Chemistry, resources, anticancer effects, other pharmacological properties, and clinical trials of oleandrin from Nerium oleander: An overview

Siu Kuin Wong Hung Tuck Chan Eric Wei Chiang Chan   

Open Access   

Published:  Jul 28, 2025

DOI: 10.7324/JAPS.2025.257922
Abstract

This overview entails the chemistry, resources, anticancer effects, other pharmacological properties, and clinical trials of oleandrin, a major cardenolide from Nerium oleander. The highest quantity of oleandrin is in the roots followed by leaves, stems, and flowers. In its chemical structure, oleandrin contains a central steroid nucleus, a lactone structure, dideoxy arabinose or L-oleandrose group, and an acetyloxy moiety. Oleandrin has inhibitory effects against a diverse type of cancer cells with 19 types recorded in this overview. In its anticancer activities, oleandrin inhibits cell proliferation, reduces cell viability, induces apoptosis, and promotes cell cycle arrest. These activities involve the modulation of multiple cellular signaling pathways such as those of nuclear factor kappa B, mitogen-activated protein kinase, and phosphoinositide 3-kinase/protein kinase B. Anvirzel and PBI-05204 are two anticancer drugs where oleandrin is the principal bioactive component. Their clinical trials are briefly summarized. Other pharmacological properties of oleandrin include neuroprotective, anti-inflammatory, anti-osteolysis, anti-viral, anti-allergic, and toxic effects on saline organisms. Studies have shown that oleandrin, PBI-05204, a derivative of oleandrin, and PBI-04711, a fraction of PBI-05204, possess superior neuroprotective properties. Notable is their ability to penetrate the blood– brain barrier. Fields and topics for further research on oleandrin are suggested.


Keyword:     Anvirzel PBI-05204 cardenolides anticancer other pharmacological properties


Citation:

Wong SK, Chan HT, Chan EWC. Chemistry, resources, anticancer effects, other pharmacological properties, and clinical trials of oleandrin from Nerium oleander: An overview. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.257922

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Bandara V, Weinstein SA, White J, Eddleston M. A review of the natural history, toxinology, diagnosis and clinical management of Nerium oleander (common oleander) and Thevetia peruviana (yellow oleander) poisoning. Toxicon. 2010;56(3):273−81. doi: https://doi.org/10.1016/j.toxicon.2010.03.026

2. Wong SK, Lim YY, Chan EWC. Botany, uses, phytochemistry and pharmacology of selected Apocynaceae species: a review. Pharmacogn Commun. 2013;3:1−11. doi: https://doi.org/10.5530/pc.2013.3.2

3. Seher A, Hanif MA, Ayub MA, Jilani MI, Mahomoodally MF. Oleander. In: Hanif MA, Nawaz H, editors. Medicinal plants of South Asia. Amsterdam: Elsevier. 2020;525−39. doi: https://doi.org/10.1016/B978-0-08-102659-5.00039-2

4. Cao YL, Zhang MH, Lu YF, Li CY, Tang JS, Jiang MM. Cardenolides from the leaves of Nerium oleander. Fitoterapia. 2018;127:293−300. doi: https://doi.org/10.1016/j.fitote.2018.03.004

5. Upadhyay RK. Phytochemistry, therapeutic and pharmacological potential of Nerium oleander L. Int J Green Pharm. 2024;18(3):136−46.

6. Bai L, Wang L, Zhao M, Toki A, Hasegawa T, Ogura H, et al. Bioactive pregnanes from Nerium oleander. J Nat Prod. 2007;70(1):14−8. doi: https://doi.org/10.1021/np068030o

7. Sharma P, Choudhary AS, Parashar P, Sharma MC, Dobhal MP. Chemical constituents of plants from the genus Nerium. Chem Biodivers. 2010;7(5):1198−207. doi: https://doi.org/10.1002/cbdv.200900172

8. Chan EWC, Wong SK, Chan HT. Apocynaceae species with antiproliferative and/or antiplasmodial properties: A review of ten genera. J Integr Med. 2016;14(4):269−84. doi: https://doi.org/10.1016/S2095-4964(16)60261-3

9. Ayouaz S, Arab R, Mouhoubi K, Madani K. Nerium oleander Linn: A review of chemical, pharmacological and traditional uses. J Biomed Res Environ Sci. 2023;4(4):2766−276. doi: https://doi.org/10.37871/jbres1720

