Overview of novel sample pretreatment methods and their pharmaceutical applications in bioanalysis

Jamshed Haneef Larzi Mohsin Bin Mohammed   

Open Access   

Published:  Oct 30, 2025

DOI: 10.7324/JAPS.2026.241408
Abstract

Sample pretreatment methods are a vital component in the pharmaceutical assays of analytes with the objectives of minimizing matrix effects and better recovery. The associated challenges involved are multistep procedures, time-consuming, labor-intensive, and a lack of selectivity. These limitations can be overcome by the advancement in novel extraction methods. These methods are preferred over traditional methods due to the ease of the clean-up procedure and the possibility of automation, miniaturization, and good recovery of target analytes. Therefore, the present review highlights the current progress in novel pretreatment methods and their applicability in the extraction of analytes from biological fluids. Various case studies have been covered about the pharmaceuticals and were summarized with critical parameters associated with method developments. In addition, considerable progress in novel methods for the extraction of biomarkers and diagnostics has been made. The integration of artificial intelligence and the adoption of green sampling approaches allow faster and reliable bioanalysis workflows. These developments have a significant impact in making bioanalysis more accessible, eco-conscious, and high accuracy in bioanalytical method developments.


Keyword:     Biomarkers bioanalysis biofluids miniaturization novel pretreatment methods recovery


Citation:

Haneef J, Mohammed LMB. Overview of novel sample pretreatment methods and their pharmaceutical applications in bioanalysis. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.241408

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Bylda C, Thiele R, Kobold U, Volmer DA. Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS. Analyst. 2014;139(10):2265–76. doi: https://doi.org/10.1039/C4AN00094C

2. Singleton C. Recent advances in bioanalytical sample preparation for LC–MS analysis. Bioanalysis. 2012;4(9):1123–40. doi: https://doi.org/10.4155/bio.12.73

3. Kole PL, Venkatesh G, Kotecha J, Sheshala R. Recent advances in sample preparation techniques for effective bioanalytical methods. Biomed Chromatogr. 2011;25(1?2):199–217. doi: https://doi.org/10.1002/bmc.1560

4. van de Merbel N. Sample preparation for LC-MS bioanalysis of proteins. In: Li W, Jian W, Fu Y, editors. Sample preparation in LC-MS bioanalysis. John Wiley & Sons, Inc; 2019. 304–18 pp. doi: https://doi.org/10.1002/9781119274315.ch24

5. Mulvana DE. Critical topics in ensuring data quality in bioanalytical LC–MS method development. Bioanalysis. 2010;2(6):1051–72. doi: https://doi.org/10.4155/bio.10.60

6. Aubry AF. LC–MS/MS bioanalytical challenge: ultra-high sensitivity assays. Bioanalysis. 2011;3(16):1819–25. doi: https://doi.org/10.4155/bio.11.166

7. Zhao L, Lucas D, Long D, Richter B, Stevens J.Multi-class multi-residue analysis of veterinary drugs in meat using enhanced matrix removal lipid cleanup and liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2018;1549:14–24. doi: https://doi.org/10.1016/j.chroma.2018.03.033

8. Vaghela A, Patel A, Patel A, Vyas A, Patel N. Sample preparation in bioanalysis: a review. Int J Sci Technol Res. 2016;5(05):6–10.

9. Côté C, Bergeron A, Mess JN, Furtado M, Garofolo F. Matrix effect elimination during LC–MS/MS bioanalytical method development. Bioanalysis. 2009;1(7):1243–57. doi: https://doi.org/10.4155/bio.09.117

10. Lahaie M, Mess JN, Furtado M, Garofolo F. Elimination of LC–MS/MS matrix effect due to phospholipids using specific solid-phase extraction elution conditions. Bioanalysis. 2010;2(6):1011–21. doi: https://doi.org/10.4155/bio.10.65

11. Hyötyläinen T. Novel sample extraction and chromatographic techniques in environmental analysis. LCGC Eur. 2009;22(4):172–9.

