Contriving a novel multi-epitope subunit vaccine from Plasmodium falciparum vaccine candidates against malaria

Collins Ojonugwa Mamudu Franklyn Nonso Iheagwam Esther Ogechi Okafor Titilope Modupe Dokunmu Olubanke Olujoke Ogunlana   

Open Access   

Published:  Jun 17, 2024

DOI: 10.7324/JAPS.2024.162649
Abstract

In this study, immunoinformatics strategies were used to design a subunit vaccine against malaria from immunogenic regions of three Plasmodium falciparum surface antigens; liver stage antigen 3-C (V750-K1433), merozoite surface antigen 180 truncate-4 (A805-P1093), and merozoite surface protein 10 region 1 (D29-N188). A multi-epitope subunit vaccine construct (VC) was designed from immunodominant B- and T-cell epitopes followed by structure prediction, evaluation, and validation. Toll-like receptors (TLRs) 2 and 4 were docked with the VC. Their complexes’ molecular dynamics, immune stimulation, codon optimization, and in silico cloning of the VC were simulated. The VC is a 49.2 kDa antigenic and nonallergenic protein, comprised of 26% α-helix, 7% β-strand, 66% coil. The immune simulation test showed that the vaccine could provoke adaptive immune responses, and molecular docking tests showed that it interacts strongly with TLR-2 (−945.1 kcal/mol) and TLR-4 (−919.8 kcal/mol) to form complexes of high stability that hardly deform. The guanine-cytosine content and codon adaptation index of the VC were 42.94 and 0.99 after codon optimization. Escherichia coli pET-28a(+) was identified as the best vector for optimal gene expression. In conclusion, the study reveals that the VC shows promising results in neutralizing falciparum malaria.


Keyword:     Epitopes immunoinformatics malaria Plasmodium falciparum vaccine construct


Citation:

Mamudu CO, Iheagwam FN, Okafor EO, Dokunmu TM, Ogunlana OO. Contriving a novel multi-epitope subunit vaccine from Plasmodium falciparum vaccine candidates against malaria. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.162649

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Arora N, Anbalagan LC, Pannu AK. Towards eradication of malaria: is the WHO’s RTS,S/AS01 vaccination effective enough? Risk Manag Healthc Policy. 2021;14:1033–9. doi: https://doi.org/10.2147/RMHP.S219294

2. Henry NB, Sermé SS, Siciliano G, Sombié S, Diarra A, Sagnon N, et al. Biology of Plasmodium falciparum gametocyte sex ratio and implications in malaria parasite transmission. Malar J. 2019;18:70. doi: https://doi.org/10.1186/s12936-019-2707-0

3. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5. doi: https://doi.org/10.1038/nature12876

4. Adeyemo AO, Aborode AT, Bello MA, Obianuju AF, Hasan MM, Kehinde DO, et al. Malaria vaccine: the lasting solution to malaria burden in Africa. Ann Med Surg. 2022;79:104031. doi: https://doi.org/10.1016/j.amsu.2022.104031

5. Kanoi BN, Nagaoka H, Morita M, Tsuboi T, Takashima E. Leveraging the wheat germ cell-free protein synthesis system to accelerate malaria vaccine development. Parasitol Int. 2021;80:102224. doi: https://doi.org/10.1016/j.parint.2020.102224

6. Miquel-Clopés A, Bentley EG, Stewart JP, Carding SR. Mucosal vaccines and technology. Clin Exp Immunol. 2019;196:205–14. doi: https://doi.org/10.1111/cei.13285

7. Cantini F, Savino S, Scarselli M, Masignani V, Pizza M, Romagnoli G, et al. Solution structure of the immunodominant domain of protective antigen GNA1870 of Neisseria meningitidis. J Biol Chem. 2006;281:7220–7. doi: https://doi.org/10.1074/jbc.M508595200

8. Chaudhuri R, Ahmed S, Ansari FA, Singh HV, Ramachandran S. MalVac: database of malarial vaccine candidates. Malar J. 2008;7:184. doi: https://doi.org/10.1186/1475-2875-7-184