10. Mijatovic T, Van Quaquebeke E, Delest B, Debeir O, Darro F, Kiss R. Cardiotonic steroids on the road to anticancer therapy. Biochim Biophys Acta - Rev Cancer. 2007;1776(1):32−57. doi: https://doi.org/10.1016/j.bbcan.2007.06.002

11. Wen S, Chen Y, Lu Y, Wang Y, Ding L, Jiang M. Cardenolides from the Apocynaceae family and their anticancer activity. Fitoterapia. 2016;112:74−84. doi: https://doi.org/10.1016/j.fitote.2016.04.023

12. Zhao M, Bai L, Wang L, Toki A, Hasegawa T, Kikuchi M, et al. Bioactive cardenolides from the stems and twigs of Nerium oleander. J Nat Prod. 2007;70(7):1098−103. doi: https://doi.org/10.1021/np068066g

13. Bai L, Zhao M, Toki A, Sakai JI, Yang XY, Bai Y, et al. Three new cardenolides from methanol extract of stems and twigs of Nerium oleander. Chem Pharm Bull. 2010;58(8):1088−92. doi: https://doi.org/10.1248/cpb.58.1088

14. Shams KA, Radwan HM, Tawfik WA, Habib AA, Abdel-Mohsen MM, Abou-Setta LM. Chemical constituents of lipids, proteins and flavonoids of Nerium oleander L. growing in Egypt and their biological activity. Asian J Chem. 2011;23(8):1−6.

15. Ayouaz S, Oliveira-Alves SC, Lefsih K, Serra AT, da Silva AB, Samah M, et al. Phenolic compounds from Nerium oleander leaves: Microwave-assisted extraction, characterization, antiproliferative and cytotoxic activities. Food Funct. 2020;11(7):6319−31. doi: https://doi.org/10.1039/D0FO01180K

16. Bai Y, Zhao M, Bai L, Hasegawa R, Sakai JI, Hasegawa T, et al. The biological activities of cardenolide triglycosides from stems, twigs, and leaves of Nerium oleander. J Wood Sci. 2011;57:56−65. doi: https://doi.org/10.1007/s10086-010-1132-3

17. Pandey A, Usmani S, Ahmad M, Khatoon S, Wahab S, Prakash O. Phytochemical and pharmacological attributes of Nerium oleander: a review. Curr Nutr Food Sci. 2024;20(5):570−85. doi: https://doi.org/10.2174/1573401319666230522160742

18. Kanwal N, Rasul A, Hussain G, Anwar H, Shah MA, Sarfraz I, et al. Oleandrin: A bioactive phytochemical and potential cancer killer via multiple cellular signaling pathways. Food Chem Toxicol. 2020;143:111570. doi: https://doi.org/10.1016/j.fct.2020.111570

19. Francischini CR, Mendonça CR, Barcelos KA, Silva MA, Botelho AF. Antitumor effects of oleandrin in different types of cancers: systematic review. Toxicon. 2022;216:15−27. doi: https://doi.org/10.1016/j.toxicon.2022.06.010

20. Zhai J, Dong X, Yan F, Guo H, Yang J. Oleandrin: a systematic review of its natural sources, structural properties, detection methods, pharmacokinetics and toxicology. Front Pharmacol. 2022;13:822726. doi: https://doi.org/10.3389/fphar.2022.822726

21. Kumar A, De T, Mishra A, Mishra AK. Oleandrin: a cardiac glycoside with potent cytotoxicity. Pharmacogn Rev. 2013;7(14):131−9. doi: https://doi.org/10.4103/0973-7847.120512

22. Tayoub G, Sulaiman H, Alorfi M. Analysis of oleandrin in oleander extract (Nerium oleander) by HPLC. J Nat Prod. 2014;7:73−8.

23. Pedroza HP, Ferreira MG, Carvalho JG, Melo KD, Keller KM, Melo MM, et al. Oleandrin concentrations in Nerium oleander leaves of different flowering colors. Ciencia Rural. 2015;45(5):864−7.