12. Ingle RG, Zeng S, Jiang H, Fang WJ.Current developments of bioanalytical sample preparation techniques in pharmaceuticals. J Pharm Anal. 2022;12(4):517–29. doi: https://doi.org/10.1016/j.jpha.2022.03.001

13. Zhang Y, Cao H, Jiang H. Supported liquid extraction versus liquid–liquid extraction for sample preparation in LC–MS/MS-based bioanalysis. Bioanalysis. 2013;5(3):285–8. doi: https://doi.org/10.4155/bio.12.335

14. Svanström C, Hansson GP, Svensson LD, Sennbro CJ.Development and validation of a method using supported liquid extraction for the simultaneous determination of midazolam and 1′-hydroxy-midazolam in human plasma by liquid chromatography with tandem mass spectrometry detection. J Pharm Biomed Anal. 2012;58:71–7. doi: https://doi.org/10.1016/j.jpba.2011.09.015

15. Rositano J, Harpas P, Kostakis C, Scott T. Supported liquid extraction (SLE) for the analysis of methylamphetamine, methylenedioxymethylamphetamine and delta-9- tetrahydrocannabinol in oral fluid and blood of drivers. Forensic Sci Int. 2016;265:125–30. doi: https://doi.org/10.1016/j.forsciint.2016.01.017

16. Sauve EN, Langødegård M, Ekeberg D, Øiestad AML. Determination of benzodiazepines in ante-mortem and post-mortem whole blood by solid-supported liquid–liquid extraction and UPLC–MS/MS. J Chromatogr B. 2012;883:177–88. doi: https://doi.org/10.1016/j.jchromb.2011.10.033

17. Wu J, Lu J, Wilson C, Lin Y, Lu H. Effective liquid–liquid extraction method for analysis of pyrethroid and phenylpyrazole pesticides in emulsion-prone surface water samples. J Chromatogr A. 2010;1217(41):6327–33. doi: https://doi.org/10.1016/j.chroma.2010.08.004 18. Zheng M, Zhang C, Wang L, Wang K, Kang W, Lian K, et al. Determination of nine mental drugs in human plasma using solid-phase supported liquid-liquid extraction and HPLC-MS/MS. Microchem J.2021;160:105647. doi: https://doi.org/10.1016/j.microc.2020.105647

19. Meunier C, Blondelle D, Faure P, Baguet JP, Le Goff C, Chabre O, et al. Development and validation of a method using supported liquid extraction for aldosterone determination in human plasma by LC-MS/MS. Clin Chim Acta. 2015;447:8–15. doi: https://doi.org/10.1016/j.cca.2015.05.007

20. Kohira T, Kita Y, Tokuoka SM, Shiba M, Satake M, Shimizu T. Characterization of supported liquid extraction as a sample pretreatment method for eicosanoids and related metabolites in biological fluids. J Chromatogr B. 2019;1124:298–307. doi: https://doi.org/10.1016/j.jchromb.2019.06.016

21. Shang T, Zhao LJ, Li P, Zeng XY, Yu ZQ. Determination of ten kinds of monohydroxylated polycyclic aromatic hydrocarbons in human urine by supported liquid extraction followed by liquid chromatography-tandem mass spectrometry. Chin J Anal Chem. 2019;47(6):876–2. doi: https://doi.org/10.1016/S1872-2040(19)61165-5

22. Jiang J, Ip HSS, Zhou J, Guan Y, Zhang J, Liu G, et al. Supported-liquid phase extraction in combination with isotope-dilution gas chromatography triple quadrupole tandem mass spectrometry for high-throughput quantitative analysis of polycyclic aromatic hydrocarbon metabolites in urine. Environ Pollut. 2019;248:304–11. doi: https://doi.org/10.1016/j.envpol.2019.01.125

23. Chen R, Ning Z, Zheng C, Yang Y, Zhang C, Ou X, et al. Simultaneous determination of 16 alkaloids in blood by ultrahigh-performance liquid chromatography-tandem mass spectrometry coupled with supported liquid extraction. J Chromatogr B. 2019;1128:121789. doi: https://doi.org/10.1016/j.jchromb.2019.121789

24. Doctor EL, Mccord B. The application of supported liquid extraction in the analysis of benzodiazepines using surface enhanced Raman spectroscopy. Talanta. 2015;144:938–43. doi: https://doi.org/10.1016/j.talanta.2015.07.036

25. Ferreiro-Vera C, Priego-Capote F, Luque De Castro MD. Comparison of sample preparation approaches for phospholipids profiling in human serum by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2012;1240:21–8. doi: https://doi.org/10.1016/j.chroma.2012.03.074

26. Neville D, Houghton R, Garrett S. Efficacy of plasma phospholipid removal during sample preparation and subsequent retention under typical UHPLC conditions. Bioanalysis. 2012;4(7):795–807. doi: https://doi.org/10.4155/bio.12.38

27. Ahmad S, Kalra H, Gupta A, Raut B, Hussain A, Rahman MA. HybridSPE: a novel technique to reduce phospholipid-based matrix effect in LC–ESI-MS Bioanalysis. J Pharm Bioallied Sci. 2012;4(4):267–75. doi: https://doi.org/10.4103/0975-7406.103234

