Review Article | Volume: 11, Supplement 1, March, 2021

Nanomaterials for skin antifungal therapy: An updated review

Manju Nagpal Malkiet Kaur   

Open Access   

Published:  Feb 11, 2021

DOI: 10.7324/JAPS.2021.11s102
Abstract

Topical diseases are treated with oral and conventional topical formulations till date. Both oral and topical routes face many challenges such as poor absorption, high metabolism, toxicity, and drug-drug interactions. Conventional topical dosage forms like creams, lotions, and gels have failed to show controlled drug release. Literature reports indicated that more than 1.5 lakh (approximate) people lost their lives due to fungal infections and several lakhs of the population are affected. Even then, it is a neglected subject by public health authorities, and while most of the deaths from fungal diseases can be stopped. Globally, it is estimated that over 30 lakh cases of pulmonary Aspergillosis, 7 lakh cases of Candidiasis, 2.5 lakh cases of Aspergillosis, 5 lakh cases of Pneumocystis jirovecii pneumonia, and many more occur annually. Nanomedicines play a key role in reducing the number of patients coming up with fungal infections. A small-sized drug can easily penetrate the micropores of the skin and show desirable results. Nanomedicines rely on various nanomaterials (lipidic carriers, metal nanoparticles, carbon nanotubes, quantum dots, etc.) for their therapeutic efficacy. Nanomaterials can facilitate efficient topical drug delivery by increased penetration, enhanced safety and efficacy, and sustained and targeted release of drugs. The review summarizes the basics of nanomedicine with respect to topical delivery and various nanomaterials for better therapeutics of the fungal infections of the skin.


Keyword:     Nanoparticles nanotubes Candidiasis fungal topical formulation skin permeation.


Citation:

Nagpal M, Kaur M. Nanomaterials for skin antifungal therapy: An updated review. J Appl Pharm Sci, 2021; 11 (Supp 1):015–025.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Abd-Elsalam WH, El-Zahaby SA, Al-Mahallawi AM. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv, 2018; 25(1):484-92. https://doi.org/10.1080/10717544.2018.1436098

Aghamoosa M, Sabokbar A. Antifungal activity of silver nanoparticle in different sizes against some pathogenic fungi. J Appl Chem Res, 2014; 8(4):115-22.

Akhtar N, Varma A, Pathak K. Ethosomes as vesicles for effective transdermal delivery: from bench to clinical implementation. Curr Clin Pharmacol, 2016; 11(3):168-90. https://doi.org/10.2174/1574884711666160813231352

Akhtar N, Verma A, Pathak K. Topical delivery of drugs for the effective treatment of fungal infections of skin. Curr Pharm Des, 2015; 21(20):2892-913. https://doi.org/10.2174/1381612821666150428150456

Aldosari MA, Darwish SS, Adam MA, Elmarzugi NA, Ahmed SM. Using ZnO nanoparticles in fungal inhibition and self-protection of exposed marble columns in historic sites. Archaeol Anthropol Sci, 2019; 11(7):3407-22. https://doi.org/10.1007/s12520-018-0762-z

Alhowyan AA, Altamimi MA, Kalam MA, Khan AA, Badran M, Binkhathlan Z, Alkholief M, Alshamsan A. Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: in vitro and ex vivo studies. J Microbiol Methods, 2019; 161:87-95. https://doi.org/10.1016/j.mimet.2019.01.020

Alomrani AH, Al-Agamy MH, Badran MM. In vitro skin penetration and antimycotic activity of itraconazole loaded niosomes: various non-ionic surfactants. J Drug Deliv Sci Technol, 2015; 28:37-45. https://doi.org/10.1016/j.jddst.2015.04.009

Ambati S, Ferarro AR, Kang SE, Lin J, Lin X, Momany M, Lewis ZA, Meagher RB. Dectin-1-targeted antifungal liposomes exhibit enhanced efficacy. mSphere, 2019; 4(1):e00025-19. https://doi.org/10.1128/mSphere.00025-19

Baillie GS, Doublas LJ. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother, 2000; 46:397-403. https://doi.org/10.1093/jac/46.3.397

Bapat AS, Prasad S, Jain N, Arora N, Mahesh G, Mishra M, Mandal D. Topical oil composition for treatment of fungal infections. U.S.Patent Application No. 14/366,755, 2014.

