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INTRODUCTION
Malaria is a deadly tropical disease caused by an 

infection of the protozoan Plasmodium, and it continues to be 
the most significant human parasitic illness in the world. It is 
a vector-borne illness. It spreads through the bites of female 
Anopheles mosquitoes infected with Plasmodium parasites [1]. 
Over the last century, despite the increased research efforts and 
control measures to drive down the malaria burden globally, 
eradication strategies and interventions have only been fairly 
successful. The parasite has co-evolved with new interventions, 
and eradication remains ongoing [2]. Plasmodium species 

have developed resistance to all known classes of antimalarial 
compounds and drugs which is one of the major challenges in 
the fight against malaria [3], in addition to inadequate research 
funding, healthcare professionals, facilities, research efforts 
in malaria-endemic regions, and limited knowledge about 
naturally acquired immunity to malaria [4,5].

Vaccination is an economical and successful solution 
to stop infectious diseases [6–10]. Advances have been made 
in blood-stage vaccine development, as they have reached 
clinical trials; however, they were unsuccessful in controlling 
human malaria infection on the field [11–13]. Antigen 
polymorphism, redundancy, parasite immune evasion, and low 
effectiveness of vaccine candidates have greatly hindered the 
rapid development of a licensed vaccine to neutralize malaria 
[14–18]. Furthermore, increasing insecticide resistance and 
asymptomatic infections have also been major setbacks [19,20], 
and cases of resurgence and increased malaria deaths have been 
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ABSTRACT
In this study, immunoinformatics strategies were used to design a subunit vaccine against malaria from immunogenic 
regions of three Plasmodium falciparum surface antigens; liver stage antigen 3-C (V750-K1433), merozoite surface 
antigen 180 truncate-4 (A805-P1093), and merozoite surface protein 10 region 1 (D29-N188). A multi-epitope subunit 
vaccine construct (VC) was designed from immunodominant B- and T-cell epitopes followed by structure prediction, 
evaluation, and validation. Toll-like receptors (TLRs) 2 and 4 were docked with the VC. Their complexes’ molecular 
dynamics, immune stimulation, codon optimization, and in silico cloning of the VC were simulated. The VC is a 49.2 
kDa antigenic and nonallergenic protein, comprised of 26% α-helix, 7% β-strand, 66% coil. The immune simulation 
test showed that the vaccine could provoke adaptive immune responses, and molecular docking tests showed that it 
interacts strongly with TLR-2 (−945.1 kcal/mol) and TLR-4 (−919.8 kcal/mol) to form complexes of high stability 
that hardly deform. The guanine-cytosine content and codon adaptation index of the VC were 42.94 and 0.99 after 
codon optimization. Escherichia coli pET-28a(+) was identified as the best vector for optimal gene expression. In 
conclusion, the study reveals that the VC shows promising results in neutralizing falciparum malaria. 
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decreased, but this progress stalled due to the COVID-19 
pandemic and attributed to the interference with malaria 
services and diagnostic practices [36]. In 2021, the number of 
malaria cases worldwide was recorded to be 241 million, with 
627,000 related deaths [37]. In light of the available data and 
the current state of global malaria burden, this research aimed 
to develop a potent multi-epitope blood stage subunit vaccine 
candidate against P. falciparum by integrating epitopes from the 
most immunogenic regions of three merozoite surface proteins 
namely, liver-stage antigen 3 (LSA3-C), merozoite surface 
antigen 180 (MSA 180), and merozoite surface antigen 10 
(MSA 10).

METHODOLOGY
A systematic flow chart was followed stepwise to 

identify immunodominant B- and T-cell epitopes and the design 
of a subunit vaccine via immunoinformatics techniques. A 
subsequent biophysical study was performed using integrated 
docking, immune simulation, and molecular docking. Finally, 
codon optimization was executed to ensure optimal expression 
in the microbial host (Fig. 1).