28. Nilsson K, Andersson M, Beck O. Phospholipid removal combined with a semi-automated 96-well SPE application for determination of budesonide in human plasma with LC–MS/MS. J Chromatogr B. 2014;970:31–5. doi: https://doi.org/10.1016/j.jchromb.2014.08.035

29. Meloche M, Jutras M, St-Jean I, De Denus S, Leclair G. Isocyanate derivatization coupled with phospholipid removal microelution-solid phase extraction for the simultaneous quantification of (S)- metoprolol and (S)-α-hydroxymetoprolol in human plasma with LC– MS/MS. J Pharm Biomed Anal. 2021;204:114263. doi: https://doi.org/10.1016/j.jpba.2021.114263

30. Guo H, Wang J, Wu Y, Liu W, Bu J, Zhao Q. Sensitive and simultaneous determination of nine anticoagulant rodenticides in human blood by UPLC–MS-MS with phospholipid removal pretreatment. J Anal Toxicol. 2018;42(7):459–66. doi: https://doi.org/10.1093/jat/bky024

31. Pilli NR, Narayanasamy S, Florian J, Zusterzeel R, Patel V, Strauss DG, et al. Novel simultaneous method for the determination of avobenzone and oxybenzone in human plasma by UHPLC-MS/MS with phospholipid removal pretreatment: an application to a sunscreen clinical trial. J Chromatogr B. 2021;1169:122615. doi: https://doi.org/10.1016/j.jchromb.2021.122615

32. Gao X, Sun Y, You H, Dai Y, Guo H, Zhao Q. Simultaneous determination of amitraz, chlordimeform, formetanate and metabolites in human blood by liquid chromatography tandem mass spectrometry with phospholipid?removal pretreatment. Biomed Chromatogr. 2019;33(4):4477. doi: https://doi.org/10.1002/bmc.4477

33. Sidqey D, Liane VH, Kristoffersen L. Quantitative determination of ethyl glucuronide and ethyl sulfate in postmortem and antemortem whole blood using phospholipid removal 96-well plate and UHPLC– MS-MS. J Anal Toxicol. 2021;45(4):378–88. doi: https://doi.org/10.1093/jat/bkaa108

34. Zidekova N, Nemcek A, Sutovska M, Mokry J, Kertys M. Development of sensitive and high-throughput liquid chromatography–tandem mass spectrometry method for quantification of haloperidol in human plasma with phospholipid removal pretreatment. J Anal Toxicol. 2021;45(6):573–80. doi: https://doi.org/10.1093/jat/bkaa124

35. Žideková N, Pršo K, Brisudová K, Babálová L, Bolek T, Sivák S, et al. A high-throughput liquid chromatography-tandem mass spectrometry method for simultaneous determination of direct oral anticoagulants in human plasma. J Sep Sci. 2023;46(13):e2300084. doi: https://doi.org/10.1002/jssc.202300084

36. Wierucka M, Biziuk M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trends Anal Chem. 2014;59:50–8. doi: https://doi.org/10.1016/j.trac.2014.04.007

37. Lu Z, Dai J, Song X, Wang G, Yang W. Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids Surf A. 2008;317(1-3):450–6. doi: https://doi.org/10.1016/j.colsurfa.2007.11.020

38. Giakisikli G, Anthemidis AN. Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal Chim Acta. 2013;789:1–6. doi: https://doi.org/10.1016/j.aca.2013.04.021

39. Plastiras OE, Deliyanni E, Samanidou V. Applications of graphene-based nanomaterials in environmental analysis. Appl Sci. 2021;11(7):3028. doi: https://doi.org/10.3390/app11073028

40. Dmitrienko SG, Apyari VV, Tolmacheva VV, Gorbunova MV, Furletov AA. Dispersive and magnetic solid-phase extraction of organic compounds: review of reviews. J Anal Chem. 2024;79(2):105–18. doi: https://doi.org/10.1134/S1061934824020060

41. Waleng NJ, Munonde TS, Mpupa A, Moremedi T, Zhang Y, Nomngongo PN. Photoelectrochemical properties of magnetic amine-based MIL-101(Cr) hybrid material and its application in the degradation of acebutolol in water. RSC Adv. 2025;15(23):17986– 99. doi: https://doi.org/10.1039/d5ra02767e

42. Asgharinezhad AA, Ebrahimzadeh H. Poly (2-aminobenzothiazole)- coated graphene oxide/magnetite nanoparticles composite as an efficient sorbent for determination of non-steroidal anti-inflammatory drugs in urine sample. J Chromatogr A. 2016;1435(2):18–29. doi: https://doi.org/10.1016/j.chroma.2016.01.027