9. Talukdar S, Zutshi S, Prashanth KS, Saikia KK, Kumar P. Identification of potential vaccine candidates against Streptococcus pneumoniae by reverse vaccinology approach. Appl Biochem Biotechnol. 2014;172:3026–41. doi: https://doi.org/10.1007/s12010-014-0749-x

10. Monterrubio-López GP, González-Y-Merchand JA, Ribas-Aparicio RM. Identification of novel potential vaccine candidates against tuberculosis based on reverse vaccinology. BioMed Res Int. 2015;2015:1–16. doi: https://doi.org/10.1155/2015/483150

11. Burns AL, Dans MG, Balbin JM, de Koning-Ward TF, Gilson PR, Beeson JG, et al. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiol Rev. 2019;43:223–38. doi: https://doi.org/10.1093/femsre/fuz005

12. Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M, et al. Recent advances in recombinant protein-based malaria vaccines. Vaccine. 2015;33:7433–43. doi: https://doi.org/10.1016/j.vaccine.2015.09.093

13. Ogutu BR, Apollo OJ, McKinney D, Okoth W, Siangla J, Dubovsky F, et al. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS One. 2009;4:e4708. doi: https://doi.org/10.1371/journal.pone.0004708

14. Ferreira MU, da Silva Nunes M, Wunderlich G. Antigenic diversity and immune evasion by malaria parasites. Clin Vaccine Immunol. 2004;11:987–95. doi: https://doi.org/10.1128/CDLI.11.6.987-995.2004

15. Mahajan RC, Farooq U, Dubey ML, Malla N. Genetic polymorphism in Plasmodium falciparum vaccine candidate antigens. Indian J Pathol Microbiol. 2005;48:429–38.

16. Matuschewski K. Vaccines against malaria-still a long way to go. FEBS J. 2017;284:2560–8. doi: https://doi.org/10.1111/febs.14107

17. Stiepel RT, Batty CJ, MacRaild CA, Norton RS, Bachelder E, Ainslie KM. Merozoite surface protein 2 adsorbed onto acetalated dextran microparticles for malaria vaccination. Int J Pharm. 2021;593:120168. doi: https://doi.org/10.1016/j.ijpharm.2020.120168

18. Takala SL, Coulibaly D, Thera MA, Batchelor AH, Cummings MP, Escalante AA, et al. Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development. Sci Transl Med [Internet]. 2009 [cited 2022 Sep 30];1:2ra5. doi: https://doi.org/10.1126/scitranslmed.3000257

19. Frimpong A, Kusi KA, Ofori MF, Ndifon W. Novel strategies for malaria vaccine design. Front Immunol. 2018;9:2769. doi: https://doi.org/10.3389/fimmu.2018.02769

20. Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, et al. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors. 2020;13:465. doi: https://doi.org/10.1186/s13071-020-04342-5

21. Espinoza J. Malaria resurgence in the Americas: an underestimated threat. Pathogens. 2019;8:11. doi: https://doi.org/10.3390/pathogens8010011

22. Chandramohan D, Zongo I, Sagara I, Cairns M, Yerbanga RS, Diarra M, et al. Seasonal malaria vaccination with or without seasonal malaria chemoprevention. N Engl J Med. 2021;385:1005–17. doi: https://doi.org/10.1056/NEJMoa2026330

23. Penny MA, Verity R, Bever CA, Sauboin C, Galactionova K, Flasche S, et al. Public health impact and cost-effectiveness of the RTS,S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. Lancet. 2016;387:367–75. doi: https://doi.org/10.1016/S0140-6736(15)00725-4

24. World Health Organization. World malaria report 2019 [Internet]. Geneva, Switzerland: World Health Organization; 2019 [cited 2022 Sep 23]. Available from: https://apps.who.int/iris/handle/10665/330011