Amino acid sequence retrieval
To retrieve the primary sequence of liver stage 

antigen 3,  MSA 180, and merozoite surface protein 10, the 
PlasmoDB [38] server was employed. However, only the 
most immunogenic regions of these proteins–(LSA3-C; 
V750-K1433), merozoite surface antigen 180 truncate-4 
(MSA 180-T4; A805-P1093), and merozoite surface protein 
10 region 1 (MSP10 R1; D29-N188) were further exploited 
for the vaccine construct (VC), following results from prior 
studies [39–41]. 

reported in South American nations [21]. Vaccination has been 
identified as a critical therapeutic option for eliminating malaria; 
hence, it is a priority for sustained, substantial, and cost-
effective control [22–24]. The only available licensed vaccine 
against malaria, RTS, S/AS01 shows low to modest efficacy in 
thwarting malaria caused by Plasmodium falciparum, which is 
enough to prevent clinical malaria but not enough for the global 
eradication of malaria [1]. Several other vaccines are currently 
under development, including the R21/Matrix-M (with 77% 
efficacy in preliminary trials), P. falciparum sporozoite, and the 
self-amplifying RNA vaccine. However, no vaccine with 100% 
efficacy remains available [25–27].

Post-genomic era vaccine development often involves 
preliminary computational analysis using bioinformatics tools 
to predict protective antigens rather than experimental studies 
with the pathogen, as in conventional vaccinology. Antigen 
characterization using in silico strategies and bioinformatics 
tools is crucial to the protein-based vaccine design and 
development [28]. Reverse vaccinology is named so because 
the vaccine discovery process employs computational methods 
to analyze genomic data instead of wet lab experimental studies 
with a pathogen, as with conventional vaccinology [29]. 
This technique has gained increasing global popularity and 
usage by research groups in the last 20 years for vetting the 
whole genome for vaccine antigens against several pathogens 
including Leishmania [30], Lassa fever [31], Dengue [32], 
Schistosomiasis [33], and P. falciparum [34], among others. 
This strategy is effective as it saves cost and time, and decrease 
the risk of failure compared to conventional vaccinology [35]. 

The World Health Organization set the goal to eradicate 
malaria in 1948, and efforts have been intensified to this end. 
Correspondingly, malaria-related fatalities progressively 

Figure 1. Methodology flow chart showing the step-by-step procedures used.
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Forecast of B-cell epitopes
Using default parameters for both, two servers were 

used to forecast the B-cell epitopes, including ABCpred [42] 
and BepiPred 2.0 [43]. Matching epitopes forecasted by both 
servers were selected. Furthermore, finalized epitopes were 
vetted for antigenicity (VaxiJen 2.0 server) [44], allergenicity 
(AllergenFP v.1.0) server [45], toxicity (ToxinPred server) [46], 
and conservancy (Protein Blast - NCBI). For conservancy, the 
epitopes were screened against Homo sapiens proteome (taxid: 
9606), with nonhomology indicated by e-value scores ≥0.05 
[47].

Forecast of CD4+ and CD8+ T-cell epitopes
The NetMHCIIpan 4.0 server [48] was utilized to 

identify helper T lymphocyte (HTL) epitopes with a threshold 
of 1% (strong binding) and 5% (weak binding). Twelve (12) 
major histocompatibility complex (MHC) supertypes available 
on the NetCTL 1.2 server were screened to predict CD8+ 

epitopes, with default parameters [49,50]. Also, the predicted 
epitopes were screened for antigenicity (VaxiJen 2.0 server) and 
immunogenicity (IEDB server), set at a threshold of 0.4 and 
default parameters respectively.

Designing of polypeptide subunit vaccine
The finalized B- and T-cell epitopes were integrated 

using several linkers, including the EAAAK (L1), AAY (L2), 
GPGPG (L3), and KK (L4) linkers. The adjuvant (ADV) RS09 
was included at the N-terminals of the VC and is joined to the 
CD8+ epitopes by the EAAAK linker. The CD8+ epitopes were 
intralinked through the AAY linker and interlinked with the CD4+ 
epitopes by the GPGPG linker, which also intralinks the CD4+ 
epitopes. KK linkers interlink the CD4+ and B-cell epitopes and 
intralink the B-cell epitopes. The final VC comprises a His-
tag (HHHHHH) at the C-terminal and is arranged ADV-CTL 
epitopes-HTL epitopes-B-cell epitopes–6X His tag.

