Synthesis of flavonoid derivatives as anti-rheumatoid arthritis agent: A systematic literature review and meta-analyses

Andy Eko Wibowo Ratna Asmah Susidarti Ika Puspitasari Sabtanti Harimurti   

Open Access   

Published:  Jul 28, 2025

DOI: 10.7324/JAPS.2025.240756
Abstract

Flavonoids are plant-derived compounds with anti-inflammatory, antioxidant, and immunomodulatory properties, offering potential as adjunct therapies for rheumatoid arthritis (RA). This review explores their synthesis and therapeutic potential in RA. Following preferred reporting items for systematic reviews and meta-analyses guidelines, 324 articles were screened; 33 studies met the inclusion criteria, encompassing in silico, in vitro, and in vivo evaluations, along with diverse synthesis approaches. A meta-analysis was conducted on selected studies with comparable quantitative data to evaluate the overall effect size of flavonoid derivatives on key inflammatory markers. Structural modifications (particularly hydroxyl and methoxy groups) enhanced anti-inflammatory effects. Flavonoids inhibited TNF-α, IL-1, IL-6, modulated immune pathways, and reduced oxidative stress. The meta-analysis supported the significant inhibitory effects of flavonoid derivatives on pro-inflammatory cytokines, reinforcing their therapeutic potential. Flavonoids demonstrate promising multi-target activity and safety profiles for RA management. However, meta-analytic findings highlight variability in study quality and outcomes. Further research is needed to optimize synthesis, improve bioavailability, and validate efficacy through clinical trials.


Keyword:     Anti-inflammatory pharmacological evaluation flavonoids rheumatoid arthritis flavonoid synthesis


Citation:

Wibowo AE, Susidarti RA, Puspitasari I, Harimurti S. Synthesis of flavonoid derivatives as anti-rheumatoid arthritis agent: A systematic literature review and meta-analyses. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.240756

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Taylor PC, Laedermann C, Alten R, Feist E, Choy E, Haladyj E, et al. A JAK inhibitor for treatment of rheumatoid arthritis: the baricitinib experience. J Clin Med. 2023;12(13):4527. https://doi.org/10.3390/jcm12134527

2. Ranchchh AR, Busa KP, Mahetar JG, Shah MK. A facile synthetic approach for the syntheses of 7-hydroxyflavonol derivatives [Internet]. Der Pharm Chem. 2015;7(5):142-6.

3. Kimariyo PF, Kurati SP, Babu PS, Moyo AA, Muthyala MKK. Synthesized diterpene lactone derivative attenuated Freund's complete adjuvant-induced arthritis in Wistar rats. Iran J Basic Med Sci. 2024;27(9):1197-208.

4. Trivilin Mendes M, Fadoni Alponti R, Lucio Alves P, Lopes Trevizan I, Pekelmann Markus R, Augusto Fernandes P, et al. Inhibitors of tumor necrosis factor synthesis as a new approach for the treatment of rheumatoid arthritis. J Arthritis. 2020;9:123-30.

5. Emam SH, Sonousi A, Osman EO, Hwang D, Kim G Do, Hassan RA. Design and synthesis of methoxyphenyl- and coumarin-based chalcone derivatives as anti-inflammatory agents by inhibition of NO production and down-regulation of NF-κB in LPS-induced RAW264.7 macrophage cells. Bioorg Chem. 2021;107:104630. https://doi.org/10.1016/j.bioorg.2021.104630

6. Kumar A, Mahendra J, Mahendra L, Abdulkarim HH, Sayed M, Mugri MH, et al. Synergistic effect of biphasic calcium phosphate and platelet-rich fibrin attenuate markers for inflammation and osteoclast differentiation by suppressing nf-κb/mapk signaling pathway in chronic periodontitis. Molecules 2021;26(21):6578. https://doi.org/10.3390/molecules26216578

7. Chen YF, Wu SN, Gao JM, Liao ZY, Tseng YT, Fülöp F, et al. The antioxidant, anti-inflammatory, and neuroprotective properties of the synthetic chalcone derivative AN07. Molecules 2020;25(12):2907. https://doi.org/10.3390/molecules25122907

8. Gottenberg JE, Morel J, Perrodeau E, Bardin T, Combe B, Dougados M, et al. Comparative effectiveness of rituximab, abatacept, and tocilizumab in adults with rheumatoid arthritis and inadequate response to TNF inhibitors: prospective cohort study. BMJ (Online). 2019;364:l67. https://doi.org/10.1136/bmj.l67