25. Coulibaly D, Kone AK, Traore K, Niangaly A, Kouriba B, Arama C, et al. PfSPZ-CVac malaria vaccine demonstrates safety among malaria-experienced adults: a randomized, controlled phase 1 trial. EClinicalMedicine. 2022;52:101579. doi: https://doi.org/10.1016/j.eclinm.2022.101579

26. Datoo MS, Natama HM, Somé A, Bellamy D, Traoré O, Rouamba T, et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years’ follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial. Lancet Infect Dis. 2022;22(12):1728–36. doi: https://doi.org/10.1016/S1473-3099(22)00442-X

27. Hussain A, Yang H, Zhang M, Liu Q, Alotaibi G, Irfan M, et al. mRNA vaccines for COVID-19 and diverse diseases. J Controlled Release. 2022;345:314–33. doi: https://doi.org/10.1016/j.jconrel.2022.03.032

28. Martinelli DD. In silico vaccine design: a tutorial in immunoinformatics. Healthc Anal. 2022;2:100044. doi: https://doi.org/10.1016/j.health.2022.100044

29. Rappuoli R. Reverse vaccinology. Curr Opin Microbiol. 2000;3:445–50. doi: https://doi.org/10.1016/S1369-5274(00)00119-3

30. Vakili B, Eslami M, Hatam GR, Zare B, Erfani N, Nezafat N, et al. Immunoinformatics-aided design of a potential multi-epitope peptide vaccine against Leishmania infantum. Int J Biol Macromol. 2018;120:1127–39. doi: https://doi.org/10.1016/j.ijbiomac.2018.08.125

31. Sayed SB, Nain Z, Khan MSA, Abdulla F, Tasmin R, Adhikari UK. Exploring Lassa virus proteome to design a multi-epitope vaccine through immunoinformatics and immune simulation analyses. Int J Pept Res Ther. 2020;26:2089−107. doi: doi: https://doi.org/10.1007/s10989-019-10003-8

32. Ali M, Pandey RK, Khatoon N, Narula A, Mishra A, Prajapati VK. Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Sci Rep. 2017;7:9232. doi: https://doi.org/10.1038/s41598-017-09199-w

33. Rahmani A, Baee M, Rostamtabar M, Karkhah A, Alizadeh S, Tourani M, et al. Development of a conserved chimeric vaccine based on helper T-cell and CTL epitopes for induction of strong immune response against Schistosoma mansoni using immunoinformatics approaches. Int J Biol Macromol. 2019;141:125–36. doi: https://doi.org/10.1016/j.ijbiomac.2019.08.259

34. Pritam M, Singh G, Swaroop S, Singh AK, Singh SP. Exploitation of reverse vaccinology and immunoinformatics as promising platform for genome-wide screening of new effective vaccine candidates against Plasmodium falciparum. BMC Bioinform. 2019;19:468. doi: https://doi.org/10.1186/s12859-018-2482-x

35. Pritam M, Singh G, Swaroop S, Singh AK, Pandey B, Singh SP. A cutting-edge immunoinformatics approach for design of multi-epitope oral vaccine against dreadful human malaria. Int J Biol Macromol. 2020;158:159–79. doi: https://doi.org/10.1016/j.ijbiomac.2020.04.191

36. Albrecht-Schgoer K, Lackner P, Schmutzhard E, Baier G. Cerebral malaria: current clinical and immunological aspects. Front Immunol. 2022;13:863568. doi: https://doi.org/10.3389/fimmu.2022.863568

37. World Health Organization. World malaria report 2021 [Internet]. Geneva, Switzerland: World Health Organization; 2021 [cited 2022 Sep 23]. Available from: https://apps.who.int/iris/handle/10665/350147

38. Bahl A. PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res. 2003;31:212–5. doi: https://doi.org/10.1093/nar/gkg081

39. Morita M, Takashima E, Ito D, Miura K, Thongkukiatkul A, Diouf A, et al. Immunoscreening of Plasmodium falciparum proteins expressed in a wheat germ cell-free system reveals a novel malaria vaccine candidate. Sci Rep. 2017;7:46086. doi: https://doi.org/10.1038/srep46086

