Review Article | Volume: 11, Supplement 1, March, 2021

Pyrazolones as a potential anticancer scaffold: Recent trends and future perspectives

Suman Adhikari Manjinder Singh Pratibha Sharma Sandeep Arora   

Open Access   

Published:  Feb 11, 2021

DOI: 10.7324/JAPS.2021.11s103
Abstract

Cancers are already placing an enormous load on the worldwide healthcare practice; so, anti-neoplastic compounds nowadays are most essential in cancer remedy. Nevertheless, the expanding resistance in drug profiles’ appearance in recently available anticancer drugs has so far risen to a distressing level over past decades. Pyrazolone holds wideranging chemotherapeutic characteristics, including anticancer activity, and they inhabit a significant place in the novel drug development process. As per the literature, various hybridized pyrazolone moieties with different pharmacophores and pyrazolone metal complexes have anticancer activities with good potency. In recent years, pyrazolone hybrids and metal complexes were generated to study their anticancer properties. Out of these, some derivatives displayed promising strengths against the case of resistant and susceptible cell lines of cancer. This current review encloses the latest advances of pyrazolone hybrids including thiophene, aminomethylidenes , naphthoquinones, combretastatins, 2-substituted-4-(2-fluorophenoxy) pyridine, hydroxybenzo[a]phenazine, coumarin, dihydrobenzoxepine, cyclic peptide, cambinol derivatives of pyrazolone, and different metal complexes as a potential anticancer agent.


Keyword:     Anticancer agent pyrazolone metal complex cell line.


Citation:

Adhikari S, Singh M, Sharma P, Arora S. Pyrazolones as potential anticancer scaffold: Recent trends and future perspectives. J Appl Pharm Sci, 2021; 11 (Supp 1):026–037.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Ahsan MJ, Samy JG, Jain CB, Dutt KR, Khalilullah H, Nomani MS. Discovery of novel anti-tubercular 1,5-dimethyl-2-phenyl-4-([5- (arylamino)-1,3,4-oxadiazol-2-yl]methylamino)-1,2-dihydro-3H-pyrazol3-one analogues. Bioorg Med Chem Lett, 2012; 22:969-72. https://doi.org/10.1016/j.bmcl.2011.12.014

Akcha S, Gómez-Ruiz S, Kellou-Tairi S, Lezama L, Pérez FB, Benali-Baitich O. Synthesis, characterization, solution equilibria, DFT study, DNA binding affinity and cytotoxic properties of a cobalt(II) complex with a 5-pyrazolone ligand. Inorg Chim Acta, 2018; 482: 738-48. https://doi.org/10.1016/j.ica.2018.06.051

Akondi AM, Kantam ML, Trivedi R, Bharatam J, Vemulapalli SPB, Bhargava SK, Prakasham RS. Ce/SiO2 composite as an efficient catalyst for the multicomponent one-pot synthesis of substituted pyrazolones in aqueous media and their antimicrobial activities. J Mol Catal A Chem, 2016; 411:325-36. https://doi.org/10.1016/j.molcata.2015.11.004

Bae M, Oh J, Bae ES, Oh J, Hur J, Suh YG, Lee SK, Shin J, Oh DC. WS9326H, an antiangiogenic pyrazolone-bearing peptide from an intertidal mudflat actinomycete. Org Lett, 2018; 20:1999-02. https://doi.org/10.1021/acs.orglett.8b00546

Bakr EA, Al-Hefnawy GB, Awad MK, Abd-Elatty HH, Youssef MS. New Ni(II), Pd(II) and Pt(II) complexes coordinated to azo pyrazolone ligand with a potent anti-tumor activity: synthesis, characterization, DFT and DNA cleavage studies. Appl Organomet Chem, 2017; 32:4104-7. Brogden RN. Pyrazolone derivatives. Drugs, 1986; 32:60-70. https://doi.org/10.1002/aoc.4104

Brune K. The early history of non-opioid analgesics. Acute Pain, 1997; 1:33-40. https://doi.org/10.1016/S1366-0071(97)80033-2

Burja B, ÄŒimbora-Zovko T, Tomić S, Jelušić T, Kočevar M, Polanc S, Osmak M. Pyrazolone-fused combretastatins and their precursors: synthesis, cytotoxicity, antitubulin activity and molecular modeling studies. Bioorg Med Chem, 2010; 18:2375-87. https://doi.org/10.1016/j.bmc.2010.03.006