Bawa R. Regulating nanomedicine-can the FDA handle it? Curr Drug Deliv, 2011; 8(3):227-34. https://doi.org/10.2174/156720111795256156

Blume A, Jansen M, Ghyczy M, Gareiss J. Interaction of phospholipid liposomes with lipid model mixtures for stratum corneum lipids. Int J Pharm, 1993; 99:219-28. https://doi.org/10.1016/0378-5173(93)90364-L

Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi, 2017; 3(4):57. https://doi.org/10.3390/jof3040057

Bos JD, Meinardi MM. The 500 dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol, 2000; 9(3):165-9. https://doi.org/10.1034/j.1600-0625.2000.009003165.x

Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv, 2006; 13(3):175-87. https://doi.org/10.1080/10717540500455975

Bseiso EA, Nasr M, Sammour O, Abd El Gawad NA. Recent advances in topical formulation carriers of antifungal agents. Indian J Dermatol Venereol Leprol, 2015; 81(5):457-63. https://doi.org/10.4103/0378-6323.162328

Campani V, Biondi M, Mayol L, Cilurzo F, Franzé S, Pitaro M, De Rosa G. Nanocarriers to enhance the accumulation of vitamin K1 into the skin. Pharm Res, 2016; 33(4):893-908. https://doi.org/10.1007/s11095-015-1836-6

Chandra J, Kuhn DM, Mulherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol, 2001; 183:5385-94. https://doi.org/10.1128/JB.183.18.5385-5394.2001

Chen J, Wu L, Lu M, Lu S, Li Z, Ding W. Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Front Microbiol, 2020; 11:365. https://doi.org/10.3389/fmicb.2020.00365

Costa AF, Araujo DE, Cabral MS, Brito IT, de Menezes Leite LB, Pereira M, Amaral AC. Development, characterization, and in vitro-in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal Candidiasis. Med Mycol, 2019; 57(1):52-62. https://doi.org/10.1093/mmy/myx155

Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces, 2010; 79:5-18. https://doi.org/10.1016/j.colsurfb.2010.03.029

De Castro Spadari C. Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of Candidiasis and Cryptococcosis. Int J Nanomed, 2019; 14:5187. https://doi.org/10.2147/IJN.S205350

De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed, 2008; 3(2):133. https://doi.org/10.2147/IJN.S596

Dodémont M, De Mendonça R, Nonhoff C, Roisin S, Denis O. Performance of the Verigene Gram-negative blood culture assay for rapid detection of bacteria and resistance determinants. J Clin Microbiol, 2014; 52(8):3085-7. https://doi.org/10.1128/JCM.01099-14

Doll TA, Raman S, Dey R, Burkhard P. Nanoscale assemblies and their biomedical applications. J R Soc Interface, 2013; 10:20120740. https://doi.org/10.1098/rsif.2012.0740

El-Hady MM, Farouk A, Sharaf S. Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids. Carbohydr Polym, 2013; 92:400-6. https://doi.org/10.1016/j.carbpol.2012.08.085

ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv, 2016; 23(7):2115-23. https://doi.org/10.3109/10717544.2014.942811

Elsherif NI, Shamma RN, Abdelbary G. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: in vitro characterization and ex vivo evaluation. AAPS PharmSciTech, 2017; 18(2):551-62. https://doi.org/10.1208/s12249-016-0528-9

Elzainy AA, Gu X, Simons FE, Simons KJ. Hydroxyzine from topical phospholipid liposomal formulations: evaluation of peripheral antihistaminic activity and systemic absorption in a rabbit model. AAPS PharmSciTech, 2003; 5(4):41-8. https://doi.org/10.1208/ps050428

Faisal W, Soliman GM, Hamdan AM. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J Liposome Res, 2016; 2016:1-8. https://doi.org/10.1080/08982104.2016.1239636

Farghaly DA, Aboelwafa AA, Hamza MY, Mohamed MI. Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: optimization using experimental design and in vivo evaluation. AAPS PharmSciTech, 2017; 18(8):2898-909. https://doi.org/10.1208/s12249-017-0771-8

Farouk A, Sharaf S, Abd El-Hady MM. Preparation of multifunctional cationized cotton fabric based on TiO2 nanomaterials. Int J Biol Macromol, 2013; 61C:230-7. https://doi.org/10.1016/j.ijbiomac.2013.06.022

Fetih G. Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections. J Drug Deliv Sci Technol, 2016; 35:8-15. https://doi.org/10.1016/j.jddst.2016.06.002

Filon FL, Mauro M, Adami G, Bovenzi M, Crosera M. Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol, 2015; 72(2):310-22. https://doi.org/10.1016/j.yrtph.2015.05.005

Firooz A, NafisiS, Maibach HI. Novel drug delivery strategies for improving econazole antifungal action. Int J Pharm, 2015; 495(1):599- 607. Foldvari M, Gesztes A, Mezei M. Dermal drug delivery by liposome encapsulation: clinical and electron microscopic studies. J Microencapsul, 1990; 7(4):479-89. https://doi.org/10.3109/02652049009040470

Forrest KM, Judice JK, Warren HS, Balkovec JM, Brady TP. Compositions and methods for treatment of fungal infections. U.S. Patent Application No. 14/916,414, 2016.

Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed, 2012; 7:5577-91. https://doi.org/10.2147/IJN.S36111

Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharm Cairo Univ, 2015; 53(2):147-59. https://doi.org/10.1016/j.bfopcu.2015.10.001

Garse H, Jagtap P, Kadam V. Solid lipid nanoparticles based gel for topical delivery of antifungal agent. Int J Pharm Sci, 2015; 6(8):3571.

Jha S, Mathur P, Ramteke S, Jain NK. Pharmaceutical potential of quantum dots. Artif Cells Nanomed Biotechnol, 2018; 46:57-65. https://doi.org/10.1080/21691401.2017.1411932

Grath JA, Uitto J. The filaggrin story. novel insights into skin barrier function and disease. Trends Mol Med, 2008; 14:20-7. https://doi.org/10.1016/j.molmed.2007.10.006

Gratieri T, Gelfuso GM, Lopez RF, Souto EB. Current efforts and the potential of nanomedicine in treating fungal Keratitis. Expert Rev Ophthalmol, 2010; 5(3):365-84. https://doi.org/10.1586/eop.10.19

Güngör S, Erdal MS, Aksu B. New formulation strategies in topical antifungal therapy. J Cosmet Dermatol Sci, 2013; 3(01):56. https://doi.org/10.4236/jcdsa.2013.31A009

Guo F, Wang J, Ma M, Tan F, Li N. Skin targeted lipid vesicles as novel nano-carrier of ketoconazole: characterization, in vitro and in vivo evaluation. Mater Sci Mater Med, 2015; 26(4):175. https://doi.org/10.1007/s10856-015-5487-2

Gupta A, Bonde SR, Gaikwad S, Ingle A, Gade AK, Rai M. Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotechnol, 2013; 8(3):172-8. https://doi.org/10.1049/iet-nbt.2013.0015

Gupta AK, Ryder JE, Chow M, Cooper EA. Dermatophytosis: the management of fungal infections. Skinmed, 2005; 4(5):305-10. https://doi.org/10.1111/j.1540-9740.2005.03435.x

Hafner A, Lovrić J, Lakoš GP, Pepić I. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomed, 2014; 9:1005. https://doi.org/10.2147/IJN.S55359

Hamishehkar H, Rahimpour Y, Kouhsoltani M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv, 2013; 10(2):261-72. https://doi.org/10.1517/17425247.2013.746310

Handjani-Vila RM, Ribier A, Rondot B, Vanlerberghie G. Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int J Cosmet Sci, 1979; 1(5):303-14. https://doi.org/10.1111/j.1467-2494.1979.tb00224.x

Hasheminejad N, Khodaiyan F, Safari M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem, 2019; 275:113-22. https://doi.org/10.1016/j.foodchem.2018.09.085

Hebeish AA, Abdelhady MM, Youssef AM. TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and selfcleaning cotton textile. Carbohydr Polym, 2013; 91:549-59. https://doi.org/10.1016/j.carbpol.2012.08.068

Higa LH, Schilrreff P, Perez AP, Morilla MJ, Romero EL. The intervention of nanotechnology against epithelial fungal diseases. J Biomater Tissue Eng, 2013; 3(1):1-19. https://doi.org/10.1166/jbt.2013.1065

Hsieh SH, Brunke S, Brock M. Encapsulation of antifungals in micelles protects Candida albicans during gall-bladder infection. Front Microbiol, 2017; 8:117. https://doi.org/10.3389/fmicb.2017.00117

Humisto A, Jokela J, Teigen K, Wahlsten M, Permi P, Sivonen K, Herfindal L. Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. Biochem Biophys Acta Biomembr, 2019; 1861(8):1510-21. https://doi.org/10.1016/j.bbamem.2019.03.010

Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomed, 2017; 12:5087-108. https://doi.org/10.2147/IJN.S138267

