Topical diseases are treated with oral and conventional topical formulations till date. Both oral and topical routes face many challenges such as poor absorption, high metabolism, toxicity, and drug-drug interactions. Conventional topical dosage forms like creams, lotions, and gels have failed to show controlled drug release. Literature reports indicated that more than 1.5 lakh (approximate) people lost their lives due to fungal infections and several lakhs of the population are affected. Even then, it is a neglected subject by public health authorities, and while most of the deaths from fungal diseases can be stopped. Globally, it is estimated that over 30 lakh cases of pulmonary Aspergillosis, 7 lakh cases of Candidiasis, 2.5 lakh cases of Aspergillosis, 5 lakh cases of Pneumocystis jirovecii pneumonia, and many more occur annually. Nanomedicines play a key role in reducing the number of patients coming up with fungal infections. A small-sized drug can easily penetrate the micropores of the skin and show desirable results. Nanomedicines rely on various nanomaterials (lipidic carriers, metal nanoparticles, carbon nanotubes, quantum dots, etc.) for their therapeutic efficacy. Nanomaterials can facilitate efficient topical drug delivery by increased penetration, enhanced safety and efficacy, and sustained and targeted release of drugs. The review summarizes the basics of nanomedicine with respect to topical delivery and various nanomaterials for better therapeutics of the fungal infections of the skin.
Nagpal M, Kaur M. Nanomaterials for skin antifungal therapy: An updated review. J Appl Pharm Sci, 2021; 11 (Supp 1):015–025.
Abd-Elsalam WH, El-Zahaby SA, Al-Mahallawi AM. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv, 2018; 25(1):484-92. https://doi.org/10.1080/10717544.2018.1436098 | |
Aghamoosa M, Sabokbar A. Antifungal activity of silver nanoparticle in different sizes against some pathogenic fungi. J Appl Chem Res, 2014; 8(4):115-22. | |
Akhtar N, Varma A, Pathak K. Ethosomes as vesicles for effective transdermal delivery: from bench to clinical implementation. Curr Clin Pharmacol, 2016; 11(3):168-90. https://doi.org/10.2174/1574884711666160813231352 | |
Akhtar N, Verma A, Pathak K. Topical delivery of drugs for the effective treatment of fungal infections of skin. Curr Pharm Des, 2015; 21(20):2892-913. https://doi.org/10.2174/1381612821666150428150456 | |
Aldosari MA, Darwish SS, Adam MA, Elmarzugi NA, Ahmed SM. Using ZnO nanoparticles in fungal inhibition and self-protection of exposed marble columns in historic sites. Archaeol Anthropol Sci, 2019; 11(7):3407-22. https://doi.org/10.1007/s12520-018-0762-z | |
Alhowyan AA, Altamimi MA, Kalam MA, Khan AA, Badran M, Binkhathlan Z, Alkholief M, Alshamsan A. Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: in vitro and ex vivo studies. J Microbiol Methods, 2019; 161:87-95. https://doi.org/10.1016/j.mimet.2019.01.020 | |
Alomrani AH, Al-Agamy MH, Badran MM. In vitro skin penetration and antimycotic activity of itraconazole loaded niosomes: various non-ionic surfactants. J Drug Deliv Sci Technol, 2015; 28:37-45. https://doi.org/10.1016/j.jddst.2015.04.009 | |
Ambati S, Ferarro AR, Kang SE, Lin J, Lin X, Momany M, Lewis ZA, Meagher RB. Dectin-1-targeted antifungal liposomes exhibit enhanced efficacy. mSphere, 2019; 4(1):e00025-19. https://doi.org/10.1128/mSphere.00025-19 | |