Secondary and tertiary structure prediction, evaluation, and 
validation

Psipred [51] and RaptorX [52] servers were employed 
to forecast the secondary organization of the multi-epitope 
construct. Robetta [53], which creates three-dimensional (3D) 
models by employing ab initio and comparative modeling 
simulations, was used to predict the constructs’ tertiary 
structure [54]. Pymol 2.5 visualization software was used to 
envision the protein’s 3D organization. Subsequent refinement 
to improve the 3D model was evaluated using the GalaxyWEB 
[55] server.

The ProSA-web server [56] and Saves v.6.0 [57] 
server were employed to ascertain the quality of the 3D models. 
The Z-scores of each protein solved experimentally using 
data from X-ray and nuclear magnetic resonance sources are 
presented in a plot by ProSA. It determines whether the z-score 
of the 3D model of the query protein falls within the normal 
range for scores for native proteins of comparable size. The 
Ramachandran plot examines the model’s phi/psi distribution 
and C-beta deviation to determine the backbone (C-alpha) 
geometry [58].

Conformational B-cell epitopes
The VCs tertiary structure was put in the Ellipro 

server, which forecasts and visualizes discontinuous B-cell 
epitopes [59].

Structural and functional characterization of vaccine 
construct

The ExPASy-ProtParam tool [60] was used to estimate 
the physicochemical parameters of the VC. Furthermore, the 
antigenic and allergenic properties were predicted.

Molecular docking and immune simulation of vaccine 
construct

Toll-like receptors (TLR)-2 and -4 were selected 
as effective immunological targets for provoking the innate 
immune system. The ClusPro 2.0.php server was employed 
in accessing the interaction between the TLRs (receptor) and 
VC (ligand) [61,62]. The C-IMMSIM web server, which uses 
machine learning techniques and a position-specific scoring 
matrix, was utilized to determine the immune profile of the VC 
for 3 injections administered 4 weeks apart [63,64]. Default 
parameters were set with 1, 84, and 170 specified time steps 
[65].

Molecular dynamics (MD) simulation of vaccine construct-
TLR complexes

The iMODS server [66] predicts the MD, which uses 
the normal mode analysis (NMA) in internal coordinates to 
delineate the collective protein motions.

Codon optimization and in silico cloning of vaccine construct
To forecast a viable option for the expression and 

isolation of the VC, the JCat server [67] was used to improve the 
construct’s nucleotide sequence to commonly utilized codons 
of the Escherichia coli K 12 strain to enable optimal protein 
production by the expression host. Also, in silico cloning 
requires the SnapGene software to incorporate restriction 
sites (EcoRI and BamHI), after which the genetic sequence is 
integrated into the vector pET-28a(+).

RESULTS AND DISCUSSION
Proteins that encrust the extracellular surface of 

merozoite and are released from its specialized secretory 
apical organelles are considered potential vaccine candidates 
for the erythrocytic stage malaria [68]. Robust experimental 
evidence supports the importance of these surface proteins to 
host cell invasion, parasite growth, and survival and as potential 
preventive measures against P. falciparum malaria in humans 
[11,40,69–75]. In this study, three experimentally validated 
vaccine candidates against falciparum malaria were selected for 
further downstream immunoinformatics analysis.

The LSA3-C, MSA 180-T4, and MSP10 R1 are 
regions of blood-stage P. falciparum proteins that possess 
characteristics which have been experimentally validated to 
be malaria vaccine candidates, and this makes them attractive 
targets for developing a sub-unit vaccine [39–41]. Liver-stage 
antigen 3 (PF3D7_0220000) is a ~175kDa protein expressed 
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in liver and blood stages on sporozoites surface, infected 
hepatocytes, and blood-stage merozoites, and several research 
groups have reported it to be a viable pre-erythrocytic and 
blood stage vaccine target [39,76–78]. Furthermore, LSA3 was 
reported to be highly conserved following genomic sequence 
analysis of 20 P. falciparum clinical isolates from diverse 
geographical regions and localized in the parasitophorous 
vacuole during the ring-stage following merozoite ingress 
[78,79]. Previous studies on the full-length and discrete regions 
of LSA3-C have reported its viability as a pre-erythrocytic and 
blood-stage vaccine candidate in addition to being the most 
immunologic antigen segment [39,78,79].