Jijie R, Barras A, Boukherroub R, Szunerits S. Nanomaterials for transdermal drug delivery: beyond the state of the art of liposomal structures. J Mater Chem B, 2017; 5(44):8653-75. https://doi.org/10.1039/C7TB02529G

Kakkar S, Kaur IP. Spanlastics - a novel nanovesicular carrier system for ocular delivery. Int J Pharm, 2011; 413(1-2):202-10. https://doi.org/10.1016/j.ijpharm.2011.04.027

Kaur IP, Kakkar S. Topical delivery of antifungal agents. Expert Opin Drug Deliv, 2010; 7(11):1303-27. https://doi.org/10.1517/17425247.2010.525230

Kaur M, Singh K, Jain SK. Luliconazole vesicular based gel formulations for its enhanced topical delivery. J Liposome Res, 2019; 30(4): 1-43. https://doi.org/10.1080/08982104.2019.1682602

Khan WA, Sharma V, Maurya P, Bijauliya RK. Development and characterization of oxiconazole nitrate loaded ethosomal gel for treating fungal infections. World J Pharmacol Res, 2019; 8(10):1341-56.

Kim JY. Human fungal pathogens: why should we learn? J Microbiol, 2016; 54(3):145-8. https://doi.org/10.1007/s12275-016-0647-8

Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol, 2008; 18:1482-4.

Kircik LH. Advancements in topical antifungal vehicles. J Drugs Dermatol, 2016; 15(2):44-8.

Kralj M, Pavelic K. Medicine on a small scale: how molecular medicine can benefit from self-assembled and nanostructured materials. EMBO Rep, 2003; 4(11):1008-12. https://doi.org/10.1038/sj.embor.7400017

Kumar L, Verma S, Bhardwaj A, Vaidya S, Vaidya B. Eradication of superficial fungal infections by conventional and novel approaches: a comprehensive review. Artif Cells Nanomed Biotechnol, 2014; 42(1):32-46. https://doi.org/10.3109/21691401.2013.769446

Kumar L, Verma S, Singh K, Prasad DN, Jain AK. Ethanol based vesicular carriers in transdermal drug delivery: nanoethosomes and transethosomes in focus. NanoWorld J, 2016; 2(3):41-51. https://doi.org/10.17756/nwj.2016-030

Kyle AA, Dahl MV. Topical therapy for fungal infections. Am J Clin Dermatol, 2004; 5(6):443-51. https://doi.org/10.2165/00128071-200405060-00009

Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jimenez MJ, Jose-Yacaman M. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnology, 2015; 13:91. https://doi.org/10.1186/s12951-015-0147-8

Laurent A, Pantet O, Laurent L, Hirt-Burri N, de Buys Roessingh A, Raffoul W, Laurent P, Monod M, Applegate LA. Potency and stability of liposomal amphotericin B formulated for topical management of Aspergillus spp. infections in burn patients. Burns Open, 2019; 4(3):110-6. https://doi.org/10.1016/j.burnso.2019.09.001

Li D, Yang M, Du K, Hou Y, Xie S, Dong Y, Du Y. Synergistic antifungal effect of amphotericin B-loaded PLGA nanoparticles based ultrasound against C. albicans biofilms. bioRxiv, 2018; 63(4): 423723. https://doi.org/10.1101/423723

Luo, J, Huang, W, Shao, Y, Shi, C. Telodendrimers with riboflavin moieties and nanocarriers and methods of making and using same. U.S. Patent Application No. 13/972,539, 2015.

Mbah CC, Builders PF, Attama AA. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin Drug Deliv, 2014;11(1):45-59. https://doi.org/10.1517/17425247.2013.860130

Mohamed NH, Ismail MA, Abdel-Mageed WM, Mohamed Shoreit AA. Antimicrobial activity of latex silver nanoparticles using calotropis procera. Asian Pac J Trop Biomed, 2014; 4(11):876-83. https://doi.org/10.12980/APJTB.4.201414B216

Mohanta P, Pandey NK, Kapoor DN, Singh SK, Sarvi Y, Sharma P. Development of surfactant-based nanocarrier system for delivery of an antifungal drug. J Pharm Res, 2017; 11(9):1153.

