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1. INTRODUCTION 
Sample pretreatment is an integral part of bioanalysis 

for the extraction of analytes from different matrices and their 
quantitation using analytical tools [1]. Biological matrices 
are often complicated due to the presence of endogenous 
(e.g., Proteins, lipids, or the target analyte’s metabolites) or 
exogenous chemicals (additives used in analysis) [2]. Besides, 
matrix components that co-elute with target analytes during 
chromatographic separation affected the mass spectrometry 
(MS) detection of the analyte’s response, either positively (ion 
enhancement impact) or negatively (ion suppression effect) [3]. 

Among the sample pretreatment methods available, 
protein precipitation is a straightforward and affordable 
method. The proteins in the sample are denatured by a high 

concentration of organic solvent (preferably acetonitrile) and 
eventually precipitate out of the sample by centrifugation [4]. 
Liquid–liquid extraction (LLE) is another commonly used 
pretreatment method, which involves the selection of two 
immiscible solvents for the extraction of the desired analyte. 
According to their partition coefficients, immiscible organic 
solvents separate the target analyte into the organic layer and 
can be extracted [5,6]. The advantage of this technique is that 
highly clean extracts with strong selectivity for the desired 
analyte can be produced with the careful selection of solvents, 
pH of the aqueous phase, polarity, and analyte solubility in the 
organic solvent. However, LLE suffers from certain limitations 
such as the use of large amounts of organic solvent, lack of 
automation, and time consumption [7]. Another important 
pretreatment method is solid phase extraction (SPE), which 
involves chemically separating the components of a sample by 
using chromatographic packing material, usually in cartridge-
type devices. The selection of a suitable SPE extraction sorbent 
depends upon the interaction between the sorbent and the 
analyte of interest. SPE generally retains materials by van der 
Waals forces (nonpolar interactions) [8]. The extraction steps of 
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analytical signals, leading to compromised data quality. As a 
result, modern sample preparation methods increasingly focus 
on minimizing matrix effects through improved extraction 
efficiency, selectivity, and compatibility with advanced 
analytical platforms like LC-MS/MS. 

This review focuses on the recent developments in 
novel pretreatment methods, covering their working principle, 
applications (mainly pharmaceutical uses), and recent updates. 
Much effort has been made to cover the maximum case studies 
that involve novel pretreatment methods for analyte extraction 
and hyphenated techniques for their detection. In addition, 
different matrices (blood, urine, saliva, and so on) treated with 
novel methods have been covered to understand their overall 
applicability. Besides, a comparative analysis of different novel 
methods has been performed to assess their overall performance 
based on critical parameters. Furthermore, a separate section 
dealing with recent trends in the bioanalytical pretreatment 
methods provides the innovative strategies being developed and 
explored in bioanalysis. The recent use of pretreatment methods 
for the separation of biomarkers and their diagnostic uses has 
also been covered.

2. NOVEL SAMPLE PRETREATMENT METHODS
Novel sample pretreatment methods are becoming 

more popular to overcome the limitations of traditional methods. 

SPE include conditioning, equilibration, sample load, washing, 
and elution [9]. SPE is widely employed in the LC-MS/MS 
applications to quantify molecules in biofluids [10]. 

Overall, the traditional pretreatment methods are time-
consuming, labor-intensive, and poorly suited for large as well 
as very small samples. Many conventional multistep procedures 
do not have adequate sensitivity, selectivity, and reliability. In 
addition, assays for metabolites or biomarker detection in clinical 
samples at very low concentrations face a similar set of challenges. 
In addition, improvements in sample preparation methods are 
increasingly focused on improving the clean-up procedure 
and exploring the possibility of automating, miniaturising, and 
improving their specificity [1]. Therefore, sample pretreatment 
has made significant progress in miniaturized and solvent-free 
extraction techniques, and faster separation methods designated 
as novel pretreatment methods [11]. A glimpse of the different 
available sample pretreatment methods is shown in Figure 1. 

Recent comprehensive reviews on bioanalytical 
sample preparation techniques emphasize that matrix effects 
remain one of the most significant challenges in achieving 
accurate and reproducible analytical results [12]. Biological 
matrices such as blood, plasma, urine, and tissues contain 
various endogenous substances—proteins, lipids, and salts—
that can interfere with the detection and quantification of 
target analytes. These interferences can suppress or enhance 

Figure 1. Overview of the traditional and novel sample pretreatment methods. 
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These methods are the modified versions of either SPE or LLE 
with the advantages of miniaturization, automation, and less time-
consuming with good efficiency. ICH Q2(R2) guideline emphasizes 
the integration of method validation within the broader analytical 
procedure lifecycle, aligning with ICH Q14. Pretreatment 
methods largely affect the limit of detection (LOD) and limit of 
quantitation (LOQ) of the analytical method and overall affect 
the sensitivity of the technology employed. A literature survey in 
the scientific database (PubMed) has been done for the last 10 
years and showed a surge in the publications using these novel 
methods (Fig. 2). Among them, solid phase microextraction 
(SPME) showed the highest usage. Another survey in terms of the 
application of these novel methods in diverse applications. The 
trend showed that environment and food analysis are among the 
top, followed by pharmaceutical and clinical applications (Fig. 
3). These surveys demonstrate the growing interest among the 
scientific community in novel methods to overcome the critical 
issues encountered in the traditional methods. 