24. Singh Y, Nimoriya R, Rawat P, Mishra DK, Kanojiya S. Quantitative evaluation of cardiac glycosides and their seasonal variation analysis in Nerium oleander using UHPLC-ESI-MS/MS. Phytochem Anal. 2022;33(5):746−53. doi: https://doi.org/10.1002/pca.3126

25. Abdennour S, Lalaouna A, Derouiche MT, Azzouz M, Alvarez JC, Larabi IA. Development and validation of an UHPLC-DAD method for oleandrin content determination in dried leaves of Nerium oleander from Eastern Algeria. Microchem J. 2024;197:109740. doi: https://doi.org/10.1016/j.microc.2023.109740

26. Karawya MS, Balbaa SI, Khayyal SE. Estimation of cardenolides in Nerium oleander. Planta Med. 1973;23(1):70−3. doi: https://doi.org/10.1055/s-0028-1099414

27. Yang P, Menter DG, Cartwright C, Chan D, Dixon S, Suraokar M, et al. Oleandrin-mediated inhibition of human tumor cell proliferation: Importance of Na+,K+-ATPase α subunits as drug targets. Mol Cancer Ther. 2009;8(8):2319−28. doi: https://doi.org/10.1158/1535-7163.MCT-08-1085

28. Yang P, Cartwright C, Efuet E, Hamilton SR, Wistuba II, Menter D, et al. Cellular location and expression of Na+,K+-ATPase α-subunits affect the anti-proliferative activity of oleandrin. Mol Carcinog. 2014;53(4):253−63. doi: https://doi.org/10.1002/mc.21968

29. Li XX, Wang DQ, Sui CG, Meng FD, Sun SL, Zheng J, et al. Oleandrin induces apoptosis via activating endoplasmic reticulum stress in breast cancer cells. Biomed Pharmacother. 2020;124:109852. doi: https://doi.org/10.1016/j.biopha.2020.109852

30. Pan L, Zhang Y, Zhao W, Zhou X, Wang C, Deng F. The cardiac glycoside oleandrin induces apoptosis in human colon cancer cells via the mitochondrial pathway. Cancer Chemother Pharmacol. 2017;80:91−100. doi: https://doi.org/10.1007/s00280-017-3337-2

31. Raghavendra PB, Sreenivasan Y, Manna SK. Oleandrin induces apoptosis in human, but not in murine cells: dephosphorylation of Akt, expression of FasL, and alteration of membrane fluidity. Mol Immunol. 2007;44(9):2292−302. doi: https://doi.org/10.1016/j.molimm.2006.11.009

32. Reddy D, Kumavath R, Barh D, Azevedo V, Ghosh P. Anticancer and antiviral properties of cardiac glycosides: a review to explore the mechanism of actions. Molecules. 2020;25(16):3596. doi: https://doi.org/10.3390/molecules25163596

33. Newman RA, Kondo Y, Yokoyama T, Dixon S, Cartwright C, Chan D, et al. Autophagic cell death of human pancreatic tumor cells mediated by oleandrin, a lipid-soluble cardiac glycoside. Integr Cancer Ther. 2007;6(4):354−64. doi: https://doi.org/10.1177/1534735407309623

34. Newman RA, Yang P, Hittelman WN, Lu T, Ho DH, Ni D, et al. Oleandrin-mediated oxidative stress in human melanoma cells. J Exp Ther Oncol. 2006;5(3):167−81.

35. Manna SK, Sreenivasan Y, Sarkar A. Cardiac glycoside inhibits IL-8-induced biological responses by down-regulating IL-8 receptors through altering membrane fluidity. J Cell Physiol. 2006;207(1):195−207. doi: https://doi.org/10.1002/jcp.20555

36. Ko YS, Rugira T, Jin H, Park SW, Kim HJ. Oleandrin and its derivative odoroside A, both cardiac glycosides, exhibit anticancer effects by inhibiting invasion via suppressing the STAT-3 signaling pathway. Int J Mol Sci. 2018;19(11):3350. doi: https://doi.org/10.3390/ijms19113350

37. Ha DP, Shin WJ, Liu Z, Doche ME, Lau R, Leli NM, et al. Targeting stress induction of GRP78 by cardiac glycoside oleandrin dually suppresses cancer and COVID-19. Cell Biosci. 2024;14(1):115. doi: https://doi.org/10.1186/s13578-024-01297-3

38. Bao Z, Tian B, Wang X, Feng H, Liang Y, Chen Z, et al. Oleandrin induces DNA damage responses in cancer cells by suppressing the expression of Rad51. Oncotarget. 2016;7(37):59572. doi: https://doi.org/10.18632/oncotarget.10726

