The emergence of mRNA therapeutics: A new era in precision medicine

Sachin Sakat Aditi Jyotishi Bindurani LGP Ram Ajay Kharche Swati Mutha Vimla Chaudhari Satish Dhonde Shivraj Dhage   

Open Access   

Published:  Aug 01, 2025

DOI: 10.7324/JAPS.2025.234438
Abstract

Messenger RNA (mRNA) therapeutics have become a revolutionary means of modern medicine with extensive popularity with the expedited development of COVID-19 vaccines. Apart from vaccines, mRNA technology is potentially of vast importance for cancer immunotherapy, monogenic disorder treatments, regenerative medicine, and gene editing. Over 150 mRNA-based treatments are under different stages of clinical trials currently, with substantial advances being made in oncology, where mRNA cancer vaccines have shown progression-free survival advantages of up to 44% with combined therapies. Lipid nanoparticle-encapsulated mRNA medicines have shown more than 50% restoration of missing protein levels with preclinical studies for the treatments of rare genetic diseases. Even with such advances, hurdles exist for optimizing delivery approaches, achieving prolonged protein expression, and subduing immune activation. This review outlines mechanisms of mRNA therapeutics, active clinical advancements, as well as upcoming advances such as self-amplifying mRNA as well as in vivo gene editing. As technological refinements continue, mRNA therapeutics are poised to revolutionize personalized medicine across a broad spectrum of diseases.


Keyword:     mRNA vaccine lipid nanoparticles methylmalonic acidemia cystic fibrosis SARS-CoV-2 COVID-19 vaccines


Citation:

Sakat S, Jyotishi A, Ram BL, Kharche A, Mutha S, Chaudhari V, Dhonde S, Dhage S. The emergence of mRNA therapeutics: A new era in precision medicine. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.217025

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Hossain R, Quispe C, Saikat ASM, Jain D, Habib A, Janmeda P, et al. Biosynthesis of secondary metabolites based on the regulation of MicroRNAs. Biomed Res Int. 2022;2022:9349897. doi: https://doi.org/10.1155/2022/9349897

2. Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Sadia H, et al. Genistein as a regulator of signaling pathways and microRNAs in different types of cancers. Cancer Cell Int. 2021;21(1):388. doi: https://doi.org/10.1186/s12935-021-02091-8

3. Al-Kuraishy HM, Al-Gareeb AI, Butnariu M, Batiha GE. The crucial role of prolactin-lactogenic hormone in Covid-19. Mol Cell Biochem. 2022;477(5):1381–92. doi: https://doi.org/10.1007/s11010-022-04381-9

4. Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther. 2024;9(1):322. doi: https://doi.org/10.1038/s41392-024-02002-z

5. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L, et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci U S A. 2009;106(13):5282–7. doi: https://doi.org/10.1073/pnas.0810909106

6. Desterro J, Bak-Gordon P, Carmo-Fonseca M. “Targeting mRNA processing as an anticancer strategy. Nat Rev Drug Discov. 2020;19(2):112–29. doi: https://doi.org/10.1038/s41573-019-0042-3

7. Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188:114416. doi: https://doi.org/10.1016/j.addr.2022.114416

8. Landesman-Milo D, Peer D. Altering the immune response with lipid-based nanoparticles. J Control Release. 2012;161(2):600–8 doi: https://doi.org/10.1016/j.jconrel.2011.12.034

9. Stadler C, Bähr-Mahmud H, Celik L, Hebich B, Roth AS, Roth RP, et al. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat Med. 2017;23:815–7. doi: https://doi.org/10.1038/nm.4356

10. Lemaire J, Mkannez G, Guerfali FZ, Gustin C, Attia H, Sghaier RM, et al. MicroRNA expression profile in human macrophages in response to Leishmania major infection. PLoS Negl Trop Dis. 2013;7(10):e2478. doi: https://doi.org/10.1371/journal.pntd.0002478