Plasmodium falciparum merozoite surface antigen 
180 (PfMSA180) is a 170kDa protein that is essential and 
conserved in all Plasmodium sp.; it is expressed on the 
periphery of merozoites and has been implicated in merozoite 
ingress and egress during the asexual blood stage of the 
parasite’s lifecycle [41,80]. PfMSA180 (PF3D7_1014100) 
has been reported to be critical for parasite invasion of the 
erythrocyte, and antibodies against the C-terminal region 
of PfMSA180 [MSA 180 Tr-4 (A805-P1093)] abrogated 
merozoite invasion in vitro and conferred protective immunity 
against malaria [41]. Furthermore, the PfMSA180 (PfMSA180-
Tr4) C-terminal region was reported to be highly conserved 
across isolates, interacts with the red blood cell (RBC) surface 
protein-CD47, and stimulates antibodies that abrogate parasite 
invasion; hence, Nagaoka et al. [41] proposed MSA 180 Tr-4 as 
a potential vaccine candidate. PfMSP10 (PF3D7_0620400) is 
an 80 kDa protein that directly interacts with PfGAMA, which 
is key for erythrocyte invasion. The PfMSP10 R1 (D29-N188) 
region was hypothesized to be the interacting region [40]. Also, 
bioinformatics genome-wide screening has predicted PfMSP10 
to be a putative vaccine candidate [81]. 

Prediction of linear B-cell epitopes
B-cells comprise one of the two main types of cells 

in the adaptive immune system. Their epitopes are antigenic 
components, which trigger the synthesis of antibodies [82]. To 
overcome the challenge of prediction inaccuracy, we employed 
two servers for better B-cell epitope mapping. The results were 
compared, and consistent epitopes with both servers were 
selected. Also, nonantigenic, allergenic, toxic, and conserved 
epitopes in humans were discriminated against. The top three 

epitopes from each vaccine candidate that passed the screening 
(antigenicity, allergenicity, toxicity, and conservancy) for 
inclusion in the VC were selected (Table 1) from the epitopes 
with scores ≥ 0.52 (Table S1).

CD4+ T-cell epitopes prediction
MHC II encrusts the periphery of antigen-presenting 

cells (APCs). These MHCs exhibit nonself-peptides to helper 
T-cells, which coordinates other immune responses [83]. 
Hence, it is essential to predict epitopes with a higher likelihood 
of being displayed by the MHC-II molecule. Strong interaction 
between the HTL epitope and HLA-DR is critical for epitope 
immunogenicity, and excellent HTL epitope candidates are 
expected to interact optimally with numerous HLA alleles 
[84,85]. To this end, LSA3-C, MSA-Tr4, and MSP10 R1 were 
subjected to CD4+ epitope prediction, and only the epitopes that 
can bind to three or more HLA-DR alleles were agreed upon 
[86]. The top three epitope sequences for each are included as 
shown in Tables 2 and S2.

CD8+ T-cell epitopes prediction
APCs and infected RBCs cells display peptides 

of pathogen origin on MHC I molecules expressed on 
their surface to cytotoxic T-cells, facilitating clearance and 
immunological memory [87]. LSA3-C, MSA-Tr4, and MSP10 
R1 were screened for their MHC-1 epitopes using all 12 MHC-I 
supertypes available on the NetCTL1.2 server. Table 3 shows 
the finalized epitopes after the proteins were subjected to further 
screening parameters, including; antigenicity, allergenicity, 
immunogenicity, and conservancy predictions. 