Baillie GS, Doublas LJ. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother, 2000; 46:397-403. https://doi.org/10.1093/jac/46.3.397 | |
Bapat AS, Prasad S, Jain N, Arora N, Mahesh G, Mishra M, Mandal D. Topical oil composition for treatment of fungal infections. U.S.Patent Application No. 14/366,755, 2014. | |
Bawa R. Regulating nanomedicine-can the FDA handle it? Curr Drug Deliv, 2011; 8(3):227-34. https://doi.org/10.2174/156720111795256156 | |
Blume A, Jansen M, Ghyczy M, Gareiss J. Interaction of phospholipid liposomes with lipid model mixtures for stratum corneum lipids. Int J Pharm, 1993; 99:219-28. https://doi.org/10.1016/0378-5173(93)90364-L | |
Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi, 2017; 3(4):57. https://doi.org/10.3390/jof3040057 | |
Bos JD, Meinardi MM. The 500 dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol, 2000; 9(3):165-9. https://doi.org/10.1034/j.1600-0625.2000.009003165.x | |
Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv, 2006; 13(3):175-87. https://doi.org/10.1080/10717540500455975 | |
Bseiso EA, Nasr M, Sammour O, Abd El Gawad NA. Recent advances in topical formulation carriers of antifungal agents. Indian J Dermatol Venereol Leprol, 2015; 81(5):457-63. https://doi.org/10.4103/0378-6323.162328 | |
Campani V, Biondi M, Mayol L, Cilurzo F, Franzé S, Pitaro M, De Rosa G. Nanocarriers to enhance the accumulation of vitamin K1 into the skin. Pharm Res, 2016; 33(4):893-908. https://doi.org/10.1007/s11095-015-1836-6 | |
Chandra J, Kuhn DM, Mulherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol, 2001; 183:5385-94. https://doi.org/10.1128/JB.183.18.5385-5394.2001 | |
Chen J, Wu L, Lu M, Lu S, Li Z, Ding W. Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Front Microbiol, 2020; 11:365. https://doi.org/10.3389/fmicb.2020.00365 | |
Costa AF, Araujo DE, Cabral MS, Brito IT, de Menezes Leite LB, Pereira M, Amaral AC. Development, characterization, and in vitro-in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal Candidiasis. Med Mycol, 2019; 57(1):52-62. https://doi.org/10.1093/mmy/myx155 | |
Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces, 2010; 79:5-18. https://doi.org/10.1016/j.colsurfb.2010.03.029 | |
De Castro Spadari C. Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of Candidiasis and Cryptococcosis. Int J Nanomed, 2019; 14:5187. https://doi.org/10.2147/IJN.S205350 | |
De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed, 2008; 3(2):133. https://doi.org/10.2147/IJN.S596 | |
Dodémont M, De Mendonça R, Nonhoff C, Roisin S, Denis O. Performance of the Verigene Gram-negative blood culture assay for rapid detection of bacteria and resistance determinants. J Clin Microbiol, 2014; 52(8):3085-7. https://doi.org/10.1128/JCM.01099-14 | |
Doll TA, Raman S, Dey R, Burkhard P. Nanoscale assemblies and their biomedical applications. J R Soc Interface, 2013; 10:20120740. https://doi.org/10.1098/rsif.2012.0740 | |
El-Hady MM, Farouk A, Sharaf S. Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohydr Polym, 2013; 92:400-6. https://doi.org/10.1016/j.carbpol.2012.08.085 | |
ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv, 2016; 23(7):2115-23. https://doi.org/10.3109/10717544.2014.942811 | |
Elsherif NI, Shamma RN, Abdelbary G. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: in vitro characterization and ex vivo evaluation. AAPS PharmSciTech, 2017; 18(2):551-62. https://doi.org/10.1208/s12249-016-0528-9 | |