Niemirowicz K, Durnaś B, Piktel E, Bucki R. Development of antifungal therapies using nanomaterials. Nanomed, 2017; 12(15):1891- 905. Niemirowicz K, Durnaś B, Tokajuk G, Piktel E, Michalak G, Gu X, Kułakowska A, Savage PB, Bucki R. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci Rep, 2017; 7(1):4610. https://doi.org/10.1038/s41598-017-04653-1

Nigam PK. Antifungal drugs and resistance: current concepts. Our Dermatol Online, 2015; 6(2):212-21. https://doi.org/10.7241/ourd.20152.58

Nohynek GJ, Dufour EK, Roberts MS. Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol, 2008; 21:136-49. https://doi.org/10.1159/000131078

Palmer BC, DeLouise LA. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules, 2016; 21(12):1719. https://doi.org/10.3390/molecules21121719

Pandit J, Garg M, Jain NK. Miconazole nitrate bearing ultraflexible liposomes for treatment of fungal infection. J Liposome Res, 2014; 24(2):163-9. https://doi.org/10.3109/08982104.2013.871025

Patil M, Mehta DS, Guvva S. Future impact of nanotechnology on medicine and dentistry. J Indian Soc Periodontol, 2008; 12(2):34. https://doi.org/10.4103/0972-124X.44088

Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol, 2007; 2:751-6. https://doi.org/10.1038/nnano.2007.387

Perry JM, Sung JC, Hava DL, Saunders RC, Tracy HS. Antifungal dry powders. CA patent application no. CA3039485A1, 2018.

Pinilla CM, Thys RC, Brandelli A. Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungal in wheat bread. Int J Food Microbiol, 2019; 293:72-8. https://doi.org/10.1016/j.ijfoodmicro.2019.01.006

Poirot-Mazères I. Legal aspects of the risks raised by nanotechnologies in the field of medicine. J Int Bioethique, 2011; 22(1):99-118. https://doi.org/10.3917/jib.221.0099

Prasad S, Ghosh S, Chawrai SR, Jain N. Composition and formulation of antimicrobial agents, processes thereof and methods for treating microbial infection. U.S. Patent Application No. 14/783,658, 2016.

Qushawy M, Nasr A, Abd-Alhaseeb M, Swidan S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of Candida skin infections. Pharmaceutics, 2018; 10(1):26. https://doi.org/10.3390/pharmaceutics10010026

Rabelo AM, Parahym DC, Cerqueira Macêdo DP, Laranjeira D, De Moura Mendonça EA, Oliveira EE, Francisco. Use of contained nanoformulations derived from 2- aminothiopene as antifungal agents. BR Patent Application No. BR102014029027A, 2016.

Rasheed SH, Mogili RK, Bannoth CK. Formulation and development of oxiconazole based ethosomal gel system for dermal delivery. Int J Res Pharm Sci, 2018; 9(4):1393-400. https://doi.org/10.7897/2230-8407.0911276

Rathore GS, Tanwar YS, Sharma A. Fluconazole-loaded ethosomes gel and liposomes gel: an updated review for the treatment of deep fungal skin infection. Pharm Chem J, 2015; 2(1):41-50.

Romero EL, Morilla MJ. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int J Nanomed, 2013; 8:3171-86. https://doi.org/10.2147/IJN.S33048

Roque L, Castro P, Molpeceres J, Viana AS, Roberto A, Reis C, Rijo P, Tho I, Sarmento B, Reis C. Bioadhesive polymeric nanoparticles as strategy to improve the treatment of yeast infections in oral cavity: in-vitro and ex-vivo studies. Eur Polym J, 2018; 104:19-31. https://doi.org/10.1016/j.eurpolymj.2018.04.032

Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and non-invasive imaging of therapeutic effect. Curr Drug Discov Technol, 2009; 6(1):43-51. https://doi.org/10.2174/157016309787581066

Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med (Lausanne), 2016; 3:11. https://doi.org/10.3389/fmed.2016.00011

Schmid K, Riediker M. Use of nanoparticles in Swiss Industry: a targeted survey. Environ Sci Technol, 2008; 42:2253-60. https://doi.org/10.1021/es071818o

Selvam S, Rajiv Gandhi R, Suresh J, Gowri S, Ravikumar S, Sundrarajan M. Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. Int J Pharm, 2012; 434:366-74. https://doi.org/10.1016/j.ijpharm.2012.04.069

Shetty S, Jose J, Kumar L, Charyulu RN. Novel ethosomal gel of clove oil for the treatment of cutaneous Candidiasis. J Cosmet Dermatol, 2019; 18(3):862-9. https://doi.org/10.1111/jocd.12765