Caruso F, Monti E, Matthews J, Rossi M, Gariboldi MB, Pettinari C, Pettinari R, Marchetti F. Synthesis, characterization, and antitumor activity of water-soluble (Arene)ruthenium(II) derivatives of 1,3-Dimethyl-4-acylpyrazolon-5-ato ligands. first example of Ru(arene) (ligand) antitumor species involving simultaneous Ru-N7(guanine) bonding and ligand intercalation to DNA. Inorg Chem, 2014; 53:3668-77. https://doi.org/10.1021/ic403170y

Casas JS, Castellano EE, Ellena J, García-Tasende MS, PérezParallé ML, Sánchez A, Sánchez-González Á, Sordo J, Touceda Á. New Pd(II) and Pt(II) complexes with N, S-chelated pyrazolonate ligands: molecular and supramolecular structure and preliminary study of their in vitro antitumoral activity. J Inorg Biochem, 2008; 102:33-45. https://doi.org/10.1016/j.jinorgbio.2007.06.032

Counihan JL, Grossman EA, Nomura DK. Cancer metabolism: current understanding and therapies. Chem Rev, 2018; 118:6893-23. https://doi.org/10.1021/acs.chemrev.7b00775

Cutsem, EV, Karaszewska, B, Kang, YK, Chung, HV, Shankaran, V, Siena, S, Go, NF, Yang, H, Schupp, M, Cunningham, D. A multicenter phase II study of AMG 337 in patients with MET-amplified gastric/gastroesophageal junction/esophageal adenocarcinoma and other MET-amplified solid tumors. Clin Cancer Res, 2019; 25:1445-56. https://doi.org/10.1158/1078-0432.CCR-18-1337

De Pascali SA, Migoni D, Monari M, Pettinari C, Marchetti F, Muscella A, Fanizzi FP. Synthesis, crystal structure, and biological study of PtII complexes with 4-Acyl-5-pyrazolones. Eur J Inorg Chem, 2014; 7:1249-59. https://doi.org/10.1002/ejic.201301479

Deshmukh P, Soni PK, Kankoriya A, Halve AK, Dixit R. 4-Aminoantipyrine: a significant tool for the synthesis of biologically active schiff bases and metal complexes. Int J Pharma Sci Rev Res, 2015; 34:162-70.

Gaber M, Khedr AM, Mansour MA, Elsharkawy M. Nanosynthesis, characterization, modeling and molecular docking analysis of Mn (II), Co (II), Cr (III) and Cu (II) complexes with azo pyrazolone ligand as new favourable antimicrobial and antitumor agents. Appl Organomet Chem, 2018; 1:4606-8. https://doi.org/10.1002/aoc.4606

Gao F, Zhang X, Wang TF, Xiao JQ. Quinolone hybrids and their anti-cancer activities: an overview. Eur J Med Chem, 2019; 165:59-79. https://doi.org/10.1016/j.ejmech.2019.01.017

Ghorab MM, El-Gazzar MG, Alsaid MS. Synthesis, characterization and anti-breast cancer activity of new 4-aminoantipyrinebased heterocycles. Int J Mol Sci, 2014; 15:7539-53. https://doi.org/10.3390/ijms15057539

Gouda MA, Eldien HF, Girges MM, Berghot MA. Synthesis and antitumor evaluation of thiophene based azo dyes incorporating pyrazolone moiety. J Saudi Chem Soc, 2016; 20:151-57. https://doi.org/10.1016/j.jscs.2012.06.004

Gouhar, RS, Fathalla OA, Abd El-Karim SS. Synthesis and anticancer screening of some novel substituted pyrazole derivatives. Der Pharma Chem, 2013; 5:225-33

Gu W, Dai Y, Qiang H, Shi W, Liao C, Zhao F, Huang W. Discovery of novel 2-substituted-4-(2-fluorophenoxy) pyridine derivatives possessing pyrazolone and triazole moieties as dual c-Met/VEGFR-2 receptor tyrosine kinase inhibitors. Bioorg Chem, 2017; 72:116-22. https://doi.org/10.1016/j.bioorg.2017.04.001

Islam MS, Wang CY, Zheng JY, Paudyal N, Zhu YL, Sun HX. The potential role of tubeimosides in cancer prevention and treatment. Eur J Med Chem, 2019; 162:109-21. https://doi.org/10.1016/j.ejmech.2018.11.001

Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Tumor J Clin, 2011; 61:69-90. https://doi.org/10.3322/caac.20107

Kandhasamy S, Ramanathan G, Muthukumar T, Thyagarajan S, Umamaheshwari N, Santhanakrishnan VP, Sivagnanam UT, Perumal PT. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics. Mat Sci Eng, 2017; 74:70-5. https://doi.org/10.1016/j.msec.2017.01.001

Katritzky AR, Rees CW, Scriven EF. Comprehensive heterocyclic chemistry II. 5th edition, Pergamon, Oxford, UK, pp 301-9, 1996.