Elzainy AA, Gu X, Simons FE, Simons KJ. Hydroxyzine from topical phospholipid liposomal formulations: evaluation of peripheral antihistaminic activity and systemic absorption in a rabbit model. AAPS PharmSciTech, 2003; 5(4):41-8. https://doi.org/10.1208/ps050428 | |
Faisal W, Soliman GM, Hamdan AM. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J Liposome Res, 2016; 2016:1-8. https://doi.org/10.1080/08982104.2016.1239636 | |
Farghaly DA, Aboelwafa AA, Hamza MY, Mohamed MI. Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: optimization using experimental design and in vivo evaluation. AAPS PharmSciTech, 2017; 18(8):2898-909. https://doi.org/10.1208/s12249-017-0771-8 | |
Farouk A, Sharaf S, Abd El-Hady MM. Preparation of multifunctional cationized cotton fabric based on TiO2 nanomaterials. Int J Biol Macromol, 2013; 61C:230-7. https://doi.org/10.1016/j.ijbiomac.2013.06.022 | |
Fetih G. Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections. J Drug Deliv Sci Technol, 2016; 35:8-15. https://doi.org/10.1016/j.jddst.2016.06.002 | |
Filon FL, Mauro M, Adami G, Bovenzi M, Crosera M. Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol, 2015; 72(2):310-22. https://doi.org/10.1016/j.yrtph.2015.05.005 | |
Firooz A, NafisiS, Maibach HI. Novel drug delivery strategies for improving econazole antifungal action. Int J Pharm, 2015; 495(1):599- 607. Foldvari M, Gesztes A, Mezei M. Dermal drug delivery by liposome encapsulation: clinical and electron microscopic studies. J Microencapsul, 1990; 7(4):479-89. https://doi.org/10.3109/02652049009040470 | |
Forrest KM, Judice JK, Warren HS, Balkovec JM, Brady TP. Compositions and methods for treatment of fungal infections. U.S. Patent Application No. 14/916,414, 2016. | |
Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed, 2012; 7:5577-91. https://doi.org/10.2147/IJN.S36111 | |
Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharm Cairo Univ, 2015; 53(2):147-59. https://doi.org/10.1016/j.bfopcu.2015.10.001 | |
Garse H, Jagtap P, Kadam V. Solid lipid nanoparticles based gel for topical delivery of antifungal agent. Int J Pharm Sci, 2015; 6(8):3571. | |
Jha S, Mathur P, Ramteke S, Jain NK. Pharmaceutical potential of quantum dots. Artif Cells Nanomed Biotechnol, 2018; 46:57-65. https://doi.org/10.1080/21691401.2017.1411932 | |
Grath JA, Uitto J. The filaggrin story. novel insights into skin barrier function and disease. Trends Mol Med, 2008; 14:20-7. https://doi.org/10.1016/j.molmed.2007.10.006 | |
Gratieri T, Gelfuso GM, Lopez RF, Souto EB. Current efforts and the potential of nanomedicine in treating fungal Keratitis. Expert Rev Ophthalmol, 2010; 5(3):365-84. https://doi.org/10.1586/eop.10.19 | |
Güngör S, Erdal MS, Aksu B. New formulation strategies in topical antifungal therapy. J Cosmet Dermatol Sci, 2013; 3(01):56. https://doi.org/10.4236/jcdsa.2013.31A009 | |
Guo F, Wang J, Ma M, Tan F, Li N. Skin targeted lipid vesicles as novel nano-carrier of ketoconazole: characterization, in vitro and in vivo evaluation. Mater Sci Mater Med, 2015; 26(4):175. https://doi.org/10.1007/s10856-015-5487-2 | |
Gupta A, Bonde SR, Gaikwad S, Ingle A, Gade AK, Rai M. Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotechnol, 2013; 8(3):172-8. https://doi.org/10.1049/iet-nbt.2013.0015 | |
Gupta AK, Ryder JE, Chow M, Cooper EA. Dermatophytosis: the management of fungal infections. Skinmed, 2005; 4(5):305-10. https://doi.org/10.1111/j.1540-9740.2005.03435.x | |