43. Wang Q, Huang L, Yu P, Wang J, Shen S. Magnetic solid-phase extraction and determination of puerarin in rat plasma using C18- functionalized magnetic silica nanoparticles by high performance liquid chromatography. J Chromatogr B. 2013;912:33–7. doi: https://doi.org/10.1016/j.jchromb.2012.11.009

44. Cheng G, He M, Peng H, Hu B. Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determination by ICP-OES. Talanta. 2012;88:507–15. doi: https://doi.org/10.1016/j.talanta.2011.11.025

45. Rastkari N, Ahmadkhaniha R. Magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes for the determination of phthalate monoesters in urine samples. J Chromatogr A. 2013;1286:22–8. doi: https://doi.org/10.1016/j.chroma.2013.02.070 46. Eskandari H, Naderi-Darehshori A. Preparation of magnetite/poly (styrene-divinylbenzene) nanoparticles for selective enrichment-determination of fenitrothion in environmental and biological samples. Anal Chim Acta. 2012;743:137–44. doi: https://doi.org/10.1016/j.aca.2012.07.012

47. Bylda C, Velichkova V, Bolle J, Thiele R, Kobold U, Volmer DA. Magnetic beads as an extraction medium for simultaneous quantification of acetaminophen and structurally related compounds in human serum. Drug Test Anal. 2015;7(6):457–66. doi: https://doi.org/10.1002/dta.1708

48. Wang X, Niessner R, Knopp D. Magnetic bead-based colorimetric immunoassay for aflatoxin B1 using gold nanoparticles. Sensors. 2014;14(11):21535–48. doi: https://doi.org/10.3390/s141121535

49. Huang W, Ding J, Feng YQ. Magnetic solid phase extraction followed by high performance liquid chromatography for determination of urinary 1-hydroxypyrene. Chin J Anal Chem. 2012;40(6):830–4. doi: https://doi.org/10.1016/S1872-2040(11)60551-3

50. Kabir A, Locatelli M, Ulusoy H. Recent trends in microextraction techniques employed in analytical and bioanalytical sample preparation. Separations. 2017;4(4):36. doi: https://doi.org/10.3390/separations4040036

51. Zhao MM, Wu HZ, Deng XK, Yi RN, Yang Y. The application progress of magnetic solid-phase extraction for heavy metal analysis in food: a mini review. Anal Methods. 2024;16(3):333–43. doi: https://doi.org/10.1039/d3ay01617j

52. Moein MM, Abdel-Rehim A, Abdel-Rehim M. Microextraction by packed sorbent (MEPS). Trends Anal Chem. 2015;67:34–44. doi: https://doi.org/10.1016/j.trac.2014.12.003

53. Pereira J, Gonçalves J, Alves V, Câmara JS. Microextraction using packed sorbent as an effective and high-throughput sample extraction technique: recent applications and future trends. Sample Preparation. 2013;5(1):38–53. doi: https://doi.org/10.2478/sampre-2013-0005

54. Ribeiro C, Ribeiro AR, Maia AS, Gonçalves VM, Tiritan ME. New trends in sample preparation techniques for environmental analysis. Crit Rev Anal Chem. 2014;44(2):142–85. doi: https://doi.org/10.108 0/10408347.2013.833850

55. Yang L, Said R, Abdel-Rehim M. Sorbent, device, matrix and application in microextraction by packed sorbent (MEPS): a review. J Chromatogr B. 2017;1043:33–43. doi: https://doi.org/10.1016/j.jchromb.2016.10.044

56. Ferrone V, Carlucci M, Cotellese R, Raimondi P, Cichella A, Marco LD, et al. Development and validation of a fast micro-extraction by packed sorbent UHPLC-PDA method for the simultaneous determination of linezolid and ciprofloxacin in human plasma from patients with hospital-acquired pneumonia. Talanta. 2017;164:64–8. doi: https://doi.org/10.1016/j.talanta.2016.11.014

57. Elmongy H, Ahmed H, Wahbi AA, Amini A, Colmsjö A, Abdel?Rehim M. Determination of metoprolol enantiomers in human plasma and saliva samples utilizing microextraction by packed sorbent and liquid chromatography–tandem mass spectrometry. Biomed Chromatogr. 2016;30(8):1309–17. doi: https://doi.org/10.1002/bmc.3685

58. Prata M, Ribeiro A, Figueirinha D, Rosado T, Oppolzer D, Restolho J, et al. Determination of opiates in whole blood using microextraction by packed sorbent and gas chromatography-tandem mass spectrometry. J Chromatogr A. 2019;1602:1–10. doi: https://doi.org/10.1016/j.chroma.2019.05.021