11. Parvin N, Joo SW, Mandal TK. Enhancing vaccine efficacy and stability: a review of the utilization of nanoparticles in mRNA vaccines. Biomolecules. 2024;14(8):1036. doi: https://doi.org/10.3390/biom14081036

12. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603–15. doi: https://doi.org/10.1056/NEJMoa2034577

13. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403–16. doi: https://doi.org/10.1056/NEJMoa2035389

14. World Health Organization. COVID-19 vaccine tracker and landscape. Geneva, Switzerland: World Health Organization; 2023. Available from: https://www.who.int

15. CDC. COVID-19 Vaccinations in the United States. Atlanta, Georgia: CDC; 2023. Available from: https://www.cdc.gov

16. Kremsner PG, Ahuad Guerrero RA, Arana-Arri E, Aroca Martinez GJ, Bonten M, Chandler R, et al. Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis. 2022;22(3):329–40. doi: https://doi.org/10.1016/S1473-3099(21)00677-0

17. Ho NT, Hughes SG, Ta VT, Phan LT, Do Q, Nguyen TV, et al. Safety, immunogenicity and efficacy of the self-amplifying mRNA ARCT-154 COVID-19 vaccine: pooled phase 1, 2, 3a and 3b randomized, controlled trials. Nat Commun. 2024;15(1):4081. doi: https://doi.org/10.1038/s41467-024-47905-1

18. REPROCELL News. eTheRNA-led international consortium starts preclinical studies of cross-strain protective COVID-19 mRNA vaccine for high risk populations. March 19, 2020. Available from: https://www.reprocell.com/news/covid-19-mrna-vaccine

19. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–8. doi: https://doi.org/10.1126/science.1690918

20. Yamamoto A, Kormann M, Rosenecker J, Rudolph C. Current prospects for mRNA gene delivery. Eur J Pharm Biopharm. 2009;71(3):484–9. doi: https://doi.org/10.1016/j.ejpb.2008.09.016

21. Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, et al. From influenza to COVID-19: lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater. 2021;131:16–40. doi: https://doi.org/10.1016/j.actbio.2021.06.023

22. Barbier AJ, Jiang AY, Zhang P, Wooster R, Anderson DG. The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol. 2022;40(6):840–54. doi: https://doi.org/10.1038/s41587-022-01294-2

23. Wang Y, Ling L, Zhang Z, Marin-Lopez A. Current advances in Zika vaccine development. Vaccines (Basel). 2022;10(11):1816. doi: https://doi.org/10.3390/vaccines10111816

24. Meisel A, Pascolo S. mRNA vaccines against infectious diseases and cancer. Heal TIMES Oncol Hematol. 2021;9(3):24–31. doi: https://doi.org/10.36000/hbT.OH.2021.09.045

25. Noor R. Developmental status of the potential vaccines for the mitigation of the COVID-19 pandemic and a focus on the effectiveness of the Pfizer-BioNTech and Moderna mRNA vaccines. Curr Clin Microbiol Rep. 2021;8(3):178–85. doi: https://doi.org/10.1007/s40588-021-00162-y

26. Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther. 2022;7(1):166. doi: https://doi.org/10.1038/s41392-022-01007-w

27. Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol. 2012;9(11):1319–30. doi: https://doi.org/10.4161/rna.22269

28. Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021;18(4):215–29. doi: https://doi.org/10.1038/s41571-020-00460-2

29. Besser H, Yunger S, Merhavi-Shoham E, Cohen CJ, Louzoun Y. Level of neo-epitope predecessor and mutation type determine T cell activation of MHC binding peptides. J Immunother Cancer. 2019;7(1):135. doi: https://doi.org/10.1186/s40425-019-0595-z

30. Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4:7.doi: https://doi.org/10.1038/s41541-019-0103-y

31. He Q, Gao H, Tan D, Zhang H, Wang JZ. mRNA cancer vaccines: advances, trends and challenges. Acta Pharm Sin B. 2022;12(7):2969–89. doi: https://doi.org/10.1016/j.apsb.2022.03.011

32. Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014;124(3):453–62. doi: https://doi.org/10.1182/blood-2014-04-567933

33. Burris HA, Patel MR, Cho DC, Clarke JM, Gutierrez M, Zaks TZ, et al. A phase 1, open-label, multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in subjects with resected solid tumors and in combination with pembrolizumab in subjects with unresectable solid tumors (Keynote-603). J Cli Oncol. 2024;37(15_Suppl):2523. doi: https://doi.org/10.1200/JGO.2019.5.suppl.93

34. Shim K, Jo H, Jeoung D. “Cancer/Testis Antigens as targets for RNA-based anticancer therapy. Int J Mol Sci. 2023;24(19):14679. doi: https://doi.org/10.3390/ijms241914679

35. Rudge SR, Ladisch MR. Industrial challenges of recombinant proteins. Adv Biochem Eng Biotechnol. 2020;171:1–22. doi: https://doi.org/10.1007/10_2019_120

36. Almási T, Guey LT, Lukacs C, Csetneki K, Vokó Z, Zelei T. Systematic literature review and meta-analysis on the epidemiology of methylmalonic acidemia (MMA) with a focus on MMA caused by methylmalonyl-CoA mutase (mut) deficiency. Orphanet J Rare Dis. 2019;14(1):84. doi: https://doi.org/10.1186/s13023-019-1063-z

37. Jiang L, Berraondo P, Jericó D, Guey LT, Sampedro A, Frassetto A, et al. Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nat. Med. 2018;24(12):1899–909. doi: https://doi.org/10.1038/s41591-018-0199-z

38. Hofmann L, Hose D, Grießhammer A, Blum R, Döring F, Dib-Hajj S, et al. Characterization of small fiber pathology in a mouse model of Fabry disease. Elife. 2018;7:e39300. doi: https://doi.org/10.7554/eLife.39300

39. Liou TG. The clinical biology of cystic fibrosis transmembrane regulator protein: its role and function in extrapulmonary disease. Chest. 2019;155(3):605–16. doi: https://doi.org/10.1016/j.chest.2018.10.006

40. Rowe SM, Zuckerman JB, Dorgan D, Lascano J, McCoy K, Jain M, et al. Inhaled mRNA therapy for treatment of cystic fibrosis: Interim results of a randomized, double-blind, placebo-controlled phase ½ clinical study. J Cyst Fibros. 2023;22(4):656–64. doi: https://doi.org/10.1016/j.jcf.2023.04.008

41. Elangkovan N, Dickson G. Gene therapy for Duchenne Muscular Dystrophy. J Neuromuscul Dis. 2021;8(s2):S303–16. doi: https://doi.org/10.3233/JND-210678

42. Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: pioneering a new era in rare genetic disease treatment. J Control Release. 2024;369:696–721. doi: https://doi.org/10.1016/j.jconrel.2024.03.056

43. Collén A, Bergenhem N, Carlsson L, Chien KR, Hoge S, Gan LM, et al. VEGFA mRNA for regenerative treatment of heart failure. Nat Rev Drug Discov. 2022;21(1):79–80. doi: https://doi.org/10.1038/s41573-021-00355-6

44. Finnson KW, Arany PR, Philip A. Transforming growth factor beta signaling in cutaneous wound healing: lessons learned from animal studies. Adv Wound Care. 2013;2(5):225–37. doi: https://doi.org/10.1089/wound.2012.0419

45. Leng Q, Chen L, Lv Y. RNA-based scaffolds for bone regeneration: application and mechanisms of mRNA, miRNA and siRNA. Theranostics. 2020;10(7):3190–205. doi: https://doi.org/10.7150/thno.42640 46. Chabanovska O, Galow AM, David R, Lemcke H. Mrna—A game changer in regenerative medicine, cell-based therapy and reprogramming strategies. Adv Drug Deliv Rev. 2021;179:114002. doi: https://doi.org/10.1016/j.addr.2021.114002

47. Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med. 2003;81(11):678–99. doi: https://doi.org/10.1007/s00109-003-0464-5

48. Prieve MG, Harvie P, Monahan SD, Roy D, Li AG, Blevins TL, et al. Targeted mRNA therapy for ornithine transcarbamylase deficiency. Mol Ther. 2018;26(3):801–13. doi: https://doi.org/10.1016/j.ymthe.2017.12.024

49. Bergsma AJ, In ‘t Groen SL, Verheijen FW, van der Ploeg AT, Pijnappel WWMP. From cryptic toward canonical Pre-mRNA splicing in pompe disease: a pipeline for the development of antisense oligonucleotides. Mol Ther Nucleic Acids. 2016;5(9):e361. doi: https://doi.org/10.1038/mtna.2016.75

50. August A, Attarwala HZ, Himansu S, Kalidindi S, Lu S, Pajon R, et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat Med. 2021;27(12):2224–33. doi: https://doi.org/10.1038/s41591-021-01573-6

51. Pardi N, Secreto AJ, Shan X, Debonera F, Glover J, Yi Y, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630. doi: https://doi.org/10.1038/ncomms14630

52. Krienke C, Kolb L, Diken E, Streuber M, Kirchhoff S, Bukur T, et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science. 2021;371(6525):145–53. doi: https://doi.org/10.1126/science.aay3638

53. Rajlic IL, Guglieri-Lopez B, Rangoonwala N, Ivaturi V, Van L, Mori S, et al. Translational kinetic-pharmacodynamics of mRNA-6231, an investigational mRNA therapeutic encoding mutein interleukin-2. CPT Pharmacometrics Syst. Pharmacol. 2024;13(6):1067–78. doi: https://doi.org/10.1002/psp4.13142

54. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021;385(6):493–502. doi: https://doi.org/10.1056/NEJMoa2107454

55. Ji HF, Li XJ, Zhang HY. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 2009;10(3):194–200. doi: https://doi.org/10.1038/embor.2009.12

56. Leggat DJ, Cohen KW, Willis JR, Fulp WJ, deCamp AC, Kalyuzhniy O, et al. Vaccination induces HIV broadly neutralizing antibody precursors in humans. Science. 2022;378(6623):eadd6502. doi: https://doi.org/10.1126/science.add6502

57. Hwang IY, Koh E, Kim HR, Yew WS, Chang MW. Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria. Drug Resist Updat. 2016;27:59–71. doi: https://doi.org/10.1016/j.drup.2016.06.002

58. Liao HC, Liu SJ. Advances in nucleic acid-based cancer vaccines. J Biomed Sci. 2025;32(1):10. doi: https://doi.org/10.1186/s12929-024-01102-w

59. Shariati A, Khani P, Nasri F, Afkhami H, Khezrpour A, Kamrani S, et al. mRNA cancer vaccines from bench to bedside: a new era in cancer immunotherapy. Biomark Res. 2024;12(1):157. doi: https://doi.org/10.1186/s40364-024-00692-9

60. Montefiori DC, Roederer M, Morris L, Seaman MS. Neutralization tiers of HIV-1. Curr Opin HIV AIDS. 2018;13(2):128–36. doi: https://doi.org/10.1097/COH.0000000000000442

61. Mu Z, Haynes BF, Cain DW. HIV mRNA vaccines-progress and future paths. Vaccines (Basel). 2021;9(2):134. doi: https://doi.org/10.3390/vaccines9020134

62. Saunders KO, Pardi N, Parks R, Santra S, Mu Z, Sutherland L, et al. Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. NPJ Vaccines. 2021;6(1):50. doi: https://doi.org/10.1038/s41541-021-00307-6