Polypeptide subunit vaccine design
The finalized B- and T-cell epitopes were integrated 

using suitable linkers alongside two ADVs. ADVs present a 
classical approach to targeted delivery of subunit vaccines 
and maximizing protective immunity, as protein vaccine 
candidates are poorly immunogenic [88]. They bridge 
the antigens with the APCs by projecting visibility of the 
otherwise non or weakly immunogenic antigen to the 
immune cells to trigger a better immune response [89]. 
RS09, a synthetic TLR4 agonist comprising seven amino 
acid residues [89], was incorporated as ADVs at the 
N-terminal of the VC [90,91]. The EAAAK linker increases 

Table 1. Selected linear B-cell epitopes with their antigenicity, allergenicity, toxicity, and conservancy.

Antigen Epitope Position Score Antigenicity Allergenicity Toxicity Conservancy

LSA 3-C 
(V750-K1433)

VEHIISGDAHIKGLEE 428 0.92 + - - -

TESIKDKEKDVSLVVE 209 0.90 + - - -

TVEISGESLENNEMDK 8 0.89 + - - -

MSA-Tr4 
(A805-P1093)

HKDNDSRYTDNSNKNR 35 0.91 + - - -

TSDILYKDIEENKNTE 185 0.88 + - - -

SKVTGDSVENINEQTN 269 0.85 + - - -

MSP10 R1 
(D29-N188)

KITYDKYNKNKENMNN 10 0.87 + - - -

NKENMNNEKNDNKDNK 19 0.86 + - - -

NKDNKDNIYNDNINND 30 0.85 + - - -
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buried in relation to the availability of amino acid residues. 
The α-helix and β-turn have internal localization within the 
protein and are less likely to act as epitopes; instead, they 
maintain the structure of the protein due to the high chemical 
bond energy they contain. Random coils are exposed on the 
protein surface, have fewer rigid regions of the protein, and 
may be probable epitopes [96]. Over half the overall structure 
of the construct comprises random coils, hinting at the greater 
potential of the protein to trigger immune responses. The 
3D structure was predicted by the Robetta server, of which 
five models were generated, and model 1 was selected as it 
had higher comparative model quality following subjection 
to the Saves v.6.0 server for the ERRAT and Ramachandran 
plot analysis. GalaxyRefine server was used to refine and 
improve the quality of the selected model (Fig. 4A). Structural 
validation involves the identification of probable faults in 
the forecast 3D structure [97]. The model had a Z-score of 
-7.37, predicted by ProSA-web (Fig. 4B). Also, to determine 
the nonbonded atom-atom interactions, the ERRAT server 
was utilized [57], which revealed an overall quality factor 
of 94.72, suggesting a high quality. The Ramachandran 
plot enables the visualization of energetically favorable and 
unfavorable dihedral angles psi (ψ) and phi (ϕ) of amino 
acids, which delineates the stereochemical quality of the 3D 
structure [98]. The Ramachandran plot analysis revealed that 
93.8% of the initial model was in the favored regions, 5.2% 
in the allowed regions, and 0.8% in the disallowed regions. 
However, the refinement process improved the protein quality 
to 95.3% favoured, 3.4% allowed, and 0.5% disallowed 
regions, representing a very good model (Fig. 4C and D). 

Conformational B-cell epitopes 
B-cell epitopes usually form discontinuous epitopes 

resulting from the spatial proximity of a bunch of amino acid 
residues on the tertiary structure of the antigen [99]. Ellipro 
forecasted 4 epitopes with a maximum score of 0.758 and a 
minimum score of 0.512, and the number of epitope residues 
ranged from 3 to 81 (Table S3). Figure 5 reflects the structure of 
the epitopes in relation to the VC.

the consistency of the overall structure and limits protein 
components from joining through effective detachment; 
hence, it was used to join the ADV with the polypeptide 
vaccine [92]. The AAY linker improves the vaccine’s ability 
to elicit an immunological response [93]. The need to 
impinge the development of junctional epitopes and improve 
epitope presentation necessitates the GPGPG linkers [94]. 
The KK linker was used to connect linear B-cell epitopes 
so that their self-regulating immunogenic responses may be 
preserved [95]. The VC follows the sequence “ADV-CD8+ 
epitope-CD4+ epitopes-B-cell epitopes- 6X His tag,” joined 
by appropriate linkers to form a 437 amino acid-long peptide 
as illustrated in Figure 2.