This section deals with different novel methods 
along with their working principle and is complemented by 

pharmaceutical applications. Prominent case studies under 
each novel method have been briefly described. Finally, all 
the case studies collectively are summarized in tabular form 
(Table 1) based on the target analyte, novel methods, matrix 
type, recovery, and hyphenated methods used, along with their 
detection limits. 

2.1. Supported liquid extraction
SLE is a modified version of LLE in which the 

extraction is accomplished using a stationary phase, preferably 
inert diatomaceous earth [1], which gives solid support to divide 
the incompatible solvents in the SLE technique. In this method, 
samples are applied onto the plate with a brief suction pulse and 
then left to fully absorb the sorbent for a period. The extracting 
solvent is passed through the plate before being dried down, 
and the interfering matrix gets adsorbed to the solid substrate, 
and the solvent extracts the analyte. SLE offers several benefits 
as compared to conventional LLE, for instance, no emulsion 
formation, excellent extraction effectiveness, and automation 
compatibility [13]. In contrast to SPE, pre-deproteinization is 
not essential in SLE [14,15]. 

SLE is widely used in bioanalytical applications using 
different hyphenated tools such as liquid chromatography 
tandem MS (LC-MS/MS) and gas liquid chromatography 
tandem MS (GC-MS/MS), and is extensively used in drug 
metabolism, food, and environmental analysis. In addition, 
SLE is suitable for removing phospholipids, which frequently 
prevent the ionization of target components during MS analysis 
[16,17]. Zheng et al. [18] applied SLE in combination with 
UPLC-MS/MS for determining nine mental drugs in human 
plasma (100 µl). Analytes were loaded onto a 96-well SLE 
cartridge, and separation was done on Agilent Poroshell 120 
EC-C18 columns. Recovery of the analyte was found to be in 
the range of 53.11%–132.98% and the LOD was 0.02–0.25 
ng/ml. Similarly, Meunier et al. [19] have developed an LC-
MS/MS-based detection of aldosterone in human plasma (450 
µl). SLE was employed to extract the target analyte and was 
found to be faster and more convenient than the traditional 
methods (LLE and SPE) with a good LOD of 30–50 pmol/l. 
Another interesting study was conducted by Rositano et al. 
[15] for the simultaneous detection of psychostimulant drugs 
(methylamphetamine, methylenedioxymethamphetamine, and 
delta-9-tetrahydrocannabinol) in two biofluids (blood and oral 
fluid) of drivers using the LC-MS/MS technique. Target drugs 
were extracted using 96-well plates together with an internal 
standard, as well as elution solvent. The sample pretreatment 
method was found to be efficient with a recovery of 80% and a 
detection limit of 1–5 ng/ml. In addition, SLE has been exploited 
for diverse other analytes (benzodiazepine, eicosanoids and 
related metabolite, polycyclic hydrocarbon and its metabolites, 
alkaloids) in the biological matrices (plasma and urine) [20–24].

Overall, SLE offers more benefits than LLE and 
SPE due to the automation, low sample requirement, faster, 
minimal solvent waste, with good sensitivity. SLE is widely 
used in bioanalytical, food, and environmental testing due to 
its high recovery rates, reproducibility, and compatibility with 
automation platforms like 96-well plates. Technically, SLE 
simplifies workflows by eliminating the need for vigorous 

Figure 2. Trends of novel sample pretreatment methods in the scientific 
database (PubMed) in the last 10 years [till December 2024]. 

Figure 3. Applications of novel sample pretreatment methods in diverse areas 
based on the scientific database (PubMed). 
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in all phospholipids interacts strongly with the zirconium atoms 
functionalized on the surface of the particles, enabling selective 
retention [26,27].

Phospholipid removal plates have been found to 
have potential applications in the plasma extraction of several 
drugs that are used in various indications, such as asthma, 
allergic rhinitis, and autoimmune hepatitis. Nilsson et al. 
[28] have implemented phospholipid removal plates in the 
bioanalysis of budesonide and quantified using UPLC/MS/MS 
and achieved a good LOD of 24 pg/ml. The developed method 
was applied to compute various pharmacokinetic parameters. 
Another interesting study reported the selective extraction of 
(S)-enantiomers of metoprolol (β blocker) in blood samples 
using LC-MS/MS [29]. Samples were extracted from the 
biological matrix using phospholipid removal micro elution-
SPE plates, and eluates were reconstituted in acetonitrile with 
methyl benzyl isocyanate for chiral derivatization. The method 
offers maximum recovery (69.4%–78.7%) and a good LOQ of 
0.5 ng/ml along with minimal matrix effect. In addition, this 
pretreatment method has been widely used in various areas, 
viz. cosmetic products, pesticides, as well as forensic sciences 
[30–35]. 

