS-induced cell line model, Captopril attenuates 
NO production, reduces iNOS, decreases TNFα, and decreases 
amyloid plaque in the hippocampus and cortex region [39]. 
So, the anti-oxidant and neuroprotective effects of ACEIs may 
be useful in the treatment of AD and other neurodegenerative 
disorders.

In vivo studies

Captopril
Captopril delays neurodegeneration by reducing tau 

hyperphosphorylation (p-tau), and regulating the amyloidogenic 
process of APP [42,43]. In STZ induced cognitive impairment 
model, Captopril increases SOD (superoxide dismutase) and 
Catalase; reduces MDA (malonyl dialdehyde) and NOX [42]. 
It significantly suppresses the apoptotic marker Bax and the 
inflammatory markers such as NF-kB, IL-1 β, COX-1, and 
COX-2; and elevated anti-apoptotic Bcl-2 levels in H2O2-
induced oxidative damage in C6 cells [44]. This shows that the 
anti-oxidant and anti-inflammatory actions of Captopril may be 
attributed to its efficacy in improving learning and memory.

It remarkably improves cognition, particularly 
in APoE4- carriers of specific ACE genotypes [45]. In 
scopolamine-induced memory deficits, Captopril improves 
spatial learning and memory at 25 mg/kg doses in Swiss 
mice [46]. It reduces Aβ levels, decreases amyloidogenesis, 
suppresses ROS, and shows neuroprotection against the AlCl3-
induced AD-like pathology [47]. It is also effective against STZ-
induced AD in rats. It increases hippocampal P-ERK, inhibits 
GSK-3β, reduces oxidative stress, and has anti-inflammatory 
effects [48]. It significantly increases the hippocampal BDNF, 
IL-6, oxidative stress pointers, and nitric oxide in scopolamine-
induced memory impairment in rats [49]. So, Captopril is also 
improving cholinergic function.

Ramipril
Ramipril is a potent lipid-soluble anti-hypertensive 

drug. It improves cognition by acting on central RAS via anti-
inflammatory mechanisms [50]. It declines the over-expression 
of ACE in myelomonocytes. It improves the immunological 
response and decreases cognitive deterioration by reducing 
the Aβ content in the AD brain [51]. Ramipril improves spatial 
learning and memory in scopolamine-induced cognitive 
dysfunction in mice at a dose of 4 mg/kg for 8 days [46]. In 
another experiment following the whole brain irradiation 

Figure 2. Angiotensin II (Ang II) in the pathogenesis of AD [Ang II oligomerizes 
Aβ, encourages the inflammatory, oxidative, and apoptosis pathways thereby 
resulting in loss of synaptic plasticity and integrity; impaired cognition and 
neuronal transmission].
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Table 1. In vivo and In vitro pre-clinical trial outcomes of some RAS inhibitors in the management of AD.
Name of the Drug Preclinical study model Actions References

Captopril LPS-induced cell line model Attenuates NO production, reduces iNOS, decreases TNFα, and decreases 
amyloid plaque. 

[39]

BV2 microglial cell Reduce NO production, and inflammatory markers, and activate the trans 
regulation and translation

[40]

AlCl3-induced cognitive impairments Improves spatial learning and memory, reduces Aβ levels, and ROS, and 
shows neuroprotection.

[46]

STZ- induced AD Increases hippocampal P-ERK, inhibits GSK-3β, reduces oxidative stress, 
and inflammatory effects.

[47]

Ramipril Scopolamine-induced cognitive 
dysfunction in mice

Improves spatial learning and memory [45]

Fosinopril Scopolamine-induce cognitive 
impairments in rats

Enhances learning and memory by increasing Ach content [63]

Lisinopril i.c.v. STZ-induced dementia in mice Improves memory, learning, and brain cholinergic activity, reduces 
inflammation and oxidative stress

[52]

STZ-induced cognitive impairment in 
mice

Increases GSH and decreases Aβ content, AChE activity, and oxidative 
stress

[53]

Perindopril LPS-induced cognitive dysfunction in 
mice

Decreases amyloidogenesis, p-tau, oxidative stress, and inflammatory 
markers; increases BDNF

[62]

AlCl3-induced AD in male Swiss albino 
mice

Decreases AChE activity, increases SOD, decreases MDA, and suppresses 
microglial activation

[56]

D-galactose-induced AD Improves memory functions; decreases the Aβ42, p-tau, AChE activity, and 
BACE1

[58]

LPS-induced neuroinflammation decreases TNFα and STAT3 and reduces the morphological change [61]
Enalapril Human neuroblastoma cells Reduces Aβ-peptide formation, NO2 concentration, ROS production, and 