Hafner A, Lovrić J, Lakoš GP, Pepić I. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomed, 2014; 9:1005. https://doi.org/10.2147/IJN.S55359 | |
Hamishehkar H, Rahimpour Y, Kouhsoltani M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv, 2013; 10(2):261-72. https://doi.org/10.1517/17425247.2013.746310 | |
Handjani-Vila RM, Ribier A, Rondot B, Vanlerberghie G. Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int J Cosmet Sci, 1979; 1(5):303-14. https://doi.org/10.1111/j.1467-2494.1979.tb00224.x | |
Hasheminejad N, Khodaiyan F, Safari M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem, 2019; 275:113-22. https://doi.org/10.1016/j.foodchem.2018.09.085 | |
Hebeish AA, Abdelhady MM, Youssef AM. TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and selfcleaning cotton textile. Carbohydr Polym, 2013; 91:549-59. https://doi.org/10.1016/j.carbpol.2012.08.068 | |
Higa LH, Schilrreff P, Perez AP, Morilla MJ, Romero EL. The intervention of nanotechnology against epithelial fungal diseases. J Biomater Tissue Eng, 2013; 3(1):1-19. https://doi.org/10.1166/jbt.2013.1065 | |
Hsieh SH, Brunke S, Brock M. Encapsulation of antifungals in micelles protects Candida albicans during gall-bladder infection. Front Microbiol, 2017; 8:117. https://doi.org/10.3389/fmicb.2017.00117 | |
Humisto A, Jokela J, Teigen K, Wahlsten M, Permi P, Sivonen K, Herfindal L. Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. Biochem Biophys Acta Biomembr, 2019; 1861(8):1510-21. https://doi.org/10.1016/j.bbamem.2019.03.010 | |
Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomed, 2017; 12:5087-108. https://doi.org/10.2147/IJN.S138267 | |
Jijie R, Barras A, Boukherroub R, Szunerits S. Nanomaterials for transdermal drug delivery: beyond the state of the art of liposomal structures. J Mater Chem B, 2017; 5(44):8653-75. https://doi.org/10.1039/C7TB02529G | |
Kakkar S, Kaur IP. Spanlastics - a novel nanovesicular carrier system for ocular delivery. Int J Pharm, 2011; 413(1-2):202-10. https://doi.org/10.1016/j.ijpharm.2011.04.027 | |
Kaur IP, Kakkar S. Topical delivery of antifungal agents. Expert Opin Drug Deliv, 2010; 7(11):1303-27. https://doi.org/10.1517/17425247.2010.525230 | |
Kaur M, Singh K, Jain SK. Luliconazole vesicular based gel formulations for its enhanced topical delivery. J Liposome Res, 2019; 30(4): 1-43. https://doi.org/10.1080/08982104.2019.1682602 | |
Khan WA, Sharma V, Maurya P, Bijauliya RK. Development and characterization of oxiconazole nitrate loaded ethosomal gel for treating fungal infections. World J Pharmacol Res, 2019; 8(10):1341-56. | |
Kim JY. Human fungal pathogens: why should we learn? J Microbiol, 2016; 54(3):145-8. https://doi.org/10.1007/s12275-016-0647-8 | |
Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol, 2008; 18:1482-4. | |
Kircik LH. Advancements in topical antifungal vehicles. J Drugs Dermatol, 2016; 15(2):44-8. | |
Kralj M, Pavelic K. Medicine on a small scale: how molecular medicine can benefit from self-assembled and nanostructured materials. EMBO Rep, 2003; 4(11):1008-12. https://doi.org/10.1038/sj.embor.7400017 | |
Kumar L, Verma S, Bhardwaj A, Vaidya S, Vaidya B. Eradication of superficial fungal infections by conventional and novel approaches: a comprehensive review. Artif Cells Nanomed Biotechnol, 2014; 42(1):32-46. https://doi.org/10.3109/21691401.2013.769446 | |
Kumar L, Verma S, Singh K, Prasad DN, Jain AK. Ethanol based vesicular carriers in transdermal drug delivery: nanoethosomes and transethosomes in focus. NanoWorld J, 2016; 2(3):41-51. https://doi.org/10.17756/nwj.2016-030 | |