59. Malaca S, Rosado T, Restolho J, Rodilla JM, Rocha PMM, Silva L, et al. Determination of amphetamine-type stimulants in urine samples using microextraction by packed sorbent and gas chromatography-mass spectrometry. J Chromatogr B. 2019;1120:41–50. doi: https://doi.org/10.1016/j.jchromb.2019.04.052

60. Ventura S, Rodrigues M, Pousinho S, Falcão A, Alves G. Determination of lamotrigine in human plasma and saliva using microextraction by packed sorbent and high performance liquid chromatography -diode array detection: an innovative bioanalytical tool for therapeutic drug monitoring. Microchem J.2017;130:221–8. doi: https://doi.org/10.1016/j.microc.2016.09.007

61. Ares AM, Fernández P, Regenjo M, Fernández AM, Carro AM, Lorenzo RA. A fast bioanalytical method based on microextraction by packed sorbent and UPLC–MS/MS for determining new psychoactive substances in oral fluid. Talanta. 2017;174:454–61. doi: https://doi.org/10.1016/j.talanta.2017.06.022

62. Sergi M, Montesano C, Odoardi S, Mainero Rocca L, Fabrizi G, Compagnone D, et al. Micro extraction by packed sorbent coupled to liquid chromatography tandem mass spectrometry for the rapid and sensitive determination of cannabinoids in oral fluids. J Chromatogr A. 2013;1301:139–46. doi: https://doi.org/10.1016/j.chroma.2013.05.072

63. Vieira Diniz ML, Batista JM, Da Silva PHR, Fernandes C. Microextraction by packed sorbent and high-performance liquid chromatography for determination of benznidazole in human plasma. J Chromatogr B. 2023;1219:123640. doi: https://doi.org/10.1016/j.jchromb.2023.123640

64. Martins RO, Borsatto JVB, Will C, Lanças FM. Advancements in microextraction by packed sorbent: insights into sorbent phases and automation strategies. Separations. 2025;12(1):11. doi: https://doi.org/10.3390/separations12010011

65. Ferreira L, Perestrelo R, Caldeira M, Câmara JS. Characterization of volatile substances in apples from rosaceae family by headspace solid?phase microextraction followed by GC?qMS. J Sep Sci. 2009;32(11):1875–88. doi: https://doi.org/10.1002/jssc.200900024

66. Silva C, Cavaco C, Perestrelo R, Pereira J, Câmara J.Microextraction by packed sorbent (MEPS) and solid-phase microextraction (SPME) as sample preparation procedures for the metabolomic profiling of urine. Metabolites. 2014;4(1):71–97. doi: https://doi.org/10.3390/metabo4010071

67. Spietelun A, Pilarczyk M, Kloskowski A, Namie?nik J.Current trends in solid-phase microextraction (SPME) fibre coatings. Chem Soc Rev. 2010;39(11):4524–37. doi: https://doi.org/10.1039/c003335a

68. Pawliszyn J.Theory of solid-phase microextraction. Ontario, Canada: Elsevier; 2012. 13 p. doi: https://doi.org/10.1016/C2011-0- 04297-7

69. Gorynski K, Bojko B, Kluger M, Jerath A, W?sowicz M, Pawliszyn J.Development of SPME method for concomitant sample preparation of rocuronium bromide and tranexamic acid in plasma. J Pharm Biomed Anal. 2014;92:183–92. doi: https://doi.org/10.1016/j.jpba.2014.01.026

70. Yang R, Xie W. Determination of cannabinoids in biological samples using a new solid phase micro-extraction membrane and liquid chromatography–mass spectrometry. Forensic Sci Int. 2006;162(1- 3):135–9. doi: https://doi.org/10.1016/j.forsciint.2006.03.036

71. Mirzajani R, Kardani F, Ramezani Z. Preparation and characterization of magnetic metal–organic framework nanocomposite as solid-phase microextraction fibers coupled with high-performance liquid chromatography for determination of non-steroidal anti-inflammatory drugs in biological fluids and tablet formulation samples. Microchem J.2019;144:270–84. doi: https://doi.org/10.1016/j.microc.2018.09.014

72. Xie Y, Zhang L, Hou W, Cheng Y, Luo F, Liu Z, et al. A novel method for monitoring N-nitrosamines impurities using NH2-MIL-101 (Fe) mediated dispersive micro-solid phase extraction coupled with LC-MS/MS in biopharmaceuticals. J Pharm Sci. 2023;112(11):2783– 989. doi: https://doi.org/10.1016/j.xphs.2023.07.017