Kavitha Rani PR, Sheena Mary Y, Fernandez A, Anu Priya S, Shyma Mary Y, Thomas R. Single-crystal XRD, DFT investigations and molecular docking study of 2-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro1H-pyrazol-4-yl)amino)naphthalene-1,4-dione as a potential anti-cancer lead molecule. Comput Biol Chem, 2018, 78:153-64. https://doi.org/10.1016/j.compbiolchem.2018.11.022

Kulkarni RC, Madar JM, Shastri SL, Shaikh F, Naik NS, Chougale RB, Shastri LA, Joshi SD, Dixit SR, Sunagar VA. Green synthesis of coumarin-pyrazolone hybrids: in vitro anticancer and anti-inflammatory activities and their computational study on COX-2 enzyme. Chem Data Collect, 2018; 17:497-06. https://doi.org/10.1016/j.cdc.2018.11.004

Li Y, Zhao J, He CC, Zhang L, Sun SR, Xu GC. Synthesis, crystal structure and biological activity of two Mn complexes with 4-acyl pyrazolone derivatives. J Inorg Biochem, 2015; 150:28-7. https://doi.org/10.1016/j.jinorgbio.2015.06.003

Lunagariya MV, Thakor KP, Kanthecha DN, Patel MN. Synthesis, characterization and biological applications of substituted pyrazolone corebased platinum(II) organometallic compounds. J Organomet Chem, 2018; 854:49-3. https://doi.org/10.1016/j.jorganchem.2017.11.012

Mahajan SS, Scian M, Sripathy S, Posakony J, Lao U, Loe TK, Leko V, Thalhofer A, Schuler AD, Bedalov A, Simon JA. Development of pyrazolone and isoxazol-5-one cambinol analogues as sirtuin inhibitors. J Med Chem, 2014; 57:3283-94. https://doi.org/10.1021/jm4018064

Mariappan G, Saha BP, Sutharson L, Singh A, Garg S, Pandey L, Kumar D. Analgesic, anti-inflammatory, antipyretic and toxicological evaluation of some newer 3-methyl pyrazolone derivatives. Saudi Pharm J, 2011; 19:115-22. https://doi.org/10.1016/j.jsps.2011.01.003

Marković V, Erić S, Stanojković T, Gligorijević N, Aranđelović S, Todorović N, Trifunović S, Manojlović N, Jelić R, Joksović MD. Antiproliferative activity and QSAR studies of a series of new 4-aminomethylidene derivatives of some pyrazol-5-ones. Bioorg Med Chem Lett, 2011; 21:4416-21. https://doi.org/10.1016/j.bmcl.2011.06.025

Metwally, NH, Mohamed, MS, Ragb, EA. Design, synthesis, anticancer evaluation, molecular docking and cell cycle analysis of 3-methyl-4,7-dihydropyrazolo[1,5-a]pyrimidine derivatives as potent histone lysine demethylases (KDM) inhibitors and apoptosis inducers. Bioorg Chem, 2019; 88:1029-32. https://doi.org/10.1016/j.bioorg.2019.102929

Modi JS, Kulkarni MV. Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: medicinal chemistry perspective. Med Drug Discov, 2019; 2:100009-11. https://doi.org/10.1016/j.medidd.2019.100009

Montana M, Mathias F, Terme T, Vanelle P. Antitumoral activity of quinoxaline derivatives: a systematic review. Eur J Med Chem, 2019; 163:136-47. https://doi.org/10.1016/j.ejmech.2018.11.059

Mosoarca EM, Pantenburg I, Tudose R, Meyer G, Popa NC, Han A, Alexandrova R, Kalfin R, Linert W, Costisor O. Synthesis, structure and cytotoxic activity of mixed-valent Cu(I)/Cu(II) salt containing a pyrazolone derivative as a ligand. Inorg Chim Acta, 2011; 370:460-68. https://doi.org/10.1016/j.ica.2011.02.035

Mu LM, Ju RJ, Liu R, Bu YZ, Zhang JY, Li XQ, Zeng F, Lu WL. Dual-functional drug liposomes in the treatment of resistant cancers. Adv Drug Deliv Rev, 2017; 115:46-6. https://doi.org/10.1016/j.addr.2017.04.006