40. Nagaoka H, Kanoi BN, Jinoka K, Morita M, Arumugam TU, Palacpac NMQ, et al. The N-terminal region of Plasmodium falciparum MSP10 is a target of protective antibodies in malaria and is important for PfGAMA/PfMSP10 interaction. Front Immunol. 2019;10:2669. doi: https://doi.org/10.3389/fimmu.2019.02669

41. Nagaoka H, Sasaoka C, Yuguchi T, Kanoi BN, Ito D, Morita M, et al. PfMSA180 is a novel Plasmodium falciparum vaccine antigen that interacts with human erythrocyte integrin associated protein (CD47). Sci Rep. 2019;9:5923. doi: https://doi.org/10.1038/s41598-019-42366-9

42. Saha S, Raghava GPS. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct Funct Bioinform. 2006;65:40–8. doi: https://doi.org/10.1002/prot.21078.

43. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017;45:W24–9. doi: https://doi.org/10.1093/nar/gkx346

44. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007;8:4. doi: https://doi.org/10.1186/1471-2105-8-4

45. Dimitrov I, Naneva L, Doytchinova I, Bangov I. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics. 2014;30:846–51. doi: https://doi.org/10.1093/bioinformatics/btt619

46. Gupta A, Mir SS, Saqib U, Biswas S, Vaishya S, Srivastava K, et al. The effect of fusidic acid on Plasmodium falciparum elongation factor G (EF-G). Mol Biochem Parasitol. 2013;192:39–48. doi: https://doi.org/10.1016/j.molbiopara.2013.10.003

47. Mehla K, Ramana J. Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: a comparative genomics and immunoinformatics approach. Mol Biosyst. 2016;12:890–901. doi: https://doi.org/10.1039/C5MB00745C

48. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020;48:W449–54. doi: https://doi.org/10.1093/nar/gkaa379

49. Alam A, Khan A, Imam N, Siddiqui MF, Waseem M, Malik MZ, et al. Design of an epitope-based peptide vaccine against the SARS-CoV-2: a vaccine-informatics approach. Brief Bioinform. 2021;22:1309–23. doi: https://doi.org/10.1093/bib/bbaa340

50. Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform. 2007;8:424. doi: https://doi.org/10.1186/1471-2105-8-424

51. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16:404–5. doi: https://doi.org/10.1093/bioinformatics/16.4.404

52. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, et al. Template-based protein structure modeling using the RaptorX web server. Nat Protoc. 2012;7:1511–22. doi: https://doi.org/10.1038/nprot.2012.085

53. Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, et al. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins Struct Funct Bioinform. 2009;77:89–99. doi: https://doi.org/10.1002/prot.22540

54. Rodrigues-da-Silva RN, Martins da Silva JH, Singh B, Jiang J, Meyer EVS, Santos F, et al. In silico identification and validation of a linear and naturally immunogenic B-cell epitope of the Plasmodium vivax malaria vaccine candidate merozoite surface protein-9. PLoS One. 2016;11:e0146951. doi: https://doi.org/10.1371/journal.pone.0146951

55. Ko J, Park H, Heo L, Seok C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012;40:W294–7. doi: https://doi.org/10.1093/nar/gks493

56. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–10. doi: https://doi.org/10.1093/nar/gkm290

57. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2:1511–9. doi: https://doi.org/10.1002/pro.5560020916

58. Iheagwam FN, Ogunlana OO, Chinedu SN. Model optimization and in silico analysis of potential dipeptidyl peptidase IV antagonists from GC-MS identified compounds in Nauclea latifolia leaf extracts. Int J Mol Sci. 2019;20:5913. doi: https://doi.org/10.3390/ijms20235913

59. Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 2008;9:514. doi: https://doi.org/10.1186/1471-2105-9-514

60. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The proteomics protocols handbook [Internet]. Totowa, NJ: Humana Press; 2005 [cited 2022 Oct 1]. pp. 571–607. Available from: http://link.springer.com/10.1385/1-59259-890-0:571

61. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro web server for protein–protein docking. Nat Protoc. 2017;12:255–78. doi: https://doi.org/10.1038/nprot.2016.169

62. Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, et al. How good is automated protein docking?: automated protein docking. Proteins Struct Funct Bioinform. 2013;81:2159–66. doi: https://doi.org/10.1002/prot.24403

63. Rapin N, Lund O, Castiglione F. Immune system simulation online. Bioinformatics. 2011;27:2013–4. doi: https://doi.org/10.1093/bioinformatics/btr335

64. Rapin N, Lund O, Bernaschi M, Castiglione F. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One. 2010;5:e9862. doi: https://doi.org/10.1371/journal.pone.0009862

65. Sarkar B, Ullah MA, Araf Y, Rahman MS. Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. Inform Med Unlocked. 2020;21:100478. doi: https://doi.org/10.1016/j.imu.2020.100478

66. López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res. 2014;42:W271–6. doi: https://doi.org/10.1093/nar/gku339

67. Grote A, Hiller K, Scheer M, Munch R, Nortemann B, Hempel DC, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005;33:W526–31. doi: https://doi.org/10.1093/nar/gki376

68. Ito D, Takashima E, Yamasaki T, Hatano S, Hasegawa T, Miura K, et al. Antibodies against a Plasmodium falciparum RON12 inhibit merozoite invasion into erythrocytes. Parasitol Int. 2019;68:87–91. doi: https://doi.org/10.1016/j.parint.2018.10.006

69. Amlabu E, Mensah-Brown H, Nyarko PB, Akuh O, Opoku G, Ilani P, et al. Functional characterization of Plasmodium falciparum surface-related antigen as a potential blood-stage vaccine target. J Infect Dis. 2018;218:778–90. doi: https://doi.org/10.1093/infdis/jiy222

70. Arumugam TU, Takeo S, Yamasaki T, Thonkukiatkul A, Miura K, Otsuki H, et al. Discovery of GAMA, a Plasmodium falciparum merozoite micronemal protein, as a novel blood-stage vaccine candidate antigen. Infect Immun. 2011;79:4523–32. doi: https://doi.org/10.1128/IAI.05412-11

71. Garcia-Senosiain A, Kana IH, Singh SK, Chourasia BK, Das MK, Dodoo D, et al. Peripheral merozoite surface proteins are targets of naturally acquired immunity against malaria in both India and Ghana. Infect Immun. 2020;88:e00778–19. doi: https://doi.org/10.1128/IAI.00778-19

72. Nagaoka H, Kanoi BN, Ntege EH, Aoki M, Fukushima A, Tsuboi T, et al. Antibodies against a short region of PfRipr inhibit Plasmodium falciparum merozoite invasion and PfRipr interaction with Rh5 and SEMA7A. Sci Rep. 2020;10:6573. doi: https://doi.org/10.1038/s41598-020-63611-6

73. Patel SD, Ahouidi AD, Bei AK, Dieye TN, Mboup S, Harrison SC, et al. Plasmodium falciparum merozoite surface antigen, PfRH5, elicits detectable levels of invasion-inhibiting antibodies in humans. J Infect Dis. 2013;208:1679–87. doi: https://doi.org/10.1093/infdis/jit385

74. Richards JS, Arumugam TU, Reiling L, Healer J, Hodder AN, Fowkes FJI, et al. Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. J Immunol. 2013;191:795–809. doi: https://doi.org/10.4049/jimmunol.1300778

75. Roussilhon C, Oeuvray C, Müller-Graf C, Tall A, Rogier C, Trape JF, et al. Long-term clinical protection from falciparum malaria is strongly associated with IgG3 antibodies to merozoite surface protein 3. PLoS Med. 2007;4:e320. doi: https://doi.org/10.1371/journal.pmed.0040320