73. Nazdraji? E, Tascon M, Rickert DA, Gómez-Ríos GA, Kulasingam V, Pawliszyn JB. Rapid determination of tacrolimus and sirolimus in whole human blood by direct coupling of solid-phase microextraction to mass spectrometry via microfluidic open interface. Anal Chim Acta. 2021;1144:53–60. doi: https://doi.org/10.1016/j.aca.2020.11.056

74. Ponce-Rodríguez HD, García-Robles AA, Sáenz-González P, Verdú-Andrés J, Campíns-Falcó P. On-line in-tube solid phase microextraction coupled to capillary liquid chromatography-diode array detection for the analysis of caffeine and its metabolites in small amounts of biological samples. J Pharm Biomed Anal. 2020;178:112914. doi: https://doi.org/10.1016/j.jpba.2019.112914 75. Argente-García A, Moliner-Martínez Y, López-García E, Campíns- Falcó P, Herráez-Hernández R. Application of carbon nanotubes modified coatings for the determination of amphetamines by in-tube solid-phase microextraction and capillary liquid chromatography. Separations. 2016;3(1):7. doi: https://doi.org/10.3390/chromatography3010007

76. Jalili V, Barkhordari A, Ghiasvand A. A comprehensive look at solid-phase microextraction technique: a review of reviews. Microchem J.2020;152:104319. doi: https://doi.org/10.1016/j.microc.2019.104319

77. Kalhor P, Ghandi K. Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste. Molecules. 2019;24(22):4012. doi: https://doi.org/10.3390/molecules24224012

78. Procentese A, Raganati F, Olivieri G, Russo ME, Rehmann L, Marzocchella A. Deep eutectic solvents pretreatment of agro-industrial food waste. Biotechnol For Biofuels. 2018;11(1):37. doi: https://doi.org/10.1186/s13068-018-1034-y

79. Affat S. A review of deep eutectic solvents (DESs), preparation, classification, physicochemical properties, advantages and disadvantages. UTJSCI. 2024;11(1):167–75. doi: https://doi.org/10.32792/utq/utjsci/v11i1.1208

80. Nan L, Zhang H, Weitz DA, Shum HC. Development and future of droplet microfluidics. Lab Chip. 2024;24(5):1135–53. doi: https://doi.org/10.1039/d3lc00729d

81. Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS. Recent advances in microfluidic technology for bioanalysis and diagnostics. Anal Chem. 2021;93(1):311–31. doi: https://doi.org/10.1021/acs. analchem.0c04366

82. El-Deen AK, Shimizu K. Deep eutectic solvents as promising green solvents in dispersive liquid–liquid microextraction based on solidification of floating organic droplet: recent applications, challenges and future perspectives. Molecules. 2021;26(23):7406. doi: https://doi.org/10.3390/molecules26237406

83. Pérez-Cejuela HM, Herrero-Martínez JM, Simó-Alfonso EF. Recent advances in affinity MOF-based sorbents with sample preparation purposes. Molecules. 2020;25(18):4216. doi: https://doi.org/10.3390/molecules25184216

84. Pichon V, Chapuis-Hugon F, Hennion M-C. Bioaffinity sorbents. In: Comprehensive sampling and sample preparation, Academic Press; 2012. 359–88 pp.

85. Werth EG, Roos D, Philip ET. Immunocapture LC–MS methods for pharmacokinetics of large molecule drugs. Bioanalysis. 2024;16(7):165–77. doi: https://doi.org/10.4155/bio-2023-0261

86. Vernerová A, Kr?mová LK, Heneberk O, Radochová V, Strouhal O, Kašparovský A, et al. Chromatographic method for the determination of inflammatory biomarkers and uric acid in human saliva. Talanta. 2021;233:122598. doi: https://doi.org/10.1016/j.talanta.2021.122598

87. Li X, Wang W, Wang L, Wang Q, Pei X, Jiang H. Rapid determination of phenylethanolamine A in biological samples by enzyme-linked immunosorbent assay and lateral-flow immunoassay. Anal Bioanal Chem. 2015;407:7615–24. doi: https://doi.org/10.1007/s00216-015- 8917-6

88. Johannsen C, Haq AU, Reubsaet L, Halvorsen TG. On the spot immunocapture in targeted biomarker analysis using paper-bound streptavidin as anchor for biotinylated antibodies. Anal Bioanal Chem. 2022;414(19):5979–89. doi: https://doi.org/10.1007/s00216- 022-04161-w