Secondary and tertiary structure prediction, evaluation, and 
validation

The VCs comprise 26% α-helix, 7% β-strand, and 
66% coil, as predicted by Psipred, and RaptorX in plots 
representing the structural moieties (Fig. 3). Also, 76% was 
forecasted to be exterior, 8% mildly exterior, and 14% to be 

Table 2. Details of selected CD4+ T-cell epitopes predicted by 
NetMHCIIpan 4.0. 

Peptide Epitopes HLA-II alleles

LSA 3-C 
(V750-K1433)

VKEIKELESEILEDY DRB1_0101, DRB1_1201, 
DRB1_1501

KKKVRFDIKDKEPKD DRB1_0301, DRB1_1302, 
DRB4_0101

EQNVYVDVDVPAMKD DRB1_0301, DRB1_0401, 
DRB1_0405, DRB3_0101

MSA-Tr4 
(A805-P1093)

AKNFYNISNENGDNT DRB1_0401, DRB1_0405, 
DRB1_0802

DNTFNNNNNNMDNKK DRB1_0401, DRB1_0405, 
DRB3_0202

LPSLKSIYNNKIKGN DRB1_1201, DRB1_1302, 
DRB1_1501

MSP10 R1 
(D29-N188)

NENIENIENNENNEN DRB1_0401, DRB1_0405, 
DRB4_0101

Table 3. Selected CD8+ T-cell epitopes with MHC supertypes and 
immunogenicity score.

Peptide HLA1 epitope MHC 
supertype

Immunogenicity 
score(s)

LSA3-C (V750-K1433) IISGDAHIK A3 0.14389

KVRFDIKDK A3 0.11244

RPKLEEVLL B7, B8 0.13895; 1.1500

EIKDLEADI A26 0.8428

YVDVDVPAM B39 1.0123

EEHDITTTL B39, B44 1.1040; 1.7244

RSIETSIVI B58, B62 1.3442; 0.9382

TEHVEQNVY B62 0.7923

MSA-Tr4 (A805-P1093) ERKRYIRKK B27 0.8928

MSP10-R1 (D29-N188) ENIENNENV A26 0.9367

Figure 2. (A) Schematic diagram of polypeptide vaccine. It comprises 
several segments: an ADV, RS09 (TLR4 agonists), 10 CD8+ epitopes, 
7 CD4+ epitopes, 9 B-cell epitopes, and a His tag. These segments are 
integrated by EAAK, AAY, GPGPG, and kk linkers. (B) Sequence of 
polypeptide vaccine. 

 

A 

 
B 
APPHALSEAAAKIISGDAHIKAAYKVRFDIKDKAAYRPKLEEVLLAAYEIKDLEADIAAYYVDVDVPAMAAYEE
HDITTTLAAYRSIETSIVIAAYTEHVEQNVYAAYERKRYIRKKAAYENIENNENVGPGPGAKNFYNISNENGDNT
GPGPGDNTFNNNNNNMDNKKGPGPGLPSLKSIYNNKIKGNGPGPGVKEIKELESEILEDYGPGPGNENIENIEN
NENNENGPGPGEQNVYVDVDVPAMKDGPGPGKKKVRFDIKDKEPKDKKNKDNKDNIYNDNINNDKKNKENM
NNEKNDNKDNKKKKITYDKYNKNKENMNNKKSKVTGDSVENINEQTNKKTSDILYKDIEENKNTEKKHKDND
SRYTDNSNKNRKKVEHIISGDAHIKGLEEKKTESIKDKEKDVSLVVEKKTVEISGESLENNEMDKHHHHHH	
Figure 2: A) Schematic diagram of polypeptide vaccine. It comprises several segments: An 
adjuvant, RS09 (TLR4 agonists), ten (10) CD8+ epitopes, seven (7) CD4+ epitopes, nine (9) 
B-cell epitopes, and a His tag. These segments are integrated by EAAK, AAY, GPGPG, and 
kk linkers. B. Sequence of polypeptide vaccine.  
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Structural and functional characterization of VC
The physicochemical properties prediction revealed 