Narayana Rao DV, Raghavendra Guru Prasad A, Spoorthy YN, Raghunatha Rao D, Ravindranath L K. In vitro microbiological evaluation of novel bis pyrazolones. Ann Pharmacol Franç, 2014; 72:101-6. https://doi.org/10.1016/j.pharma.2013.11.005

Parmar N, Teraiya S, Patel R, Barad H, Jajda H, Thakkar V. Synthesis, antimicrobial and antioxidant activities of some 5-pyrazolone based Schiff bases. J Saudi Chem Soc, 2015; 19:36-1. https://doi.org/10.1016/j.jscs.2011.12.014

Paulpandiyan R, Raman N. DNA binding propensity and nuclease efficacy of bio sensitive Schiff base complexes containing pyrazolone moiety: synthesis and characterization. J Mol Struct, 2016; 1125:374-82. https://doi.org/10.1016/j.molstruc.2016.07.003

Pettinari R, Marchetti F, Di Nicola C, Pettinari C, Galindo A, Petrelli R, Cappellacci L, Cuccioloni M, Bonfili L, Eleuteri AM, Guedes da Silva MFC, Pombeiro AJL. Ligand design for N,O- or N, N-pyrazolonebased hydrazones ruthenium(II)-arene complexes and investigation of their anticancer activity. Inorg Chem, 2018; 57:14123-3. https://doi.org/10.1021/acs.inorgchem.8b01935

Pettinari R, Marchetti F, Pettinari C, Petrini A, Scopelliti R, Clavel CM, Dyson PJ. Synthesis, structure, and antiproliferative activity of ruthenium(II) arene complexes with N,O-chelating pyrazolone-based β-Ketoamine ligands. Inorg Chem, 2014; 53:13105-11. https://doi.org/10.1021/ic502274b

Rashid H, Xu Y, Muhammad Y, Wang L, Jiang J. Research advances on anticancer activities of matrine and its derivatives: an updated overview. Eur J Med Chem, 2019; 161:205-38. https://doi.org/10.1016/j.ejmech.2018.10.037

Rizk HF, Ibrahim SA, El-Borai MA. Synthesis, dyeing performance on polyester fiber and antimicrobial studies of some novel pyrazolotriazine and pyrazolyl pyrazolone azo dyes. Arab J Chem, 2017; 10:3303-9. https://doi.org/10.1016/j.arabjc.2014.01.008

Saad FA, El-Metwaly NM, Farghaly TA, El-Ghalban MG, AlHazmi GA, Saleh KA, Alfaifi MY. Illustration for series of new metal ion complexes extracted from pyrazolone derivative, spectral, thermal, QSAR, DFT/B3LYP, docking, and antitumor investigations. J Mol Liq, 2016; 229:614-27. https://doi.org/10.1016/j.molliq.2016.11.035

Saidachary G, Veera Prasad K, Divya D, Singh A, Ramesh U, Sridhar B, China Raju B. Convenient one-pot synthesis, anti-mycobacterial and anticancer activities of novel benzoxepinoisoxazolones and pyrazolones. Eur J Med Chem, 2014; 76:460-69. https://doi.org/10.1016/j.ejmech.2014.02.042

Singh N, Krishnakumar S, Kanwar RK, Cheung CHA, Kanwar JR. Clinical aspects for surviving: a crucial molecule for targeting drugresistant cancers. Drug Discov Today, 2015; 20:578-87. https://doi.org/10.1016/j.drudis.2014.11.013

Sivakumar KK, Rajasekaran A, Senthilkumar P, Wattamwar PP. Conventional and microwave-assisted synthesis of pyrazolone Mannich bases possessing anti-inflammatory, analgesic, ulcerogenic effect and antimicrobial properties. Bioorg Med Chem Lett, 2014; 24:2940-44. https://doi.org/10.1016/j.bmcl.2014.04.067

Stornaiuolo M, La Regina G, Passacantilli S, Grassia G, Coluccia A, La Pietra V, Giustiniano M, Cassese H, Di Maro S, Brancaccio D, Taliani S. Structure-based lead optimization and biological evaluation of BAX direct activators as novel potential anticancer agents. J Med Chem, 2015; 58:2135-48. https://doi.org/10.1021/jm501123r

Tang, Y, Rong, X, Hu, W, Li, G, Yang, X, Yang, J, Xu, P, Luo, J. Effect of edaravone on radiation-induced brain necrosis in patients with nasopharyngeal carcinoma after radiotherapy: a randomized controlled trial. J Neurooncol, 2014, 120:441-47. https://doi.org/10.1007/s11060-014-1573-4