9. Kim MK, Bae O, Chong Y. Design, synthesis, and molecular docking study of flavonol derivatives as selective jak1 inhibitors. Bull Korean Chem Soc. 2014;35(8):2581-4. https://doi.org/10.5012/bkcs.2014.35.8.2581

10. Taylor PC, Choy E, Baraliakos X, Szekanecz Z, Xavier RM, Isaacs JD, et al. Differential properties of Janus kinase inhibitors in the treatment of immune-mediated inflammatory diseases. Rheumatology 2024;63(2):298-308. https://doi.org/10.1093/rheumatology/kead448

11. Sun Z, Zhai B, He G, Shen H, Chen L, Zhang S, et al. Synthesis and anti-inflammatory evaluation of novel 1,2,3-triazole derivatives. Chin J Org Chem. 2023;43(6):2143-55. https://doi.org/10.6023/cjoc202209033

12. Wu J, Li J, Cai Y, Pan Y, Ye F, Zhang Y, et al. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J Med Chem. 2011;54(23):8110-23. https://doi.org/10.1021/jm200946h

13. Rathod P, Chavan S. Flavonoid derivatives: synthesis and biological assay showing strong anti-inflammatory activity. J Appl Pharm Sci. 2023.

14. Upadhyay HC, Singh M, Prakash O, Khan F, Srivastava SK, Bawankule DU. QSAR, ADME and docking guided semi-synthesis and in vitro evaluation of 4-hydroxy-α-tetralone analogs for anti-inflammatory activity. SN Appl Sci. 2020;2(12):2069. https://doi.org/10.1007/s42452-020-03798-5

15. Prafulla S, Lata P, Nusrat S, Priya R. Design, synthesis and pharmacological screening of novel flavone derivatives. Sys Rev Pharm. 2021;12(12):3817-21.

16. Maria Elisa MB, et al. Esterified flavonoids with increased lipophilicity and bioactivity. Arab J Chem. 2016;9:S931-5.

17. Gill NS, Kaur A, Arora R, Dhawan V, Bali M Synthetic studies of novel azaflavanone derivatives and its biological activities. Curr Res Chem. 2012;4(4):88-98. https://doi.org/10.3923/crc.2012.88.98

18. Simyeue C, et al. Substituted flavonoids synthesized via Claisen- Schmidt showed better NO inhibition than pinocembrin. J Appl Pharm Sci. 2021.

19. Bano S, Javed K, Ahmad S, Rathish IG, Singh S, Chaitanya M, et al. Synthesis of some novel chalcones, flavanones and flavones and evaluation of their anti-inflammatory activity. Eur J Med Chem. 2013;65:51-9. https://doi.org/10.1016/j.ejmech.2013.04.056

20. Abualhasan M, Jaradat N, Al-Rimawi F, Shahwan M, Mansour D, Alhend Z, et al. Bioactivity evaluation of synthesized flavone analogs. Food Sci Technol (Brazil). 2022;42:e57122. https://doi.org/10.1590/fst.57122

21. Nile SH, Keum YS, Nile AS, Jalde SS, Patel RV. Antioxidant, anti-inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives. J Biochem Mol Toxicol. 2018;32(1):456-63. https://doi.org/10.1002/jbt.22002

22. Kiruthiga N, et al. Synthesized flavonoids evaluated via docking and in vitro assays showed significant anti-inflammatory effect. J Appl Pharm Sci. 2021.

23. Sabale S, et al. Evaluation of synthetic flavones using in vivo paw edema model. J Appl Pharm Sci. 2021.

24. Sinyeue C, Matsui M, Oelgemöller M, Bregier F, Chaleix V, Sol V, et al. Synthesis and investigation of flavanone derivatives as potential new anti-inflammatory agents. Molecules 2022;27(6):1781. https://doi.org/10.3390/molecules27061781

25. Lima NM, Mendes LAO, Castro SBR, De T, Andrade JAS, Carli AP, et al. Synthesis of chrysin derivatives with anti-inflammatory property, a naturally occurring flavone. Am J Pharm. 2022;41(11):2266-72.

26. Hashim NA. Synthesis and bioactivity studies of flavonoid and its derivatives [Master's thesis]. Johor, Malaysia: Universiti Teknologi Malaysia, Faculty of Science; 2012.

27. Yang Q, Wang Z, Hong Huan Hor C, Xiao H, Bian Z, Wang J. Asymmetric synthesis of flavanols via Cu-catalyzed kinetic resolution of chromenes and their anti-inflammatory activity. Sci Adv. 2022;8:eabm9603. https://doi.org/10.1126/sciadv.abm9603

28. Barmaki I, et al. Hybrid indole-chalcone derivatives showed strong anti-inflammatory activity. J Appl Pharm Sci. 2021.