63. Jones RP, Lee LYW, Corrie PG, Danson S, Vimalachandran D. Individualized cancer vaccines versus surveillance after adjuvant chemotherapy for surgically resected high-risk stage 2 and stage 3 colorectal cancer: protocol for a randomized trial. Br J Surg. 2023;110(12):1883–4. doi: https://doi.org/10.1093/bjs/znad332

64. Lui KO, Zangi L, Silva EA, Bu L, Sahara M, Li RA, et al. Driving vascular endothelial cell fate of humanmultipotent Isl1 heart progenitors with VEGF modified mRNA. Cell Res. 2013;23:1172–86. doi: https://doi.org/10.1038/cr.2013.112

65. Jaques R, Shakeel A, Hoyle C. Novel therapeutic approaches for the management of cystic fibrosis. Multidiscip Respir Med. 2020;15(1):690. doi: https://doi.org/10.4081/mrm.2020.690

66. Robinson E, MacDonald KD, Slaughter K, McKinney M, Patel S, Sun C, et al. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol Ther. 2018;26(8):2034–46. doi: https://doi.org/10.1016/j.ymthe.2018.05.014

67. Dong Y, Anderson DG. Opportunities and challenges in mRNA therapeutics. Acc Chem Res. 2022;55(1):1. doi: https://doi.org/10.1021/acs.accounts.1c00739

68. Zhang Y, Hu Y, Tian H, Chen X. Opportunities and challenges for mRNA delivery nanoplatforms. J Phys Chem Lett. 2022;13(5):1314–22. doi: https://doi.org/10.1021/acs.jpclett.1c03898

69. Zhong Z, Mc Cafferty S, Combes F, Huysmans H, De Temmerman J, Gitsels A, et al. mRNA therapeutics deliver a hopeful message. Nano Today. 2018;23:16–39. doi: https://doi.org/10.1016/j.nantod.2018.10.005

70. Zadory M, Lopez E, Babity S, Gravel SP, Brambilla D. Current knowledge on the tissue distribution of mRNA nanocarriers for therapeutic protein expression. Biomater Sci. 2022;10 (21):6077–115. doi: https://doi.org/10.1039/D2BM00859A

71. Minnaert AK, Vanluchene H, Verbeke R, Lentacker I, De Smedt SC, Raemdonck K, et al. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: getting the message across. Adv Drug Deliv Rev. 2021;176:113900. doi: https://doi.org/10.1016/j.addr.2021.113900

72. Bernard MC, Bazin E, Petiot N, Lemdani K, Commandeur S, Verdelet C, et al. The impact of nucleoside base modification in mRNA vaccine is influenced by the chemistry of its lipid nanoparticle delivery system. Mol Ther Nucleic Acids. 2023;32:794–806. doi: https://doi.org/10.1016/j.omtn.2023.05.004

73. Tani H. Recent advances and prospects in RNA drug development. Int J Mol Sci. 2024;25(22):12284. doi: https://doi.org/10.3390/ijms252212284

74. Blakney AK, Ip S, Geall AJ. An Update on self-amplifying mRNA vaccine development. Vaccines (Basel). 2021;9(2):97. doi: https://doi.org/10.3390/vaccines9020097

75. Zhou W, Jiang L, Liao S, Wu F, Yang G, Hou L, et al. Vaccines’ New Era-RNA Vaccine. Viruses. 2023;15(8):1760. doi: https://doi.org/10.3390/v15081760

76. Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021;28(3-4):117–29. doi: https://doi.org/10.1038/s41434-020-00204-y

77. Brito LA, Kommareddy S, Maione D, Uematsu Y, Giovani C, Berlanda Scorza F, et al. Self-amplifying mRNA vaccines. Adv Genet. 2015;89:179–233. doi: https://doi.org/10.1016/bs.adgen.2014.10.005

78. Aledhari M, Rahouti M. Gene and RNA editing: methods, enabling technologies, applications, and future directions. arXiv preprint arXiv:2409.09057, 2024. doi: https://doi.org/10.48550/arXiv.2409.09057