89. Tofighi FB, Saadati A, Kholafazad?Kordasht H, Farshchi F, Hasanzadeh M, Samiei M. Electrochemical immunoplatform to assist in the diagnosis of oral cancer through the determination of CYFRA 21.1 biomarker in human saliva samples: preparation of a novel portable biosensor toward non?invasive diagnosis of oral cancer. J Mol Recognit. 2021;34(12):2932. doi: https://doi.org/10.1002/jmr.2932

90. Chen CA, Wang PW, Yen YC, Lin HL, Fan YC, Wu SM, et al. Fast analysis of ketamine using a colorimetric immunosorbent assay on a paper-based analytical device. Sensors Actuat B Chem. 2019;282:251–8. doi: https://doi.org/10.1016/j.snb.2018.11.071

91. Turiel E, Martín-Esteban A. Molecularly imprinted polymers for sample preparation: a review. Anal Chim Acta. 2010;668(2):87–99. doi: https://doi.org/10.1016/j.aca.2010.04.019

92. Gao B, Li Y, Zhang Z. Preparation and recognition performance of creatinine-imprinted material prepared with novel surface-imprinting technique. J Chromatogr B. 2010;878(23):2077–86. doi: https://doi.org/10.1016/j.jchromb.2010.06.007

93. Bitas D, Samanidou V. Molecular imprinting for sample preparation. LCGC Eur. 2018;31(12):660–4.

94. Díaz-Bao M, Barreiro R, Regal P, Cepeda A, Fente C. Evaluation of molecularly imprinted polymers for the simultaneous SPE of six corticosteroids in milk. Chromatographia. 2012;75:223–31. doi: https://doi.org/10.1007/s10337-012-2182-z

95. Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open. 2021;4:100072. doi: https://doi.org/10.1016/j.talo.2021.100072

96. El-Beqqali A, Abdel-Rehim M. Molecularly imprinted polymer-sol-gel tablet toward micro-solid phase extraction: i. Determination of methadone in human plasma utilizing liquid chromatography– tandem mass spectrometry. Anal Chim Acta. 2016;936:116–22. doi: https://doi.org/10.1016/j.aca.2016.07.001

97. Madrakian T, Ahmadi M, Afkhami A, Soleimani M. Selective solid-phase extraction of naproxen drug from human urine samples using molecularly imprinted polymer-coated magnetic multi-walled carbon nanotubes prior to its spectrofluorometric determination. Analyst. 2013;138(16):4542–949. doi: https://doi.org/10.1039/c3an00686g

98. Yang J, Li Y, Wang J, Sun X, Cao R, Sun H, et al. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples. Anal Chim Acta. 2015;872:35–45. doi: https://doi.org/10.1016/j.aca.2015.02.058

99. Sadeghi S, Motaharian A, Moghaddam AZ. Electroanalytical determination of sulfasalazine in pharmaceutical and biological samples using molecularly imprinted polymer modified carbon paste electrode. Sens Actuat B Chem. 2012;168:336–44. doi: https://doi.org/10.1016/j.snb.2012.04.031

100. Arabi M, Ghaedi M, Ostovan A, Wang S. Synthesis of lab-in-a-pipette-tip extraction using hydrophilic nano-sized dummy molecularly imprinted polymer for purification and analysis of prednisolone. J Colloid Interface Sci. 2016;480:232–9. doi: https://doi.org/10.1016/j.jcis.2016.07.017

101. Soledad-Rodríguez B, Fernández-Hernando P, Garcinuño-Martínez RM, Durand-Alegría JS. Effective determination of ampicillin in cow milk using a molecularly imprinted polymer as sorbent for sample preconcentration. Food Chem. 2017;224:432–8. doi: https://doi.org/10.1016/j.foodchem.2016.11.097

102. Behbahani M, Bagheri S, Amini MM, Sadeghi Abandansari H, Reza Moazami H, Bagheri A. Application of a magnetic molecularly imprinted polymer for the selective extraction and trace detection of lamotrigine in urine and plasma samples. J Sep Sci. 2014;37(13):1610–6. doi: https://doi.org/10.1002/jssc.201400188

103. Deng DL, Zhang JY, Chen C, Hou XL, Su YY, Wu L. Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis. J Chromatogr A. 2012;1219:195–200. doi: https://doi.org/10.1016/j.chroma.2011.11.016

104. Kim W, Cha YL, Kim DJ.Advances and challenges in molecularly imprinted conducting and non-conducting polymers for selective and sensitive electrochemical sensors. ECS Sens Plus. 2025;4(1):15201. doi: https://doi.org/10.1149/2754-2726/adbe8b

105. Augusto F, Hantao LW, Mogollón NGS, Braga SCGN. New materials and trends in sorbents for solid-phase extraction. Trends Anal Chem. 2013;43:14–23. doi: https://doi.org/10.1016/j.trac.2012.08.012 106. Du F, Wei Z, Zeng Q, Ruan G. Aptamer?based sample preparation in LC?MS bioanalysis. Sample Preparation in LC?MS Bioanalysis. 2019:174–87. doi: https://doi.org/10.1002/9781119274315.ch24

107. Bruno J, Sivils J.Aptamer ‘Western‘ blotting for E. coli outer membrane proteins and key virulence factors in pathogenic E. coli serotypes. Aptamers Synth Antibodies. 2016;2(1):29–35.