Shruthi K, Narendar D, Arjun N, Kishan V. Development and antimicrobial evaluation of binary ethosomal topical gel of terbinafine hydrochloride for the treatment of onychomycosis. Int J Pharm Sci Nanotechnol, 2018; 11:3998-4005. https://doi.org/10.37285/ijpsn.2018.11.1.8

Sojinrin T, Conde J, Liu K, Curtin J, Byrne HJ, Cui D, Tian F. Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections. Anal Bioanal Chem, 2017; 409(19):4647-58. https://doi.org/10.1007/s00216-017-0414-7

Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces, 2012; 92:299-304. https://doi.org/10.1016/j.colsurfb.2011.12.004

Taylor E, Webster TJ. Reducing infections through nanotechnology and nanoparticles. Int J Nanomed, 2011; 6:1463-73. https://doi.org/10.2147/IJN.S22021

Tejaswini SS, Madhu A, Bakshi V. Formulation and evaluation of fluconazole loaded transfersomal gel. Int J Sci Res, 2016; 3(3):7.

Thakkar M, Brijesh S. Opportunities and challenges for niosomes as drug delivery systems. Curr Drug Deliv, 2016; 13(8):1275-89. https://doi.org/10.2174/1567201813666160328113522

Tiwari S, Mistry P, Patel V. SLNs based on co-processed lipids for topical delivery of terbinafine hydrochloride. J Pharm Drug Dev, 2014; 2(14):1-8. https://doi.org/10.15744/2348-9782.1.604

Uchechi O, Ogbonna JD, Attama AA. 2014. Applications of Nanotechnology in Drug Delivery. IntechOpen. In: Ali Demir Sezer, ed. Nanoparticles for dermal and transdermal drug delivery. 193-227. https://doi.org/10.5772/58672

Veloso DF, Benedetti NI, Ávila RI, Bastos TS, Silva TC, Silva MR, Batista AC, Valadares MC, Lima EM. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity. Drug Deliv, 2018; 25(1):1585-94. https://doi.org/10.1080/10717544.2018.1492046

Ventola CL. The nanomedicine revolution: part 2: current and future clinical applications. Pharm Ther, 2012; 37(10):582.

Verigene System. Northbrook. Nanosphere, Inc, Greenwood Village, CO. Available via http://www.nanosphere.us/products/verigenesystem. (Accessed 24 November 2018).

Verma S and Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci, 2018: 1-13.

Verma S, Bhardwaj A, Vij M, Bajpai P, Goutam N, Kumar L. Oleic acid vesicles: a new approach for topical delivery of antifungal agent. Artif Cells Nanomed Biotechnol, 2014; 42(2):95-101. https://doi.org/10.3109/21691401.2013.794351

Voltan AR, Quindos G, Alarcón KP, Fusco-Almeida AM, MendesGiannini MJ, Chorilli M. Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy? Int J Nanomed, 2016; 11:3715. https://doi.org/10.2147/IJN.S93105

Wang Y, Ke X, Voo ZX, Yap SS, Yang C, Gao S, Liu S, Venkataraman S, Obuobi SA, Khara JS, Yang YY. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Acta Biomater, 2016; 46:211-20. https://doi.org/10.1016/j.actbio.2016.09.036

Wnorowska U, WÄ…tek M, DurnaÅ› B, GÅ‚uszek K, Piktel E, Niemirowicz - Laskowska K, Bucki R. Extracellular DNA as an essential component and therapeutic target of microbial biofilm. StudiaMedyczne, 2015; 2(2):132-8. https://doi.org/10.5114/ms.2015.52912

Xia Y, Xiong YJ, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl, 2009; 48:60-103. You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep, 2012; 39:9193-201. https://doi.org/10.1007/s11033-012-1792-8

Zakir F, Vaidya B, Goyal AK, Malik B, Vyas SP. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv, 2010; 17(4):238-48. https://doi.org/10.3109/10717541003680981

Zambom CR, da Fonseca FH, Crusca Jr E, da Silva PB, Pavan FR, Chorilli M, Garrido SS. A novel antifungal system with potential for prolonged delivery of Histatin 5 to limit growth of Candida albicans. Front Microbiol, 2019; 10:1667. https://doi.org/10.3389/fmicb.2019.01667

Zhang L, Hu CMJ, Fang RH, Luk BT, Thamphiwatana SK. Treating infection by a platelet targeting microbe using nanoparticles. U.S. Patent Application No. 15/737,594, 2018.

Article Metrics

381 Absract views 5 PDF Downloads 386 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required