79. Qamar M, Tanvir K, Akbar S, Ghani U, Ali H, Bilal M, et al. CRISPER-RNA Guided gene editing and implications in endogenous genes activation. Sch Int J Biochem. 2020;03(03):73–81. doi: https://doi.org/10.36348/sijb.2020.v03i03.006

80. Salmaninejad A, Jafari Abarghan Y, Bozorg Qomi S, Bayat H, Yousefi M, Azhdari S, et al. Common therapeutic advances for Duchenne muscular dystrophy (DMD). Int J Neurosci. 2021;131(4):370–89. doi: https://doi.org/10.1080/00207454.2020.1740218

81. Magadum A. Modified mRNA therapeutics for heart diseases. Int J Mol Sci. 2022;23(24):15514. doi: https://doi.org/10.3390/ijms232415514

82. Lee YS, Shin S, Shigihara T, Hahm E, Liu MJ, Han J, et al. Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes. 2007;56(6):1671–9. doi: https://doi.org/10.2337/db06-1182

83. Pena SA, Iyengar R, Eshraghi RS, Bencie N, Mittal J, Aljohani A, et al. Gene therapy for neurological disorders: challenges and recent advancements. J Drug Target. 2020;28(2):111–28. doi: https://doi.org/10.1080/1061186X.2019.1630415

84. Wu Y, Rakotoarisoa M, Angelov B, Deng Y, Angelova A. Self-assembled nanoscale materials for neuronal regeneration: a focus on BDNF protein and nucleic acid biotherapeutic delivery. Nanomaterials (Basel). 2022;12(13):2267. doi: https://doi.org/10.3390/nano12132267

85. Dolgin E. CureVac COVID vaccine letdown spotlights mRNA design challenges. Nat Biotechnol. 2021;39:810–1. doi: https://doi.org/10.1038/s41587-021-00912-8

86. Verbeke R., Lentacker I, De Smedt SC, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today. 2021;28:100766. doi: https://doi.org/10.1016/j.nantod.2019.100766

87. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79. doi: https://doi.org/10.1038/nrd.2017.243

88. Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305–6. doi: https://doi.org/10.1038/d41573-020-00073-5

89. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22. doi: https://doi.org/10.1038/nrd.2016.246

90. Akilov OE, Kosaka S, O’Riordan K, Hasan T. Parasiticidal effect of delta-aminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis is indirect and mediated through the killing of the host cells. Exp Dermatol. 2007;16(8):651–60. doi: https://doi.org/10.1111/j.1600-0625.2007.00578.x

91. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A. 2007;104(5):1604–9. doi: https://doi.org/10.1073/pnas.0610731104

92. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500. doi: https://doi.org/10.1038/ng1536

93. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM. Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A. 2009;106(31):13052–7. doi: https://doi.org/10.1073/pnas.0906277106

94. Butterworth MB. Role of microRNAs in aldosterone signaling. Curr Opin Nephrol Hypertens. 2018;27(5):390–4. doi: https://doi.org/10.1097/MNH.0000000000000440

95. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94. doi: https://doi.org/10.1056/NEJMoa1209026

96. Farshbaf A, Mohtasham N, Zare R, Mohajertehran F, Rezaee SA. Potential therapeutic approaches of microRNAs for COVID-19: challenges and opportunities. J Oral Biol Craniofac Res. 2021;11(2):132–7. doi: https://doi.org/10.1016/j.jobcr.2020.12.006

97. Lei Y, Chen L, Zhang G, Shan A, Ye C, Liang B, et al. MicroRNAs target the Wnt/β-catenin signaling pathway to regulate epithelial-mesenchymal transition in cancer (Review). Oncol Rep. 2020;44(4):1299–313. doi: https://doi.org/10.3892/or.2020.7703

Article Metrics
7 Views 0 Downloads 7 Total

Year

Month

Related Search

By author names