Diabetes mellitus manifestations and challenges in post-COVID-19 syndrome: A critical review

Sachin Shridhar Sakat Vijaykumar Kuvar Ajay Kharche Milind Sagar Prashant Kumar Pandey Om Bagade Rupali Bendgude Ravindra Bendgude   

Open Access   

Published:  May 07, 2024

DOI: 10.7324/JAPS.2024.167104
Abstract

The human severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has targeted millions of people globally leading to significant mortality in more than 3.5 million people. A spectrum of incapacitating symptoms or indications that may continue for a year and are consistent with COVID-19 emerge during or after an infection and cannot be explained by any other disorder. The term “long COVID” or “post COVID-19 syndrome (PCS)” refers to this collection of symptoms. While diabetes and COVID-19 have an antagonistic relationship, it is still not clear whether chronic hyperglycemia leads to an increased predisposition for PCS or whether people with PCS have a higher prevalence of newly diagnosed diabetes or prediabetes. A higher predisposition toward infectivity and mortality was recorded in persons with diabetes which made up about 35% of the patients who passed away from the illness. The SARS-CoV-2 infection and diabetes appear to be linked in three different ways. The infection is linked to a weakened immune system, ongoing inflammation, and maybe immediate pancreatic dysfunction. This review will explore the diabetes manifestations and associated challenges in COVID-19 and PCS. In addition, the review will also focus on the management strategies of diabetes with emphasis on the development of a comprehensive care plan for self-care among PCS patients.


Keyword:     Post-COVID-19 syndrome diabetes mellitus inflammation angiotensin-converting enzyme 2 pancreatic ß cells diabetes management


Citation:

Sakat SS, Kuvar V, Kharche A, Sagar M, Pandey PK, Bagade O, Bendgude R, Bendgude R. Diabetes mellitus manifestations and challenges in post-COVID-19 syndrome: A critical review. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.167104

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Dennis A, Wamil M, Alberts J, Oben J, Cuthbertson DJ, Wootton D, et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open. 2021;11(3):e048391. https://doi.org/10.1136/bmjopen-2020-048391

2. Ambrosino P, Lanzillo A, Maniscalco M. COVID-19 and post-acute COVID-19 syndrome: from pathophysiology to novel translational applications. Biomedicines. 2022;10(1):47. https://doi.org/10.3390/biomedicines10010047

3. Han Q, Zheng B, Daines L, Sheikh A. Long-term sequelae of COVID-19: a systematic review and meta-analysis of one-year follow-up studies on post-COVID symptoms. Pathogens. 2022;11(2):269. https://doi.org/10.3390/pathogens11020269

4. Heiss R, Grodzki DM, Horger W, Uder M, Nagel AM, Bickelhaupt S. High-performance low field MRI enables visualization of persistent pulmonary damage after COVID-19. Magn Reson Imaging. 2021;76:49-51. https://doi.org/10.1016/j.mri.2020.11.004

5. Moreno-Pérez O, Merino E, Leon-Ramirez JM, Andres M, Ramos JM, Arenas-Jiménez J, et al. Post-acute COVID-19 syndrome. Incidence and risk factors: a mediterranean cohort study. J Infect. 2021;82(3):378-83. https://doi.org/10.1016/j.jinf.2021.01.004

6. Shah AS, Wong AW, Hague CJ, Murphy DT, Johnston JC, Ryerson CJ, et al. A prospective study of 12-week respiratory outcomes in COVID-19-related hospitalisations. Thorax. 2021;76(4):402-4. https://doi.org/10.1136/thoraxjnl-2020-216308

7. Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265-73. https://doi.org/10.1001/jamacardio.2020.3557

8. Baraniuk C. How long does covid-19 immunity last? BMJ. 2021;373:n1605. https://doi.org/10.1136/bmj.n1605

9. O'Kelly B, Vidal L, Avramovic G, Broughan J, Connolly SP, Cotter AG, et al. Assessing the impact of COVID-19 at 1-year using the SF-12 questionnaire: data from the anticipate longitudinal cohort study. Int J Infect Dis. 2022;118:236-43. https://doi.org/10.1016/j.ijid.2022.03.013

10. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N J Emerg Med. 2020;58(4):711-2. https://doi.org/10.1016/j.jemermed.2020.04.004

11. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA. 2020;323(13):1239-42. https://doi.org/10.1001/jama.2020.2648

12. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-81. https://doi.org/10.1016/S2213-2600(20)30079-5

13. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-43. https://doi.org/10.1001/jamainternmed.2020.0994

14. Ghosh A, Anjana RM, Shanthi Rani CS, Jeba Rani S, Gupta R, Jha A, et al. Glycemic parameters in patients with new-onset diabetes during COVID-19 pandemic are more severe than in patients with new-onset diabetes before the pandemic: NOD COVID India Study. Diabetes Metab Syndr. 2021;15(1):215-20. https://doi.org/10.1016/j.dsx.2020.12.033

15. Unnikrishnan R, Misra A. Diabetes and COVID19: a bidirectional relationship. Nutr Diabetes. 2021;11(1):21. https://doi.org/10.1038/s41387-021-00163-2

16. Misra A, Ghosh A, Gupta R. Heterogeneity in presentation of hyperglycaemia during COVID-19 pandemic: a proposed classification. Diabetes Metab Syndr. 2021;15(1):403-6. https://doi.org/10.1016/j.dsx.2021.01.018

17. Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARS-CoV-2. J Endocrinol Invest. 2020;43(6):867-9. https://doi.org/10.1007/s40618-020-01236-2

18. Guan W, Liang W, Zhao Y, Liang H, Chen Z, Li Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547. https://doi.org/10.1183/13993003.00547-2020

19. Cromer SJ, Colling C, Schatoff D, Leary M, Stamou MI, Selen DJ, et al. Newly diagnosed diabetes vs. pre-existing diabetes upon admission for COVID-19: associated factors, short-term outcomes, and long-term glycemic phenotypes. J Diabetes Complicat. 2022;36(4):108145. https://doi.org/10.1016/j.jdiacomp.2022.108145

20. Xie Y, Al-Aly Z. Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol. 2022;10(5):311-21. doi: 10.1016/s2213-8587(22)00044-4 https://doi.org/10.1016/S2213-8587(22)00044-4

21. Ssentongo P, Zhang Y, Witmer L, Chinchilli VM, Ba DM. Association of COVID-19 with diabetes: a systematic review and meta-analysis. Sci Rep. 2022;12(1):20191. https://doi.org/10.1038/s41598-022-24185-7

22. Zhang T, Mei Q, Zhang Z, Walline JH, Liu Y, Zhu H, et al. Risk for newly diagnosed diabetes after COVID-19: a systematic review and meta-analysis. BMC Med. 2022;20(1):444. https://doi.org/10.1186/s12916-022-02656-y

23. Jafar N, Edriss H, Nugent K. The effect of short-term hyperglycemia on the innate immune system. Am J Med Sci. 2016;351(2):201-11. https://doi.org/10.1016/j.amjms.2015.11.011

24. Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020;36(7):e3319. https://doi.org/10.1002/dmrr.3319

25. Dunn E, Grant P. Type 2 diabetes: an atherothrombotic syndrome. Curr Mol Med. 2005;5(3):323-32. https://doi.org/10.2174/1566524053766059

26. Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: knowledge in progress. Diabetes Res Clin Pract. 2020;162:108142. https://doi.org/10.1016/j.diabres.2020.108142

27. Kassir R. Risk of COVID-19 for patients with obesity. Obes Rev. 2020;21(6);e13034. https://doi.org/10.1111/obr.13034

28. Wan J, Sun W, Li X, Ying W, Dai J, Kuai X, et al. Inflammation inhibitors were remarkably up-regulated in plasma of severe acute respiratory syndrome patients at progressive phase. Proteomics. 2006;6(9):2886-94. https://doi.org/10.1002/pmic.200500638

29. Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: the conundrum. Diabetes Res Clin Pract. 2020;162:108132. https://doi.org/10.1016/j.diabres.2020.108132

30. Liamis G, Liberopoulos E, Barkas F, Elisaf M. Diabetes mellitus and electrolyte disorders. World J Clin Cases. 2014;2(10):488-96. https://doi.org/10.12998/wjcc.v2.i10.488

31. Zou Z, Yan Y, Shu Y, Gao R, Sun Y, Li X, et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun. 2014;5:3594. https://doi.org/10.1038/ncomms4594

32. Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012;2012:256294. https://doi.org/10.1155/2012/256294

33. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3. https://doi.org/10.1126/science.abb2507

34. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. https://doi.org/10.1016/S2213-2600(20)30116-8

35. Romaní-Pérez M, Outeiriño-Iglesias V, Moya CM, Santisteban P, González-Matías LC, Vigo E, et al. Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology. 2015;156(10):3559-69. https://doi.org/10.1210/en.2014-1685

36. Chen D, Li X, Song Q, Hu C, Su F, Dai J, et al. Assessment of hypokalemia and clinical characteristics in patients with coronavirus disease 2019 in Wenzhou, China. JAMA Netw Open. 2020;3(6):e2011122. https://doi.org/10.1001/jamanetworkopen.2020.11122

37. Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JHR, Harb G, et al. Charting cellular identity during human in vitro β-cell differentiation. Nature. 2019;569(7756):368-73. https://doi.org/10.1038/s41586-019-1168-5

38. Coate KC, Cha J, Shrestha S, Wang W, Gonçalves LM, Almaça J, et al. SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 are expressed in the microvasculature and ducts of human pancreas but are not enriched in β cells. Cell Metab. 2020;32(6):1028-40.e4. https://doi.org/10.1016/j.cmet.2020.11.006

39. Kusmartseva I, Wu W, Syed F, Van Der Heide V, Jorgensen M, Joseph P, et al. Expression of SARS-CoV-2 entry factors in the pancreas of normal organ donors and individuals with COVID-19. Cell Metab. 2020;32(6):1041-51.e6. https://doi.org/10.1016/j.cmet.2020.11.005

40. Fignani D, Licata G, Brusco N, Nigi L, Grieco GE, Marselli L, et al. SARS-CoV-2 receptor angiotensin I-converting enzyme type 2 (ACE2) is expressed in human pancreatic β-cells and in the

human pancreas microvasculature. Front Endocrinol (Lausanne). 2020;11:596898. doi: 10.3389/fendo.2020.596898. https://doi.org/10.3389/fendo.2020.596898

41. Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;3(2):149-65. https://doi.org/10.1038/s42255-021-00347-1

42. Wu CT, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 2021;33(8):1565-76.e5. https://doi.org/10.1016/j.cmet.2021.05.013

43. Al-kuraishy HM, Al-Gareeb AI, Alblihed M, Guerreiro SG, Cruz-Martins N, Batiha GES. COVID-19 in relation to hyperglycemia and diabetes mellitus. Front Cardiovasc Med. 2021;8:644095. https://doi.org/10.3389/fcvm.2021.644095

44. Valencia I, Peiró C, Lorenzo Ó, Sánchez-Ferrer CF, Eckel J, Romacho T. DPP4 and ACE2 in diabetes and COVID-19: therapeutic targets for cardiovascular complications? Front Pharmacol. 2020;11:1161. https://doi.org/10.3389/fphar.2020.01161

45. Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021;17(1):11-30. https://doi.org/10.1038/s41574-020-00435-4

46. McGurnaghan SJ, Weir A, Bishop J, Kennedy S, Blackbourn LAK, McAllister DA, et al. Risks of and risk factors for COVID-19 disease in people with diabetes: a cohort study of the total population of Scotland. Lancet Diabetes Endocrinol. 2021;9(2):82-93. https://doi.org/10.1016/S2213-8587(20)30405-8

47. Niedzwiedz CL, O'Donnell CA, Jani BD, Demou E, Ho FK, Celis-Morales C, et al. Ethnic and socioeconomic differences in SARS-CoV-2 infection: prospective cohort study using UK Biobank. BMC Med. 2020;18(1):160. https://doi.org/10.1186/s12916-020-01640-8

48. Lean MEJ, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019;7(5):344-55. https://doi.org/10.1016/S2213-8587(19)30068-3

49. Xin Y, Davies A, McCombie L, Briggs A, Messow CM, Grieve E, et al. Type 2 diabetes remission: economic evaluation of the DiRECT/counterweight-plus weight management programme within a primary care randomized controlled trial. Diabet Med. 2019;36(8):1003-12. https://doi.org/10.1111/dme.13981

Article Metrics
42 Views 4 Downloads 46 Total

Year

Month

Related Search

By author names