76. Daubersies P, Thomas AW, Millet P, Brahimi K, Langermans JAM, Ollomo B, et al. Protection against Plasmodium falciparum malaria in chimpanzees by immunization with the conserved pre-erythrocytic liver-stage antigen 3. Nat Med. 2000;6:1258–63. doi: https://doi.org/10.1038/81366

77. Ghosn S, Chamat S, Prieur E, Stephan A, Druilhe P, Bouharoun-Tayoun H. Evaluating human immune responses for vaccine development in a novel human spleen cell-engrafted NOD-SCID-IL2rγNull mouse model. Front Immunol. 2018;9:601. doi: https://doi.org/10.3389/fimmu.2018.00601

78. Toure-Balde A, Perlaza BL, Sauzet JP, Ndiaye M, Aribot G, Tall A, et al. Evidence for multiple B- and T-cell epitopes in Plasmodium falciparum liver-stage antigen 3. Infect Immun. 2009;77:1189–96. doi: https://doi.org/10.1128/IAI.00780-07

79. Prieur E, Druilhe P. The malaria candidate vaccine liver stage antigen-3 is highly conserved in Plasmodium falciparum isolates from diverse geographical areas. Malar J. 2009;8:247. doi: https://doi.org/10.1186/1475-2875-8-247

80. Bahl V, Chaddha K, Mian SY, Holder AA, Knuepfer E, Gaur D. Genetic disruption of Plasmodium falciparum merozoite surface antigen 180 (PfMSA180) suggests an essential role during parasite egress from erythrocytes. Sci Rep. 2021;11:19183. doi: https://doi.org/10.1038/s41598-021-98707-0

81. Singh SP, Srivastava D, Mishra BN. Genome-wide identification of novel vaccine candidates for Plasmodium falciparum malaria using integrative bioinformatics approaches. 3 Biotech. 2017;7:318. doi: https://doi.org/10.1007/s13205-017-0947-7

82. Silveira ELV, Dominguez MR, Soares IS. To B or not to B: understanding B cell responses in the development of malaria infection. Front Immunol. 2018;9:2961. doi: https://doi.org/10.3389/fimmu.2018.02961

83. Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154:394–406. doi: https://doi.org/10.1111/imm.12889

84. Lata KS, Kumar S, Vaghasia V, Sharma P, Bhairappanvar SB, Soni S, et al. Exploring Leptospiral proteomes to identify potential candidates for vaccine design against leptospirosis using an immunoinformatics approach. Sci Rep. 2018;8:6935. doi: https://doi.org/10.1038/s41598-018-25281-3

85. Weber CA, Mehta PJ, Ardito M, Moise L, Martin B, De Groot AS. T cell epitope: friend or foe? Immunogenicity of biologics in context?. Adv Drug Deliv Rev. 2009;61:965–76. doi: https://doi.org/10.1016/j.addr.2009.07.001

86. Bemani P, Amirghofran Z, Mohammadi M. Designing a multi-epitope vaccine against blood-stage of Plasmodium falciparum by in silico approaches. J Mol Graph Model. 2020;99:107645. doi: https://doi.org/10.1016/j.jmgm.2020.107645

87. Kurup SP, Butler NS, Harty JT. T cell-mediated immunity to malaria. Nat Rev Immunol. 2019;19:457–71. doi: https://doi.org/10.1038/s41577-019-0158-z

88. Bonam SR, Rénia L, Tadepalli G, Bayry J, Kumar HMS. Plasmodium falciparum malaria vaccines and vaccine adjuvants. Vaccines. 2021;9:1072. doi: https://doi.org/10.3390/vaccines9101072

89. Shanmugam A, Rajoria S, George AL, Mittelman A, Suriano R, Tiwari RK. Synthetic toll like receptor-4 (TLR-4) agonist peptides as a novel class of adjuvants. PLoS One. 2012;7:e30839. doi: https://doi.org/10.1371/journal.pone.0030839

90. Pandey RK, Bhatt TK, Prajapati VK. Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Sci Rep. 2018;8:1125. doi: https://doi.org/10.1038/s41598-018-19456-1