Kyle AA, Dahl MV. Topical therapy for fungal infections. Am J Clin Dermatol, 2004; 5(6):443-51. https://doi.org/10.2165/00128071-200405060-00009 | |
Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jimenez MJ, Jose-Yacaman M. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnology, 2015; 13:91. https://doi.org/10.1186/s12951-015-0147-8 | |
Laurent A, Pantet O, Laurent L, Hirt-Burri N, de Buys Roessingh A, Raffoul W, Laurent P, Monod M, Applegate LA. Potency and stability of liposomal amphotericin B formulated for topical management of Aspergillus spp. infections in burn patients. Burns Open, 2019; 4(3):110-6. https://doi.org/10.1016/j.burnso.2019.09.001 | |
Li D, Yang M, Du K, Hou Y, Xie S, Dong Y, Du Y. Synergistic antifungal effect of amphotericin B-loaded PLGA nanoparticles based ultrasound against C. albicans biofilms. bioRxiv, 2018; 63(4): 423723. https://doi.org/10.1101/423723 | |
Luo, J, Huang, W, Shao, Y, Shi, C. Telodendrimers with riboflavin moieties and nanocarriers and methods of making and using same. U.S. Patent Application No. 13/972,539, 2015. | |
Mbah CC, Builders PF, Attama AA. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin Drug Deliv, 2014;11(1):45-59. https://doi.org/10.1517/17425247.2013.860130 | |
Mohamed NH, Ismail MA, Abdel-Mageed WM, Mohamed Shoreit AA. Antimicrobial activity of latex silver nanoparticles using calotropis procera. Asian Pac J Trop Biomed, 2014; 4(11):876-83. https://doi.org/10.12980/APJTB.4.201414B216 | |
Mohanta P, Pandey NK, Kapoor DN, Singh SK, Sarvi Y, Sharma P. Development of surfactant-based nanocarrier system for delivery of an antifungal drug. J Pharm Res, 2017; 11(9):1153. | |
Niemirowicz K, Durnaś B, Piktel E, Bucki R. Development of antifungal therapies using nanomaterials. Nanomed, 2017; 12(15):1891- 905. Niemirowicz K, Durnaś B, Tokajuk G, Piktel E, Michalak G, Gu X, Kułakowska A, Savage PB, Bucki R. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci Rep, 2017; 7(1):4610. https://doi.org/10.1038/s41598-017-04653-1 | |
Nigam PK. Antifungal drugs and resistance: current concepts. Our Dermatol Online, 2015; 6(2):212-21. https://doi.org/10.7241/ourd.20152.58 | |
Nohynek GJ, Dufour EK, Roberts MS. Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol, 2008; 21:136-49. https://doi.org/10.1159/000131078 | |
Palmer BC, DeLouise LA. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules, 2016; 21(12):1719. https://doi.org/10.3390/molecules21121719 | |
Pandit J, Garg M, Jain NK. Miconazole nitrate bearing ultraflexible liposomes for treatment of fungal infection. J Liposome Res, 2014; 24(2):163-9. https://doi.org/10.3109/08982104.2013.871025 | |
Patil M, Mehta DS, Guvva S. Future impact of nanotechnology on medicine and dentistry. J Indian Soc Periodontol, 2008; 12(2):34. https://doi.org/10.4103/0972-124X.44088 | |
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol, 2007; 2:751-6. https://doi.org/10.1038/nnano.2007.387 | |
Perry JM, Sung JC, Hava DL, Saunders RC, Tracy HS. Antifungal dry powders. CA patent application no. CA3039485A1, 2018. | |
Pinilla CM, Thys RC, Brandelli A. Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungal in wheat bread. Int J Food Microbiol, 2019; 293:72-8. https://doi.org/10.1016/j.ijfoodmicro.2019.01.006 | |