39. Wu Q, Liu X, Wang LM, Yang YH, Pan LF, Zhang JJ, et al. Oleandrin enhances radiotherapy sensitivity in lung cancer by inhibiting the ATM/ATR-mediated DNA damage response. Phytother Res. 2024;38(8):4151−67. doi: https://doi.org/10.1002/ptr.8237

40. Ma Y, Zhu B, Yong L, Song C, Liu X, Yu H, et al. Regulation of intrinsic and extrinsic apoptotic pathways in osteosarcoma cells following oleandrin treatment. Int J Mol Sci. 2016;17(11):1950. doi: https://doi.org/10.3390/ijms17111950

41. Yong L, Ma Y, Liang C, He G, Zhao Z, Yang C, et al. Oleandrin sensitizes human osteosarcoma cells to cisplatin by preventing degradation of the copper transporter 1. Phytother Res. 2019;33(7):1837−50. doi: https://doi.org/10.1002/ptr.6373

42. Afaq F, Saleem M, Aziz MH, Mukhtar H. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion markers in CD-1 mouse skin by oleandrin. Toxicol Appl Pharmacol. 2004;195(3):361−9. doi: https://doi.org/10.1016/j.taap.2003.09.027

43. Güne? CE, Çelik FS, Seçme M, Elmas L, Dodurga Y, Kurar E. Glycoside oleandrin down-regulates toll-like receptor pathway genes and associated miRNAs in human melanoma cells. Gene. 2022;843:146805. doi: https://doi.org/10.1016/j.gene.2022.146805

44. Sreenivasan Y, Sarkar A, Manna SK. Oleandrin suppresses activation of nuclear transcription factor-κB and activator protein-1 and potentiates apoptosis induced by ceramide. Biochem Pharmacol. 2003;66(11):2223−39. doi: https://doi.org/10.1016/j.bcp.2003.07.010

45. Garofalo S, Grimaldi A, Chece G, Porzia A, Morrone S, Mainiero F, et al. The glycoside oleandrin reduces glioma growth with direct and indirect effects on tumor cells. J Neurosci. 2017;37(14):3926−39. doi: https://doi.org/10.1523/JNEUROSCI.2296-16.2017

46. Fujii T, Katoh M, Ootsubo M, Nguyen OT, Iguchi M, Shimizu T, et al. Cardiac glycosides stimulate endocytosis of GLUT1 via intracellular Na+,K+-ATPase α3-isoform in human cancer cells. J Cell Physiol. 2022;237(7):2980−91. doi: https://doi.org/10.1002/jcp.30762

47. Celik FS, Gunes CE, Kurar E. Cardiac glycoside oleandrin suppresses EMT ability in endometrial carcinoma cells. Int J Mol Cell Med. 2023;12(3):220−8. doi: https://doi.org/10.22088/IJMCM.BUMS.12.3.220

48. Newman RA, Cisneros A, Felix E, Vijjeswarapu M, Lin Y, Yang P, et al. Composition and preliminary pharmacology studies with Anvirzel: an extract of Nerium oleander. J Herb Pharmacother. 2001;1(3):1−6. doi: https://doi.org/10.1080/J157v01n0301

49. Dunn DE, He DN, Yang P, Johansen M, Newman RA, Lo DC. In vitro and in vivo neuroprotective activity of the cardiac glycoside oleandrin from Nerium oleander in brain slice-based stroke models. J Neurochem. 2011;119(4):805−14. doi: https://doi.org/10.1111/j.1471-4159.2011.07439.x

50. Pathak S, Multani AS, Narayan S, Kumar V, Newman RA. Anvirzel, an extract of Nerium oleander, induces cell death in human but not murine cancer cells. Anti-Cancer Drugs. 2000;11(6):455−63.

51. Smith JA, Madden T, Vijjeswarapu M, Newman RA. Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin. Biochem Pharmacol. 2001;62(4):469−72. doi: https://doi.org/10.1016/S0006-2952(01)00690-6

52. Apostolou P, Toloudi M, Chatziioannou M, Papasotiriou I. Determination of efficacy of Anvirzel™ in 37 established cancer cell lines. Int Pharm Indust. 2011;3(3):68−72.