TNFα, declines apoptotic measurement
[41]

Telmisartan BV2 microglial cells Decreases IL1, increases IL10, and inhibits NF-Kβ, NO, and iNOS [71]

C6 rat astrocytoma cells and BV2 
microglial cells

Increases IL10 and AT2R expression and decreases AT1R expression [72]

Cerebellar granular cells Decreases LDH release, AKt dephosphorylation, and GSK3β 
dephosphorylation; activates PPARγ

[73]

BV2 murine microglial cell Decrease NO, TNFα, TGFβ1 and COX-2 expression, and increase Aβ-
phagocytosis

[74]

5XFAD mice Reduces the amyloid burden, CD11b, and improves spatial learning and 
memory

[79]

Ovariectomized rat Improves spatial learning and memory by reducing the expression of 
BACE1. It also improves brain histology near the hippocampal CA1 
and CA3 regions. It reduces oxidative stress, MDA production, and 

inflammatory markers

[80]

AT1 knock-out mice Improves spontaneous alternation; decreases the transfer latency, Aβ1-42 
production, Tau phosphorylation, and inflammatory markers

[73]

Valsartan Primary hippocampal neuronal culture Regulates NMDA and AMPA [75]
Cognitive impaired rats Increases IL10, AT2R expression, cell proliferation, and survival; reduces 

Aβ peptide formation and inflammatory markers (IL1β, IL6, and TNFα)
[41]

APP mice Increases transfer latency, improves memory and reduces the inflammatory 
response

[91]

transgenic AD mice Attenuates the Aβ-oligomerization, and oxidative stress; improves the ACh 
activity, cognitive impairment, and insulin content

[97,98]

STZ-induced AD-like pathology Reduces transfer latency, MDA and improves and ACh synthesis, SOD 
enzymatic activity, memory, and learning

[41]

Candesartan 5XFAD mice Improves cortical AT4R expression, impairment of memory and learning; 
decreases amyloid burden, neuronal inflammation

[74]

LPS-induced inflammation in rat models decreases activation of microglial, oxidative stress, and inflammatory 
markers, restores the insulin and glucose metabolism, and enhances the ACh 

activity

[93]

Glutamate-induced neuronal injury in 
genome transcriptome mode

Suppresses overexpression of glutamate, IL6, IL1β, and TNFα thereby 
reducing inflammation

[70]

Olmesartan 5XFAD mice Reduces neurovascular dysfunction, oxidative stress, and synaptic plasticity, 
controls the brain and hippocampal cell damage, and improves cognition

[100]

Azilsartan AlCl3-induced AD-like pathology Reverses cognitive dysfunction, improves antioxidant status, and decreases 
Aβ production

[102]
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procedure in Fischer rats; Ramipril decreases the activation of 
microglial cells and elevates the Ang (1-7) thereby showing 
neuroprotective actions [52].

Lisinopril
It reduces inflammation and oxidative stress in i.c.v. 

STZ-induced dementia in mice. It modulates the peroxisome 
proliferator-activated receptor gamma PPAR-γ and has the 
potential to cross the BBB. It can also address Aβ proteases 
including insulin-degrading enzymes [52]. It increases GSH 
and decreases Aβ content, AChE activity, and oxidative stress in 
STZ-induced cognitive impairment in mice at a dose of 10 and 
15 mg/kg for 18 days [53]. It significantly improves the learning 
and memory dysfunction in a Drosophila melanogaster model 
of AD [54]. It and atorvastatin significantly reduce total tau and 
pTau in PS19 transgenic mice [55]. It improves memory, and 
learning by increasing brain cholinergic, anti-oxidant, and anti-
inflammatory activity.

Perindopril
It improves cognition against AlCl3 and D-galactose-

induced AD in male Swiss albino mice by decreasing AChE 
activity, increasing SOD, decreasing MDA, and suppressing 
microglial activation [56,57,58]. Perindopril improves 

the reduced glutathione content as an anti-oxidant in the 
hippocampus of rats [59]. Perindopril improves cognition in 
a mouse model of AD by inhibiting brain ACE activity [60]. 
However, Perindopril is less effective than captopril in AlCl3-
induced amyloidogenesis and AD-like pathology [47]. 