Poirot-Mazères I. Legal aspects of the risks raised by nanotechnologies in the field of medicine. J Int Bioethique, 2011; 22(1):99-118. https://doi.org/10.3917/jib.221.0099 | |
Prasad S, Ghosh S, Chawrai SR, Jain N. Composition and formulation of antimicrobial agents, processes thereof and methods for treating microbial infection. U.S. Patent Application No. 14/783,658, 2016. | |
Qushawy M, Nasr A, Abd-Alhaseeb M, Swidan S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of Candida skin infections. Pharmaceutics, 2018; 10(1):26. https://doi.org/10.3390/pharmaceutics10010026 | |
Rabelo AM, Parahym DC, Cerqueira Macêdo DP, Laranjeira D, De Moura Mendonça EA, Oliveira EE, Francisco. Use of contained nanoformulations derived from 2- aminothiopene as antifungal agents. BR Patent Application No. BR102014029027A, 2016. | |
Rasheed SH, Mogili RK, Bannoth CK. Formulation and development of oxiconazole based ethosomal gel system for dermal delivery. Int J Res Pharm Sci, 2018; 9(4):1393-400. https://doi.org/10.7897/2230-8407.0911276 | |
Rathore GS, Tanwar YS, Sharma A. Fluconazole-loaded ethosomes gel and liposomes gel: an updated review for the treatment of deep fungal skin infection. Pharm Chem J, 2015; 2(1):41-50. | |
Romero EL, Morilla MJ. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int J Nanomed, 2013; 8:3171-86. https://doi.org/10.2147/IJN.S33048 | |
Roque L, Castro P, Molpeceres J, Viana AS, Roberto A, Reis C, Rijo P, Tho I, Sarmento B, Reis C. Bioadhesive polymeric nanoparticles as strategy to improve the treatment of yeast infections in oral cavity: in-vitro and ex-vivo studies. Eur Polym J, 2018; 104:19-31. https://doi.org/10.1016/j.eurpolymj.2018.04.032 | |
Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and non-invasive imaging of therapeutic effect. Curr Drug Discov Technol, 2009; 6(1):43-51. https://doi.org/10.2174/157016309787581066 | |
Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med (Lausanne), 2016; 3:11. https://doi.org/10.3389/fmed.2016.00011 | |
Schmid K, Riediker M. Use of nanoparticles in Swiss Industry: a targeted survey. Environ Sci Technol, 2008; 42:2253-60. https://doi.org/10.1021/es071818o | |
Selvam S, Rajiv Gandhi R, Suresh J, Gowri S, Ravikumar S, Sundrarajan M. Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. Int J Pharm, 2012; 434:366-74. https://doi.org/10.1016/j.ijpharm.2012.04.069 | |
Shetty S, Jose J, Kumar L, Charyulu RN. Novel ethosomal gel of clove oil for the treatment of cutaneous Candidiasis. J Cosmet Dermatol, 2019; 18(3):862-9. https://doi.org/10.1111/jocd.12765 | |
Shruthi K, Narendar D, Arjun N, Kishan V. Development and antimicrobial evaluation of binary ethosomal topical gel of terbinafine hydrochloride for the treatment of onychomycosis. Int J Pharm Sci Nanotechnol, 2018; 11:3998-4005. https://doi.org/10.37285/ijpsn.2018.11.1.8 | |
Sojinrin T, Conde J, Liu K, Curtin J, Byrne HJ, Cui D, Tian F. Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections. Anal Bioanal Chem, 2017; 409(19):4647-58. https://doi.org/10.1007/s00216-017-0414-7 | |
Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces, 2012; 92:299-304. https://doi.org/10.1016/j.colsurfb.2011.12.004 | |
Taylor E, Webster TJ. Reducing infections through nanotechnology and nanoparticles. Int J Nanomed, 2011; 6:1463-73. https://doi.org/10.2147/IJN.S22021 | |
Tejaswini SS, Madhu A, Bakshi V. Formulation and evaluation of fluconazole loaded transfersomal gel. Int J Sci Res, 2016; 3(3):7. | |