53. Apostolou P, Toloudi M, Chatziioannou M, Papasotiriou I. Studying the effect of Anvirzel, Carboplatin and Docetaxel combination in NSCLC cell lines. J Clin Stud. 2011;3(5):32−4. doi: https://doi.org/10.1186/2050-6511-14-18

54. Apostolou P, Toloudi M, Chatziioannou M, Ioannou E, Knocke DR, Nester J, et al. Anvirzel in combination with cisplatin in breast, colon, lung, prostate, melanoma and pancreatic cancer cell lines. BMC Pharmacol Toxicol. 2013;14:1−6. doi: https://doi.org/10.1186/2050-6511-14-18

55. Terzioglu-Usak S, Nalli A, Elibol B, Ozek E, Hatiboglu MA. Anvirzel regulates cell death through inhibiting GSK-3 activity in human U87 glioma cells. Neurol Res. 2020;42(1):68−75. doi: https://doi.org/10.1080/01616412.2019.1709744

56. Pan Y, Rhea P, Tan L, Cartwright C, Lee HJ, Ravoori MK, et al. PBI-05204, a supercritical CO2 extract of Nerium oleander, inhibits growth of human pancreatic cancer via targeting the PI3K/mTOR pathway. Investig New Drugs. 2015;33:271−9. doi: https://doi.org/10.1007/s10637-014-0190-6

57. Colapietro A, Yang P, Rossetti A, Mancini A, Vitale F, Martellucci S, et al. The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, inhibits growth of human glioblastoma, reduces Akt/mTOR activities, and modulates GSC cell-renewal properties. Front Pharmacol. 2020;11:552428. doi: https://doi.org/10.3389/fphar.2020.552428

58. Vaccaro S, Rossetti A, Porrazzo A, Camero S, Cassandri M, Pomella S, et al. The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, sensitizes alveolar and embryonal rhabdomyosarcoma to radiotherapy in vitro and in vivo. Front Pharmacol. 2022;13:1071176. doi: https://doi.org/10.3389/fphar.2022.1071176

59. Chakraborty S, Wei D, Tran M, Lang FF, Newman RA, Yang P. PBI-05204, a supercritical CO2 extract of Nerium oleander, suppresses glioblastoma stem cells by inhibiting GRP78 and inducing programmed necroptotic cell death. Neoplasia. 2024;54:101008. doi: https://doi.org/10.1016/j.neo.2024.101008

60. Mekhail T, Kaur H, Ganapathi R, Budd GT, Elson P, Bukowski RM. Phase 1 trial of Anvirzel in patients with refractory solid tumors. Investig New Drugs. 2006;24:423−7. doi: https://doi.org/10.1007/s10637-006-7772-x

61. Hong DS, Henary H, Falchook GS, Naing A, Fu S, Moulder S, et al. First-in-human study of pbi-05204, an oleander-derived inhibitor of akt, fgf-2, nf-κΒ and p70s6k, in patients with advanced solid tumors. Investigational new drugs. 2014;32:1204−12. doi: https://doi.org/10.1007/s10637-014-0127-0

62. Roth MT, Cardin DB, Borazanci EH, Steinbach M, Picozzi VJ, Rosemury A, et al. A phase II, single-arm, open-label, bayesian adaptive efficacy and safety study of PBI-05204 in patients with stage IV metastatic pancreatic adenocarcinoma. Oncologist. 2020;25(10):e1446−50. doi: https://doi.org/10.1634/theoncologist.2020-0440

63. Ni D, Madden TL, Johansen M, Felix E, Ho DH, Newman RA. Murine pharmacokinetics and metabolism of oleandrin, a cytotoxic component of Nerium oleander. J Exp Therapeut Oncol. 2002;2(5):278−85. doi: https://doi.org/10.1046/j.1359-4117.2002.01052.x

64. Van Kanegan MJ, He DN, Dunn DE, Yang P, Newman RA, West AE, et al. BDNF mediates neuroprotection against oxygen-glucose deprivation by the cardiac glycoside oleandrin. J Neurosci. 2014;34(3):963−8. doi: https://doi.org/10.1523/JNEUROSCI.2700-13.2014

65. Van Kanegan MJ, Dunn DE, Kaltenbach LS, Shah B, He DN, McCoy DD, et al. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke. Sci Rep. 2016;6(1):25626. doi: https://doi.org/10.1038/srep.25626

66. Elmaci ?, Alturfan EE, Cengiz S, Ozpinar A, Altinoz MA. Neuroprotective and tumoricidal activities of cardiac glycosides. Could oleandrin be a new weapon against stroke and glioblastoma? Int J Neurosci. 2018;128(9):865−77. doi: https://doi.org/10.1080/00207454.2018. 1435540