that the protein has a molecular weight and theoretical pI of 49.2 
kDa and 5.99, respectively. The half-life was predicted to be 4.4 
hours (mammalian reticulocytes, in vitro), >20 hours (yeast, in 
vivo), and >10 hours (Escherichia coli, in vivo). The instability 
index and GRAVY were forecasted to be 39.36 and −1.294, 
respectively. The score from the instability index suggested that 
the protein is stable. The GRAVY score represented that the 
protein is hydrophilic, which is a desired quality for a vaccine 
as it indicates the ability to trigger an elevated humoral immune 

response [100]. The aliphatic index was predicted to be 61.40, 
reflecting thermostability (Table S2).

Molecular docking of vaccine construct with toll-like 
receptors

The contact between ligand and receptor molecules 
is embroiled in molecular docking to generate a stable ligand-
receptor product [101]. The interaction between antibodies 

A

Figure 3. Schematic diagram of the secondary structure of VC. (A) Predicted 
secondary structure (H: α-helix, E: β-strand, C: coil) by PSIPRED. The bar 
chart represents the percentage of confidence. (B) RaptorX generated the 
chimeric protein’s secondary structure, and the results show a structure made 
up of 26% α-helix, 7% β-strand and 66% coil.

B

Figure 4. (A) 3D structure cartoon representation (Red, green, and yellow 
represent α-helix, coil, and β-sheet). (B) ProSA map of the sub-unit vaccine 
with Z-score of −7.37. (C) Ramachandran plot before protein refinement with 
93.8% in the favored region, 5.2% allowed region, 0.8% in the disallowed 
region. (D) Ramachandran plot after protein refinement with 95.3% favored 
region, 3.4% allowed region, and 0.5% disallowed region.

A  B  

C  D  
Figure 4: A) 3D structure cartoon representation (Red, green and yellow represent α-helix, 
coil, and β-sheet). B) ProSA map of the sub-unit vaccine with Z-score of -7.37. C) 
Ramachandran plot before protein refinement with 93.8% in the favoured region, 5.2% allowed 
region, 0.8% in the disallowed region. D) Ramachandran plot after protein refinement with 
95.3% favoured region, 3.4% allowed region, and 0.5% disallowed region. 

Figure 5. 3-D representation of the four conformational B-cell epitopes. (A–D) 
A yellow surface represents the epitopes.

A  B  

C  D  
Figure 5. Three-dimensional representation of the four conformational B-cell epitopes. (A–D) 
A yellow surface represents the epitopes. 
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Table 4. Molecular docking score between VC and TLR-2 and -4.

Cluster Members Representative Weighted score 
(kcal/mol)

VC-TLR-2 0 81 Centre −791.7 

lowest energy −945.1 

VC-TLR-4 0 72 Centre −796.1

lowest energy −919.8

and their targeted antigens is critical to the humoral immune 
response to aid pathogen elimination. The VC-TLR2 complex 
has a total of 81 members in its cluster, while VC-TLR4 has 
72 members in its cluster. The lowest energy score and binding 
affinity of −945.1 and −919.8 kcal/mol were obtained for the 
VC-TLR2 and VC-TLR4 complexes, respectively (Table 4). 
These complexes were stable as shown in Figure S1.

Immune simulation of vaccine construct
The immune simulation was performed to determine 

the natural immune response to the VC. The immune simulator 
C-ImmSim tool was employed to simulate the natural responses 
formed by the immune system. Figure 6 indicated that the 
antigenic recognition and desired corresponding immune 
responses would manifest. There was a marked increase in IgM 
and IgG production and the expansion of Helper T-cells due to 
memory development following primary immunization. There 
was also a depletion in antigen concentration, reflecting a rise 
in memory B-cell production (Fig. 6A–D). Figure 6F shows an 
elevation in the concentration of cytotoxic T-cells following 
vaccine administration. Similarly, there is an increase in the 
proliferation of cytokines, including IFN-γ, TGF- β, IL-10, 
and IL-12 (Fig. 6I), indicating that the vaccine is capable of 
provoking the immune response to act against malaria.