Thakkar M, Brijesh S. Opportunities and challenges for niosomes as drug delivery systems. Curr Drug Deliv, 2016; 13(8):1275-89. https://doi.org/10.2174/1567201813666160328113522 | |
Tiwari S, Mistry P, Patel V. SLNs based on co-processed lipids for topical delivery of terbinafine hydrochloride. J Pharm Drug Dev, 2014; 2(14):1-8. https://doi.org/10.15744/2348-9782.1.604 | |
Uchechi O, Ogbonna JD, Attama AA. 2014. Applications of Nanotechnology in Drug Delivery. IntechOpen. In: Ali Demir Sezer, ed. Nanoparticles for dermal and transdermal drug delivery. 193-227. https://doi.org/10.5772/58672 | |
Veloso DF, Benedetti NI, Ávila RI, Bastos TS, Silva TC, Silva MR, Batista AC, Valadares MC, Lima EM. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity. Drug Deliv, 2018; 25(1):1585-94. https://doi.org/10.1080/10717544.2018.1492046 | |
Ventola CL. The nanomedicine revolution: part 2: current and future clinical applications. Pharm Ther, 2012; 37(10):582. | |
Verigene System. Northbrook. Nanosphere, Inc, Greenwood Village, CO. Available via http://www.nanosphere.us/products/verigenesystem. (Accessed 24 November 2018). | |
Verma S and Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci, 2018: 1-13. | |
Verma S, Bhardwaj A, Vij M, Bajpai P, Goutam N, Kumar L. Oleic acid vesicles: a new approach for topical delivery of antifungal agent. Artif Cells Nanomed Biotechnol, 2014; 42(2):95-101. https://doi.org/10.3109/21691401.2013.794351 | |
Voltan AR, Quindos G, Alarcón KP, Fusco-Almeida AM, MendesGiannini MJ, Chorilli M. Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy? Int J Nanomed, 2016; 11:3715. https://doi.org/10.2147/IJN.S93105 | |
Wang Y, Ke X, Voo ZX, Yap SS, Yang C, Gao S, Liu S, Venkataraman S, Obuobi SA, Khara JS, Yang YY. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Acta Biomater, 2016; 46:211-20. https://doi.org/10.1016/j.actbio.2016.09.036 | |
Wnorowska U, WÄ…tek M, DurnaÅ› B, GÅ‚uszek K, Piktel E, Niemirowicz - Laskowska K, Bucki R. Extracellular DNA as an essential component and therapeutic target of microbial biofilm. StudiaMedyczne, 2015; 2(2):132-8. https://doi.org/10.5114/ms.2015.52912 | |
Xia Y, Xiong YJ, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl, 2009; 48:60-103. You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep, 2012; 39:9193-201. https://doi.org/10.1007/s11033-012-1792-8 | |
Zakir F, Vaidya B, Goyal AK, Malik B, Vyas SP. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv, 2010; 17(4):238-48. https://doi.org/10.3109/10717541003680981 | |
Zambom CR, da Fonseca FH, Crusca Jr E, da Silva PB, Pavan FR, Chorilli M, Garrido SS. A novel antifungal system with potential for prolonged delivery of Histatin 5 to limit growth of Candida albicans. Front Microbiol, 2019; 10:1667. https://doi.org/10.3389/fmicb.2019.01667 | |
Zhang L, Hu CMJ, Fang RH, Luk BT, Thamphiwatana SK. Treating infection by a platelet targeting microbe using nanoparticles. U.S. Patent Application No. 15/737,594, 2018. | |
Year
Month
Nano Technology: A Review
Manivannan RangasamyAntimicrobial properties of Ethiopian chewing sticks against Candida albicans
Kothai SeshathriA unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi
A. H. Wani, M. A. ShahA review of the potential therapeutic and cosmetic use of propolis in topical formulations
Mônica Valero da Silva, Nélio Gomes de Moura Jr, Andrea Barretto Motoyama, Vania Moraes FerreiraFormulation and characterization of Liquid Crystalline Hydrogel of Agomelatin: In vitro and Ex vivo evaluation