A dose of 0.5 mg/kg for 30 days, decreases the Aβ42, 
p-tau, AChE activity, and BACE1 in D-galactose-induced 
AD in rats to improve learning, memory, and cognition 
[61]. At a dose of 0.5 and 1 mg/kg for 7 days, it decreases 
amyloidogenesis, p-tau, oxidative stress, and inflammatory 
markers in LPS-induced cognitive dysfunction in mice. It also 
increases neurotrophic factors like BDNF [62]. In another 
study, at a dose of 0.1 mg/kg for 5 days, it decreases TNFα and 
STAT3 and reduces the morphological change in LPS-induced 
neuroinflammation [61]. Hence, the memory-enhancing effect 
of Perindopril may be attributed to cholinergic, anti-oxidant, 
and anti-inflammatory activity.

Other ACEIsFosinopril has a high lipophilicity 
profile. It enhances learning and memory by increasing ACh 
content in scopolamine-induced cognitive impairments in rats 
[63]. Enalapril alone ameliorates cerebrovascular dysfunctions 
but has no effects on amyloidosis in a mouse model of AD [64]. 
Imidapril and Enalapril are less potent inhibitors of brain ACE. 
So, they have no beneficial effect on AD [60].

Table 2. Clinical trial status of some RAS inhibitors and their combinations with other antihypertensive drugs in the management of  
Alzheimer’s disease. 

Name of the drug Current status Duration and sponsorship Clinical outcomes 

Candesartan 
(ARBs) 

Phase 2 
(Completed) Interventional

June 30, 2016, to Aug 17, 2022 Emory 
university

Manages Mild cognitive impairment by changing 
the biomarker in CSF, the hippocampal region on 

amyloid PET imaging, improves executive function, 
and enhances brain connectivity [106].

Telmisartan (ARBs) Phase 1 (Completed) 
Interventional

June 15, 2015, to June 28, 2022 Emory 
University

Modifies brain RAS components like 
angiotensinogen, renin, and ACE, changes in the 
concentration of CSF, Aβ42, and p-Tau, enhances 
cerebral blood flow and reduces inflammatory 

markers [107].

Telmisartan versus 
Perindopril (ARBs versus 

ACE inhibitors)

Phase 2  
Interventional

March 12,2014, to estimate to complete 
on sept, 2023 

Sunnybrook Health Sciences Centre

Changes hippocampal volume and improves 
neuropsychiatric functions [108].

Angiotensin I (1-7) 
(RAS inhibitors)

Phase 1 April 20, 2022, estimated to complete on 
Dec 2023  

University of Arizona

Improves verbal memory functions, and changes in 
p-Tau [109].

Losartan+ Amlodipine + 
Exercise 

(ARBs+Ca2+ channel 
blocker)

Phase 2 
Phase 3 

Completed 
Interventional

Feb 2,2017, to Nov 30, 2021 
University of Texas Southwestern 

Medical Center

Changes in neurocognition, normalize brain volume 
and perfusion [110].

Losartan + Amlodipine 
(ARBs + Ca2+ blocker)

Phase 2 
(Continuing) 
Interventional

April 10, 2018, to complete on July 31, 
2023 

University of Texas Southwestern 
Medical Center

Changes in intracranial pulsatility reduce Aβ and 
improve brain structure [111].

Losartan + Amlodipine 
(ARBs + Ca2+ blocker)

Phase 2 
(Active) 

Interventional

Oct 25,2022 to complete June 1, 2027 
Rong Zhang

Changes brain fibrillary Aβ, and tau, changes in 
cerebral blood flow, and improves cognition [112].

Ramipril 
(ACE inhibitors)

Phase 4 
Completed 

interventional

April 9, 2009, to July 26, 2011 
The University of Wisconsin, Madison

Changes in CSF, ACE, and Aβ42, prevent memory loss 
[113].
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spontaneous alternation; and decreases the transfer latency, Aβ1-42 
production, Tau phosphorylation, and inflammatory markers at 
a dose of 10 mg/kg p.o. [76]. It improves spatial learning and 
memory by reducing the expression of BACE1. It also improves 
brain histology near hippocampal CA1 and CA3 regions. It reduces 
oxidative stress, MDA production, and inflammatory markers in 
the ovariectomized rat model [80]. It shows neuroprotection in 
AT1 knock-out mice of both sexes [73]. 

It inhibits the neurotoxicity of microglial cells through 
NF-κB degradation in LPS-induced neuronal inflammation in 
C57BL/6 mice [81]. It reduces the expression of NF-κB as well 
as pro-inflammatory cytokines and upregulates the expression of 
nuclear factor erythroid 2-related factor 2 (Nrf2) and the levels 
of heme oxygenase-1 and NADPH quinone oxidoreductase 1 
enzymes in cuprizone-induced demyelination and behavioral 
dysfunction at a dose of 5 mg/kg, p.o. in 6 weeks old male 
C57BL/6 mice [82]. It alters the AMPK–mTOR–autophagy 
pathway and microglial viability in LPS-induced neuronal 
inflammation in BV2 microglial cell lines [83].