MD simulation of vaccine construct-TLR complexes
MD simulation is useful for analyzing the stability 

of protein-ligand complex by incorporating Newton’s laws of 
motion [102]. It was done by enumerating protein dynamics 
to their normal modes using the iMODS server [103]. NMA 
is commonly used to evaluate the collective functional 
motions of docked protein-protein complexes [66]. The 3D 
interaction between VC-TLR2 and VC-TLR4 complexes 
is presented, with the arrows representing the direction of 
amino acids (Fig. 7A and B). The peaks on the deformability 
graph delineate deformability, as higher peaks depict higher 
deformability. From the result, the deformability plots report 
the stability of the complexes with individual amino acid 
residues having a lesser likelihood of deforming (Fig. 7C and 
D). The B-factor graph comparatively evaluates the NMA 
and the protein data bank field of the docked complexes (Fig. 
7E and F). The eigenvalue corresponds with motion stiffness; 
a lower value is congruent with higher deformability and 
vice versa. The predicted high values of 9.12572e-07 and 
1.117255e-06 for VC-TLR2 and VC-TLR4, respectively, 
reflect the less deformability and high stability of both 
complexes (Fig. 7G and H). The variance corresponding to 
each normal mode is inversely proportional to the eigenvalue 
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Figure 6: Characterisation of the immune profile of the construct. A) The antibody production 
denotes a rise in immune response following the vaccine shot. Antibody subtypes (IgM, IgG1 
and IgG2) are depicted as coloured peaks. B) The active B-cell population is observed with the 
vaccine shots. C) B-lymphocyte population per entity-state D) CD4+ T-helper lymphocytes 
count sub-divided per entity-state E) The generation of cytotoxic-T cells. F) CD8+ T-cytotoxic 
lymphocytes count per entity-state G) Dendritic cells for MHC class I and II. Shows the total 
number, active, resting, internalised and presenting antigen H) Macrophages. Total count, 
internalised, presenting on MHC class-II, active and resting macrophages I) Concentration of 
cytokines and interleukins. 

Figure 6. Characterisation of the immune profile of the construct. (A) The 
antibody production denotes a rise in immune response following the vaccine 
shot. Antibody subtypes (IgM, IgG1, and IgG2) are depicted as colored peaks. 
(B) The active B-cell population is observed with the vaccine shots. (C) 
B-lymphocyte population per entity-state (D) CD4+ T-helper lymphocytes 
count sub-divided per entity-state (E) The generation of cytotoxic-T cells. (F) 
CD8+ T-cytotoxic lymphocytes count per entity-state (G) Dendritic cells for 
MHC class I and II. Shows the total number of active, resting, internalized, and 
presenting antigen (H) Macrophages. Total count, internalized, presenting on 
MHC class-II, active and resting macrophages (I) Concentration of cytokines 
and interleukins.

(Fig. 7I and J) [104]. The covariance matrix reflects if the 
pairs of residues’ motions were correlated (red), uncorrelated 
(white), or anti-correlated (blue) (Fig. 7K and L). The elastic 
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Figure 7. (A, B) NMA mobility, (C, D) deformability, (E, F) B factor, (G, H) Eigenvalue, (I, J) variance map, 
(K, L) Covariance map and (M, N) Elastic network graph of docked complexes VC-TLR2 and VC-TLR4, 
respectively. For the covariance map, red: correlated, white: uncorrelated and blue: anti-correlated motions, while 
for the elastic network graph of docked complexes, darker grey regions correlate with stiffer regions. VC: Vaccine 
construct.
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Figure 7: (A, B) NMA mobility, (C, D) deformability, (E, F) B factor, (G, H) Eigenvalue, (I, 
J) variance map, (K, L) Covariance map and (M, N) Elastic network graph of docked 
complexes VC-TLR2 and VC-TLR4 respectively. For the covariance map, red: correlated, 
white: uncorrelated and blue: anti-correlated motions, while for the elastic network graph of 
docked complexes, darker grey regions correlate with stiffer regions. VC: Vaccine construct 
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necessary to determine the full potential of the proposed 
vaccine as a possible intervention in neutralizing malaria.
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