29. Kamakavalli M, et al. Anti-inflammatory effects of 3-formyl- 7-flavonols synthesized via Vilsmeier-Haack method. Biomed Pharmacol J. 2019;12(4):1779-91. https://doi.org/10.13005/bpj/1809

30. Wibowo AE, Susidarti RA, Puspitasari I. Synthesis and anti-inflammatory activity of 1-(2,5-dihydroxyphenyl)-3-pyridine-2-Yl-propenone (AEW-1) compound. Indones J Pharm. 2020;32:209-20. https://doi.org/10.22146/ijp.1263

31. Sonu S, et al. 3-methoxy chalcone derivatives with moderate to strong anti-inflammatory activity. J Appl Pharm Sci. 2023.

32. Peng Y, Shi Y, Zhang H, Mine Y, Tsao R. Anti-inflammatory and anti-oxidative activities of daidzein and its sulfonic acid ester derivatives. J Funct Foods. 2017;35:635-40. https://doi.org/10.1016/j.jff.2017.06.027

33. Wibowo AE, Hatala RR, Edang AM. Antimicrobial test of 1-(2.5-dihydroxi phenyl)-(3-pyridine-2-Il) -propanone compound in Enterococcus faecalis and Escherichia coli bacteria using a well diffusion method. J Fund Appl Pharm Sci. 2021;1(2):72-80. https://doi.org/10.18196/jfaps.v1i2.10983

34. Wibowo AE, Saputra AK, Susidarti RA. Optimization of synthesis of 1-(2,5-dihydroxyphenyl)-(3-pyridine-2-yl)-propenone, AN anti-inflammatory agent, using NaOH. Pharm J Indones. 2018;15(2):25- 32.

35. Munir A, Muhammad F, Zaheer Y, Ali MA, Iqbal M, Rehman M, et al. Synthesis of naringenin loaded lipid-based nanocarriers and their in-vivo therapeutic potential in a rheumatoid arthritis model. J Drug Deliv Sci Technol. 2021;66:102854. https://doi.org/10.1016/j.jddst.2021.102854

36. Miao Y, Yang J, Yun Y, Sun J, Wang X. Synthesis and anti-rheumatoid arthritis activities of 3-(4-aminophenyl)-coumarin derivatives. J Enzyme Inhib Med Chem. 2021;36(1):450-61. https://doi.org/10.1080/14756366.2021.1873978

37. Freitas M, Ribeiro D, Tomé SM, Silva AMS, Fernandes E. Synthesis of chlorinated flavonoids with anti-inflammatory and pro-apoptotic activities in human neutrophils. Eur J Med Chem. 2014;86:153-64. https://doi.org/10.1016/j.ejmech.2014.08.035

38. Ao M, et al. Adamantyl flavonoids reduced NF-κB activation in ALI models. J Appl Pharm Sci. 2022.

39. Rajput S, Kumar D, Agrawal V. Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Rep. 2020;39(7):921-39. https://doi.org/10.1007/s00299-020-02539-7

40. Pohl P, et al. AgNPs from Tribulus terrestris showed 82% anti-inflammatory activity. Nanomaterials. 2020;10(12):1-17.

41. Alves L, Joana J. Acylated naringin/rutin derivatives showed strong iNOS and NO inhibition. J Appl Pharm Sci. 2018.

42. De Araújo MEMB, Franco YEM, Messias MCF, Longato GB, Pamphile JA, Carvalho PDO. Biocatalytic synthesis of flavonoid esters by lipases and their biological benefits. Planta Med. 2017;83:7- 22. https://doi.org/10.1055/s-0042-118883

43. Karpakavalli M, Sangilimuthu AY, Usha Raja Nanthini A, Nagaraja Perumal G, Mohan S, Sivakumar T. Anti-inflammatory effects of 3-formyl, 7-flavonols derivatives by microwave enhanced chemistry assisted - Vilsmeier haack synthesis. Biomed Pharmacol J. 2019;12(4):1779-91. https://doi.org/10.13005/bpj/1809

44. Mysler E, Caubet M, Lizarraga A. Current and emerging DMARDs for the treatment of rheumatoid arthritis. Open Access Rheumatol. 2021;13:139-52. https://doi.org/10.2147/OARRR.S282627

45. Tucci G, Garufi C, Pacella I, Zagaglioni M, Pinzon Grimaldos A, Ceccarelli F, et al. Baricitinib therapy response in rheumatoid arthritis patients associates to STAT1 phosphorylation in monocytes. Front Immunol. 2022;13:932240. https://doi.org/10.3389/fimmu.2022.932240