It is an FDA-approved anti-hypertensive drug. It acts as 
a partial agonist of PPARγ. The preclinical studies revealed that 
activation of PPARγ declines cognitive impairment by crossing 
the BBB [84]. It also reduces the accumulation of cellular Aβ, 
phosphorylated-Tau protein, and neuro-inflammation [85]. It 
also shows neuro-protection, suppresses neuronal apoptosis, 
and reduces oxidative stress [86]. This contributes to its efficacy 
against neurodegenerative diseases, particularly AD.

Losartan
It is a prototype ARB that prevents Ang II conversion 

centrally in mice models [87]. It increases cerebral blood 
flow. It reduces neuropathology and neuronal damage [88,89]. 
It reduces AT1R expression and improves AT4R expression 
[77]. When losartan is conjugated with ascorbic acid, the 
brain availability of Losartan carboxylic acid, a metabolite 
of Losartan, increases. It has a neuroprotective effect [90]. 
Losartan increases IL10, AT2R expression, cell proliferation, 
and survival; reduces Aβ peptide formation and inflammatory 
markers (IL1β, IL6, and TNFα) at a dose of 0.24 mg/kg 
administered for 35 days [78,89]. It increases transfer latency, 
improves memory, and reduces inflammatory response at a 
dose of 10 mg/kg for 4 months in APP mice [91]. Because 
of its low BBB permeability, Losartan can be conjugated 
with small molecules to improve its brain permeability and 
efficacy against neurodegenerative diseases.

CandesartanCandesartan controls the NADPH 
oxidase expression, and lipid peroxidation [92]. It improves 
cortical AT4R expression, impairment of memory and learning; 
decreases amyloid burden, and neuronal inflammation at a dose 
of 1 mg/kg (intranasal) in 5XFAD mice [69,74]. It decreases 
activation of microglial, oxidative stress, and inflammatory 
markers, restores insulin and glucose metabolism, and enhances 
the ACh activity in LPS-induced inflammation in rat models at 
doses of 0.1 mg/kg and 2 mg/kg for 35 days [61,93]. It increases 
ACh production and neuroprotective factors like BDNF and 
VEGF in rats [70,94]. 

It decreases neuronal damage and improves memory 
impairments by reducing the brain MDA and increasing 

Angiotensin receptor blockers (ARBs)
ARBs are a key class of antihypertensive drugs. They 

are non-peptide compounds that exhibit different structures. 
Except for Irbesartan, all ARBs have a free carboxylic acid 
group. They may have a common tetrazole-biphenyl structure 
(Candesartan, Irbesartan, Valsartan, and Losartan) or a common 
benzimidazole group (Candesartan and Telmisartan). These 
different structures contribute to their different pharmacokinetic 
profiles and different affinity to the AT1R [65]. They are 
absorbed orally and their bioavailability ranges from 13% for 
Eprosartan to 60%–80% for Irbesartan. They have high protein 
binding properties and high polar surfaces. These properties 
limit the BBB permeability. Their partition coefficient (LogP) 
ranges from 2.98 (Olmesartan) to 6.66 (Telmisartan), with 
increasing permeability to the brain [37,38]. 

ARBs inhibit nuclear translocation of NF-kB, decrease 
NOX activation, reduce ROS production, decrease the activity 
of COX-2, and prostaglandins, halt iNOS activity, decrease pro-
inflammatory cytokine production and increase neuroprotectors 
like IL-10 [66]. They act by blocking the AT1 receptor. They 
promote the conversion of Ang II to Ang IV thereby increasing 
the activity of AT2R or AT4R and hence are neuroprotective [67]. 

In vitro studies
Candesartan restores the cell proliferation of neural 

stem cells and inhibits Aβ-oligomerization through PI3K 
activation [68]. It also shows an anti-inflammatory effect 
through the activation of AT2 receptor [69]. It prevents 
overexpression of glutamate, IL6, IL1β, and TNFα thereby 
reducing inflammation. It has also a protective effect on 
glutamate-induced neuronal injury in a genome transcriptome 
model [70]. 

In BV2 microglial cells Telmisartan decreases IL1, 
increases IL10, and inhibits NF-Kβ, NO, and iNOS [71]. In 
C6 rat astrocytoma cells and BV2 microglial cells, Telmisartan 
increases IL10 and AT2R expression and decreases AT1R 
expression [72]. In cerebellar granular cells, telmisartan 
decreases LDH release, AKt dephosphorylation, and GSK3β 
dephosphorylation; and activates PPARγ [73]. Candesartan 
and Telmisartan decrease NO, TNFα, TGFβ1, and COX-2 
expression, and increase Aβ-phagocytosis in BV2 murine 
microglial cells [71,74]. 