108. Bauer M, Strom M, Hammond DS, Shigdar S. Anything you can do, I can do better: can aptamers replace antibodies in clinical diagnostic applications?. Molecules. 2019;24(23):4377. doi: https://doi.org/10.3390/molecules24234377

109. Wang QL, Huang WX, Zhang PJ, Chen L, Lio CK, Zhou H, et al. Colorimetric determination of the early biomarker hypoxia-inducible factor-1 alpha (HIF-1α) in circulating exosomes by using a gold seed-coated with aptamer-functionalized Au@Au core-shell peroxidase mimic. Microchim Acta. 2020;187:1–1. doi: https://doi.org/10.1007/s00604-019-4035-z

110. Dalirirad S, Han D, Steckl AJ.Aptamer-based lateral flow biosensor for rapid detection of salivary cortisol. ACS Omega. 2020;5(51):32890– 98. doi: https://doi.org/10.1021/acsomega.0c03223

111. You M, Yang S, An Y, Zhang F, He P. A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. J Electroanal Chem. 2020;862:114017. doi: https://doi.org/10.1016/j.jelechem.2020.114017

112. Wang H, Chen H, Huang Z, Li T, Deng A, Kong J.DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta. 2018;184:219–26. doi: https://doi.org/10.1016/j.talanta.2018.02.083

113. Wang Y, Cui M, Jiao M, Luo X. Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum. Anal Bioanal Chem. 2018;410:5871–8. doi: https://doi.org/10.1007/s00216-018-1201-9

114. Ensafi AA, Khoddami E, Rezaei B. Aptamer@ Au-o-phenylenediamine modified pencil graphite electrode: a new selective electrochemical impedance biosensor for the determination of insulin. Colloids Surf B. 2017;159:47–53. doi: https://doi.org/10.1016/j.colsurfb.2017.07.076

115. Aslipashaki SN, Khayamian T, Hashemian Z. Aptamer based extraction followed by electrospray ionization-ion mobility spectrometry for analysis of tetracycline in biological fluids. J Chromatogr B. 2013;925:26–32. doi: https://doi.org/10.1016/j.jchromb.2013.02.018

116. Zhang X, Zhu S, Deng C, Zhang X. Highly sensitive thrombin detection by matrix assisted laser desorption ionization-time of flight mass spectrometry with aptamer functionalized core–shell Fe3O4@ C@ Au magnetic microspheres. Talanta. 2012;88:295–302. doi: https://doi.org/10.1016/j.talanta.2011.10.044

117. Mayol B, Qubbaj IZ, Nava-Granados J, Vasquez K, Keene ST, Sempionatto JR. Aptamer and Oligonucleotide-Based Biosensors for Health Applications. Biosensors. 2025;15(5):277. doi: https://doi.org/10.3390/bios15050277

118. Yu H, Zhu J, Shen G, Deng Y, Geng X, Wang L. Improving aptamer performance: key factors and strategies. Microchimica Acta. 2023;190(7):255. doi: https://doi.org/10.1007/s00604-023-05836-6

119. Jain R, Jain B, Al-Khateeb LA, Alharthi S, Ghoneim MM, Abdelrahman M, et al. Advances in green sample preparation methods for bioanalytical laboratories focusing on drug analysis. Bioanalysis. 2025;17(7):489–508. doi: https://doi.org/10.1080/17576180.2025.2481026

120. Protti M, Milandri E, Di Lecce R, Mercolini L, Mandrioli R. New trends in bioanalysis sampling and pretreatment: how modern microsampling is revolutionising the field. Adv Sample Prep. 2025;13:100161. doi: https://doi.org/10.1016/j.sampre.2025.100161

121. Chen WF. Integrating artificial intelligence with bioanalytical techniques for predictive modeling. J Bioanal Biomed. 2024;16(4):441.

122. Thurow K. Strategies for automating analytical and bioanalytical laboratories. Anal Bioanal Chem. 2023;415(21):5057–66. doi: https://doi.org/10.1007/s00216-023-04727-2

Article Metrics
9 Views 0 Downloads 9 Total

Year

Month

Related Search

By author names