67. Ünal ?, Çal??kan-Ak E, Üstünda? ÜV, Ate? PS, Alturfan AA, Altinoz MA, et al. Neuroprotective effects of mitoquinone and oleandrin on Parkinson’s disease model in zebrafish. Int J Neurosci. 2020;130(6):574−82. doi: https://doi.org/10.1080/00207454.2019.1698 567

68. Eid S, Zerbes T, Williams D, Wang X, Sackmann C, Meier S, et al. Identification of a cardiac glycoside exhibiting favorable brain bioavailability and potency for reducing levels of the cellular prion protein. Int J Mol Sci. 2022;23(23):14823. doi: https://doi.org/10.3390/ijms23231 4823

69. Nguyen LD, Wei Z, Silva MC, Barberán-Soler S, Rabinovsky R, Muratore CR, et al. Small molecule inducers of neuroprotective miR-132 identified by HTS-HTS in human iPSC-derived neurons. BioRxiv. 2022; 2022:1−84. doi: https://doi.org/10.1101/2022.11.01.514550

70. Manna SK, Sah NK, Newman RA, Cisneros A, Aggarwal BB. Oleandrin suppresses activation of nuclear transcription factor-κB, activator protein-1, and c-Jun NH2-terminal kinase. Cancer Res. 2000;60(14):3838−47.

71. Li Z, Chen K, Yu Q, Li Y, Tong S, Xu R, et al. Suppression of NFATc1 through NF-κB/PI3K signaling pathway by oleandrin to inhibit osteoclastogenesis and bone resorption. Eng Regen. 2024;5(3):342−9. doi: https://doi.org/10.1016/j.engreg.2024.01.005

72. Xiang C, Cao J, Hu R, Li K, Meng T, Xia Y, et al. Oleandrin inhibits osteoclast differentiation by targeting the LRP4/MAPK/NF-κB signaling pathway to treat osteoporosis. Int Immunopharmacol. 2025;148:114073. doi: https://doi.org/10.1016/j.intimp.2025.114073

73. Newman RA, Sastry KJ, Arav-Boger R, Cai H, Matos R, Harrod R. Antiviral effects of oleandrin. J Exp Pharmacol. 2020;12:503−15. doi: https://doi.org/10.2147/JEP.S273120

74. Singh S, Shenoy S, Nehete PN, Yang P, Nehete B, Fontenot D, et al. Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity. Fitoterapia. 2013;84:32−9. doi: https://doi.org/10.1016/j.fitote.2012.10.017

75. Hutchison T, Yapindi L, Malu A, Newman RA, Sastry KJ, Harrod R. The botanical glycoside oleandrin inhibits human T-cell leukemia virus type-1 infectivity and env-dependent virological synapse formation. J Antivir Antiretrovir. 2019;11(3):1−24. doi: https://doi.org/10.35248/1948-5964.19.11.184

76. Plante KS, Dwivedi V, Plante JA, Fernandez D, Mirchandani D, Bopp N, et al. Antiviral activity of oleandrin and a defined extract of Nerium oleander against SARS-CoV-2. Biomed Pharmacother. 2021;138:111457. doi: https://doi.org/10.1016/j.biopha.2021.111457

77. Jensen GS, Yu L, Iloba I, Cruickshank D, Matos JR, Newman RA. Differential activities of the botanical extract PBI-05204 and oleandrin on innate immune functions under viral challenge versus inflammatory culture conditions. Molecules. 2023;28(12):4799. doi: https://doi.org/10.3390/molecules28124799

78. Fossum TW, Jensen GS, Newman RA, Matos JR. Botanical oleander extract and oleandrin have superior effects on innate immune functions pertaining to dermal allergic reactions in canine cells when compared to oclacitinib. Am J Vet Res. 2024;85(12):1−7. doi: https://doi.org/10.2460/ajvr.24.05.0153

79. Liu H, Chen SY, Guo JY, Su P, Qiu YK, Ke CH, et al. Effective natural antifouling compounds from the plant Nerium oleander and testing. Int Biodeterior Biodegrad. 2018;127:170−7. doi: https://doi.org/10.1016/j.ibiod.2017.11.022

Article Metrics
11 Views 4 Downloads 15 Total

Year

Month

Related Search

By author names