Tok F, KoçyiÄŸit-KaymakçıoÄŸlu B, Nurpelin SaÄŸlık B, Levent S, Özkay Y, Asım Kaplancıklı Z. Synthesis and biological evaluation of new pyrazolone schiff bases as monoamine oxidase and cholinesterase inhibitors. Bioorg Chem, 2019; 84:41-50. https://doi.org/10.1016/j.bioorg.2018.11.016

Tripathy R, Ghose A, Singh J, Bacon ER, Angeles TS, Yang SX, Albom MS, Aimone LD, Herman JL, Mallamo JP. 1,2,3-Thiadiazole substituted pyrazolones as potent KDR/VEGFR-2 kinase inhibitors. Bioorg Med Chem Lett, 2007; 17:1793-98. https://doi.org/10.1016/j.bmcl.2006.12.054

Tripathy R, McHugh RJ, Ghose AK, Ott GR, Angeles TS, Albom MS, Huang Z, Aimone LD, Cheng M, Dorsey BD. Pyrazolonebased anaplastic lymphoma kinase (ALK) inhibitors: control of selectivity by a benzyloxy group. Bioorg Med Chem Lett, 2011; 21:7261-64. https://doi.org/10.1016/j.bmcl.2011.10.055

Tüzün, B. Investi̇gati̇on of pyrazoly derivatives schi̇ff base li̇gands and thei̇r metal complexes used as anti-cancer drug. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 15; 11763-67 https://doi.org/10.1016/j.saa.2019.117663

Vyas KM, Jadeja RN, Patel D, Devkar RV, Gupta VK. A new pyrazolone based ternary Cu (II) complex: Synthesis, characterization, crystal structure, DNA binding, protein binding and anti-cancer activity towards A549 human lung carcinoma cells with a minimum cytotoxicity to non-cancerous cells. Polyhedron, 2013, 28; 65:262-74. https://doi.org/10.1016/j.poly.2013.08.051

Vyas KM, Jadeja RN, Patel D, Devkar RV, Gupta VK. Effect of ligand substitution in pyrazolone based binary and ternary Cu(II) complexes on DNA binding, protein binding and anti-cancer activity on A549 lung carcinoma cell lines. Polyhedron, 2014; 80:20-33. https://doi.org/10.1016/j.poly.2013.12.037

Weast RC. Hand book of chemistry and physics. CRC Press Inc, Cleveland, Ohio, p 58, 1977.

Wiley R, Wiley P. Pyrazolones, pyrazolidones and derivatives: the chemistry of heterocyclic compounds. 20th edition, A Weissberger. Interscience Publishers, New York, NY, pp 1-12, 1964. https://doi.org/10.1002/9780470186817

Yousuf S, Khan KM, Salar U, Chigurupati, S, Muhammad MT, Wadood A, Aldubayan M, Vijayan V, Riaz M, Perveen S. 2ʹ-Aryl and 4ʹ-arylidene substituted pyrazolones: as potential α-amylase inhibitors. Eur J Med Chem, 2018; 159:47-58. https://doi.org/10.1016/j.ejmech.2018.09.052

Zhang Y, Zhang L, Liu L, Guo J, Wu D, Xu G, Wang X, Jia D. Anticancer activity, structure, and theoretical calculation of N-(1-phenyl3-methyl-4-propyl-pyrazolone-5)-salicylidene hydrazone and it's copper(II) complex. Inorganica Chim Acta, 2010; 363:289-93. https://doi.org/10.1016/j.ica.2009.08.017

Zhao J, Zhang L, Li J, Wu T, Wang M, Xu G, Zhang F, Liu L, Yang J, Sun S. A novel pyrazolone-based derivative induces apoptosis in human esophageal cells via reactive oxygen species (ROS) generation and caspase-dependent mitochondria-mediated pathway. Chem Biol Interact, 2015; 231:1-9.https://doi.org/10.1016/j.cbi.2015.02.004

Zhuang C, Guan X, Ma H, Cong H, Zhang W, Miao Z. Small molecule-drug conjugates: a novel strategy for cancer-targeted treatment. Eur J Med Chem, 2019; 163:883-95. https://doi.org/10.1016/j.ejmech.2018.12.035

Zong Z, Wei X, Yan X, Fan Y.Crystal structures and anticancer activities of five novel pyrazolone-enamine transition metal complexes with 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one. J Mol Struct, 2018; 1171:333-39. https://doi.org/10.1016/j.molstruc.2018.06.019

Article Metrics
569 Views 68 Downloads 637 Total

Year

Month

Related Search

By author names