46. Pharma D, Rathod SP, Chavan AS. Design and synthesis of flavonoid derivatives as anti-inflammatory drug. Der Pharm Chem. 2023;15(6):146-50. Available from: www.derpharmachemica.com

47. Gautam GK, Mishra AK, Parveen BR, singh H. Molecular docking studies, synthesis of novel isoxazole derivatives from 3-methoxy substituted chalcone and evaluation of their anti-inflammatory activity. Orient J Chem. 2023;39(3):675-83. https://doi.org/10.13005/ojc/390318

48. Zhou S, Xue W, Tan J. Design, synthesis, and antirheumatoid arthritis mechanism of TLR4 inhibitors. ACS Omega. 2024;9(34):36232-4. https://doi.org/10.1021/acsomega.4c02344

49. Sable PM, Potey LC. Microwave-assisted synthesis of chalcone and biological activity [Internet]. Available from: http://www. scholarsresearchlibrary.com

50. Baramaki I, Alt?ntop MD, Arslan R, Alyu Alt?nok F, Özdemir A, Dallali I, et al. Design, Synthesis, and in vivo evaluation of a new series of indole-chalcone hybrids as analgesic and anti-inflammatory agents. ACS Omega. 2024;9(10):12175-83. https://doi.org/10.1021/acsomega.4c00026

51. Chen L, Fan Z, Chang J, Yang R, Hou H, Guo H, et al. Sequence-based drug design as a concept in computational drug design. Nat Commun. 2023;14(1):4217. https://doi.org/10.1038/s41467-023-39856-w

52. Yue Y, Peng J, Wang D, Bian Y, Sun P, Chen C. Synthesis of 4H-chromen-4-one derivatives by intramolecular palladium-catalyzed acylation of alkenyl bromides with aldehydes. J Org Chem. 2017;82(10):5481-6. https://doi.org/10.1021/acs.joc.7b00640

53. Beken B, Serttas R, Yazicioglu M, Turkekul K, Erdogan S. Quercetin improves inflammation, oxidative stress, and impaired wound healing in atopic dermatitis model of human keratinocytes. Pediatr Allergy Immunol Pulmonol. 2020;33(2):69-79. https://doi.org/10.1089/ped.2019.1137

54. Hayashi A, Gillen AC, Lott JR. Effects of daily oral administration of quercetin chalcone and modified citrus pectin on implanted colon-25 tumor growth in Balb-c mice. Altern Med Rev. 2000;5(6):546-52.

55. Rayees Ahmad M, Girija Sastry V, Bano N, Anwar S. Synthesis of novel chalcone derivatives by conventional and microwave irradiation methods and their pharmacological activities. Arab J Chem. 2016;9:S931-5. https://doi.org/10.1016/j.arabjc.2011.09.002

56. Sharifi-Rad M, Pohl P, Epifano F, Álvarez-Suarez JM. Green synthesis of silver nanoparticles using astragalus tribuloides delile. Root extract: characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials 2020;10(12):1-17. https://doi.org/10.3390/nano10122383

57. Zhang Y, Jiang J, Xie J, Xu C, Wang C, Yin L, et al. Combined effects of tumor necrosis factor-α and interleukin-1β on lysyl oxidase and matrix metalloproteinase expression in human knee synovial fibroblasts in vitro. Exp Ther Med. 2017;14(6):5258-66. https://doi.org/10.3892/etm.2017.5264

58. Pierea D, et al. General reaction for synthesis of flavonoid derivatives. J Appl Pharm Sci. 2023.

59. Igbe I, Shen XF, Jiao W, Qiang Z, Deng T, Li S, et al. Dietary quercetin potentiates the antiproliferative effect of interferon-α in hepatocellular carcinoma cells through activation of JAK/STAT pathway signaling by inhibition of SHP2 phosphatase [Internet]. Oncotarget. 2017;8(69):113734-48. Available from: www. impactjournals.com/oncotarget https://doi.org/10.18632/oncotarget.22556

60. Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6(1):263. https://doi.org/10.1038/s41392-021-00658-5

61. Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018 Dec;27(12):1984-2009. https://doi.org/10.1002/pro.3519

62. Wahnou H, Limami Y, Oudghiri M. Flavonoids and flavonoid-based nanoparticles for osteoarthritis and rheumatoid arthritis management. BioChem 2024;4(1):38-61. https://doi.org/10.3390/biochem4010003

Article Metrics
11 Views 7 Downloads 18 Total

Year

Month

Related Search

By author names