91. Maharaj L, Adeleke VT, Fatoba AJ, Adeniyi AA, Tshilwane SI, Adeleke MA, et al. Immunoinformatics approach for multi-epitope vaccine design against P. falciparum malaria. Infect Genet Evol. 2021;92:104875. doi: https://doi.org/10.1016/j.meegid.2021.104875

92. Aldakheel FM, Abrar A, Munir S, Aslam S, Allemailem KS, Khurshid M, et al. Proteome-wide mapping and reverse vaccinology approaches to design a multi-epitope vaccine against Clostridium perfringens. Vaccines. 2021;9:1079. doi: https://doi.org/10.3390/vaccines9101079

93. Singh H, Jakhar R, Sehrawat N. Designing spike protein (S-Protein) based multi-epitope peptide vaccine against SARS COVID-19 by immunoinformatics. Heliyon. 2020;6:e05528. doi: https://doi.org/10.1016/j.heliyon.2020.e05528

94. Khan SN, Ali R, Khan S, Rooman M, Norin S, Zareen S, et al. Genetic diversity of polymorphic marker merozoite surface protein 1 (Msp-1) and 2 (Msp-2) genes of Plasmodium falciparum isolates from malaria endemic region of Pakistan. Front Genet. 2021;12:751552. doi: https://doi.org/10.3389/fgene.2021.751552

95. Ashgar SS, Faidah H, Bantun F, Jalal NA, Qusty NF, Darwish A, et al. Integrated immunoinformatics and subtractive proteomics approach for multi-epitope vaccine designing to combat S. pneumoniae TIGR4. Front Mol Biosci. 2023;10:1212119. doi: https://doi.org/10.3389/fmolb.2023.1212119

96. Zhang NZ, Huang SY, Zhou DH, Xu Y, He JJ, Zhu XQ. Identification and bioinformatic analysis of a putative calcium-dependent protein kinase (CDPK6) from Toxoplasma gondii. Genet Mol Res GMR. 2014;13:10669–77. doi: https://doi.org/10.4238/2014

97. Khatoon N, Pandey RK, Prajapati VK. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep. 2017;7:8285. doi: 10.1038/s41598-017-08842-w.

98. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–91. doi: https://doi.org/10.1107/S0021889892009944

99. Ferdous S, Kelm S, Baker TS, Shi J, Martin ACR. B-cell epitopes: discontinuity and conformational analysis. Mol Immunol. 2019;114:643–50. doi: https://doi.org/10.1016/j.molimm.2019.09.014

100. Solanki V, Tiwari M, Tiwari V. Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Sci Rep. 2019;9:5240. doi: https://doi.org/10.1038/s41598-019-41496-4

101. Iheagwam FN, Israel EN, Kayode KO, De Campos OC, Ogunlana OO, Chinedu SN. GC-MS analysis and inhibitory evaluation of Terminalia catappa leaf extracts on major enzymes linked to diabetes. Evid Based Complement Alternat Med. 2019;2019:6316231. doi: https://doi.org/10.1155/2019/6316231

102. Onile OS, Musaigwa F, Ayawei N, Omoboyede V, Onile TA, Oghenevovwero E, et al. Immunoinformatics studies and design of a potential multi-epitope peptide vaccine to combat the fatal visceral leishmaniasis. Vaccines. 2022;10:1598. doi: https://doi.org/10.3390/vaccines10101598

103. Van Aalten DMF, De Groot BL, Findlay JBC, Berendsen HJC, Amadei A. A comparison of techniques for calculating protein essential dynamics. J Comput Chem. 1997;18:169–81. doi: https://doi.org/10.1002/(SICI)1096-987X(19970130)18:2<169::AID-JCC3>3.0.CO;2-T.

104. Kovacs JA, Chacón P, Abagyan R. Predictions of protein flexibility: first-order measures. Proteins Struct Funct Bioinform. 2004;56:661–8. doi: https://doi.org/10.1002/prot.20151

Article Metrics
71 Views 37 Downloads 108 Total

Year

Month

Related Search

By author names