Valsartan regulates NMDA and AMPA receptors in 
primary hippocampal neuronal culture [75]. Both Valsartan 
and Telmisartan restore the cholinergic function [76]. Losartan 
increases protective signaling through Ang IV/AT4R in 
mice [77]. Most of the sartans (Losartan, Candesartan, and 
Telmisartan) have neuroprotective effects by increasing BDNF 
and VEGF [78]. In addition, they increase cholinergic function 
and show anti-inflammatory effects which may contribute to 
their efficacy against cognitive impairment.

In-vivo studies

Telmisartan
Telmisartan reduces amyloid burden, CD11b, and 

improves spatial learning and memory in 5XFAD mice at 
a dose of 1 mg/kg (intranasal) for 2 months [79]. It improves 
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the catalase and total thiol at a dose of 1 mg/kg, p.o. in 
d-galactose-induced cognitive dysfunction [95]. It inactivates 
the NLRP3 inflammasome, NF-kB Activation, and MAPK 
Phosphorylation in the mouse macrophage cell line model 
[96]. So, Captopril by reducing oxidative stress, neuronal 
inflammation, and microglial activation and improving 
cholinergic function has the potential to be used to improve 
memory functions in AD.

Valsartan
Valsartan attenuates the Aβ-oligomerization, and 

oxidative stress; and improves the ACh activity, cognitive 
impairment, and insulin content in transgenic AD mice at a 
dose of 10 and 40 mg/kg [97,98]. It reduces transfer latency, 
and MDA and improves ACh synthesis, and SOD enzymatic 
activity thereby improving memory, and learning in STZ-
induced AD-like pathology at a dose of 30 mg/kg [41]. Like 
other ARBs, Valsartan also has the potential against cognitive 
impairment due to its cholinergic and antioxidant actions.

Olmesartan
Olmesartan is a neuroprotective agent. It prevents 

oligomerization of Aβ and neuronal senescence by down-regulating 
p16 and p21 [99]. It reduces neurovascular dysfunction, oxidative 
stress, and synaptic plasticity, controls brain and hippocampal cell 
damage, and improves cognition in 5XFAD mice [100].

Amyloid-β plaques, oxidative stress, and 
neuroinflammation are the pathological features of AD. RAS 
has a role in the pathology of AD. Memory is a cholinergic 
function [9,101]. 

Inhibitors of the RAS like ACEIs and ARBs improve 
the cholinergic function. They show antioxidant and anti-
inflammatory actions. They reduce Aβ. So, ACEIs and ARBs 
have the potential to be repurposed against AD and other forms 
of dementia. 

  Clinical trials
After the successful outcomes from preclinical models, 

a lot of clinical trials were conducted on RAS inhibitors against 
AD. The growth of Aβ plaques and NFTs cannot be eliminated 
only by cholinesterase inhibitors or NMDAR antagonists. 
Targeting other approaches like neuronal inflammation, 
oxidative stress, and NMDAR activity through RAS inhibitors 
using anti-hypertensive drugs (ACE inhibitors and ARBs) 
are under clinical trial for the treatment of AD (Table 2). 
Retrospective cohort studies are conducted to evaluate the risk 
management of developing AD between RAS-acting drugs and 
non-RAS-acting drugs. RAS-acting drugs are more effective 
against AD than non-RAS-acting drugs. RAS-acting drugs can 
prevent AD pathology and improve cognition [103]. Phase II 
clinical trials are underway for several novel antihypertensive 
drug classes, including ACE inhibitors (Perindopril) and ARBs 
(Telmisartan and Candesartan) [104,105]. 

CONCLUSION
RAS inhibitors (ACE inhibitors and ARBs) present a 

promising strategy for developing effective treatments for AD. 
By leveraging their mechanisms of action and established safety 

profiles, RAS inhibitors offer a more direct route to clinical 
application, potentially bypassing lengthy development processes. 
Pre-clinical and clinical investigations have shown that RAS 
inhibitors possess anti-Aβ plaque, anti-tauopathy, free radical 
scavenging, and anti-inflammatory activities. Furthermore, 
ongoing research continues to reveal the complexities of 
Alzheimer's pathology, suggesting that innovative drugs could 
provide meaningful therapeutic options for managing this 
devastating neurodegenerative condition. Consequently, ACE 
inhibitors and ARBs are considered a highly reliable and effective 
future therapeutic approach against AD.
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