Technically, these plates streamline workflows by 
combining protein precipitation and phospholipid filtration in 
a single step, making them compatible with 96-well formats 
and automated systems. However, their selectivity can vary 
depending on analyte chemistry, and some compounds may be 
unintentionally retained or co-eluted. Despite its outperforming 
traditional methods in phospholipid removal; however, all 
matrix effects in complex samples may not be fully eliminated. 
Besides, relatively higher cost and assay compatibility can limit 
its routine adoption in analytical laboratories.

2.3. Magnetic solid phase extraction (MSPE)
The complexities associated with traditional SPE 

methods, such as sorbent selection, isolation, and enrichment of 
the analyte, can be overcome by using magnetic nanoparticles 
(MNPs). The core of the nanoparticles comprises iron, nickel, 
cobalt, and their oxides, while the inorganic materials (such as 

mixing or phase separation, which are common in LLE. The 
process involves loading a pretreated aqueous sample onto the 
sorbent, allowing it to adsorb, and then eluting analytes with an 
organic solvent. This results in cleaner extracts with reduced 
matrix effects, making it ideal for LC-MS/MS applications. 
Nevertheless, SLE is less effective for highly polar or 
permanently ionized compounds, which may not partition well 
into the organic phase. Furthermore, the technique requires 
careful selection of sorbent type and solvent system based on 
analyte properties, and it may not be suitable for all matrices or 
analyte classes.

2.2. Phospholipid removal plate
A phospholipid removal plate is a specialized SPE 

device designed to selectively eliminate phospholipids from 
biological samples such as plasma and serum before analytical 
procedures like LC-MS. The plate contains a sorbent bed 
made of zirconia-coated silica particles, positioned between 
two filtration layers: an upper 5 µm frit and a lower 0.2 µm 
hydrophobic filter, which act as depth filters to maintain optimal 
flow rates and prevent clogging (Fig. 4).

The zirconium atoms on the silica surface act as 
Lewis acids due to their empty d orbitals, forming strong 
electron donor-acceptor complexes with the phosphate groups 
in phospholipids, which serve as Lewis bases. As the biofluid 
sample passes through the plate, phospholipids are selectively 
retained by the zirconia surface, while other components, 
such as proteins and metabolites, flow through unretained. 
This selective extraction significantly reduces matrix effects, 
enhances analyte recovery, and improves sensitivity and 
reproducibility in downstream analytical workflows [25]. 
Phospholipids are a major cause of ion suppression in blood and 
plasma analysis. To address this, Hybrid SPE precipitation plates 
have been developed wherein the plasma or serum samples 
are first treated with acetonitrile for protein precipitation, then 
passed through the Hybrid SPE precipitation plates packed bed 
for phospholipid removal. Structurally, phospholipids consist of 
a zwitterionic phosphonate moiety as the polar head group and 
two hydrophobic fatty acyl chains as tails. The phosphate group 

Figure 4. Mechanism of phospholipid removal plate-based extraction showing zirconia-coated silica 
sorbent with integrated filters enabling efficient flow that binds through Lewis acid-base interactions. 
(Adapted from Ahmad et al. [27]. 
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responsiveness of Fe3O4 nanoparticles. These hybrid materials 
exhibit excellent adsorption capacity and photocatalytic 
activity, making them effective for the removal and analysis 
of pharmaceutical contaminants such as acebutolol from 
aqueous environments. The amino-functionalized MIL-101(Cr) 
enhances light absorption and charge transfer, while the magnetic 
core facilitates rapid separation and reusability, supporting 
sustainable and high-throughput analytical workflows [41]. 

Asgharinezhad and Ebrahimzadeh [42] extracted 
nonsteroidal anti-inflammatory drugs, viz. naproxen, 
diclofenac, and ibuprofen from urine samples by the MSPE 
method. Good recovery of analytes was observed (85%–90%) 
with a LOD in the range of 0.007–2000 µg/ml, which indicates 
the high efficiency of the extraction method. A preclinical study 
conducted by Wang et al. [43] in which the bioactive compound 
puerarin was efficiently extracted with the MSPE method 
based on C18 magnetic silica nanoparticles in rat plasma, and 
its bioanalysis was performed by HPLC. Another interesting 
study on hair samples pretreatment by MSPE for simultaneous 
determination of elements, viz. Cr(III), Cu(II), Pb(II), and Zn(II) 
and quantified by inductively coupled plasma-optical emission 
spectrometry [44]. The method was found highly efficient with 
good recovery (85%–104.5%) and a detection limit of 0.01–
0.06 µg/ml, and can be suitable for trace element determination. 
Besides, the MSPE method has been extensively employed for 
the extraction of secondary metabolites of aflatoxins in food 
products, drug metabolites and phthalate detection in industrials 
and cosmetic products [45–50]. 

Overall, MSPE is a modern sample pretreatment 
method that employs functionalized magnetic nanoparticles 

silica, alumina, manganese oxide (IV), or graphene) are used 
for the surface coating. MNPs are distinguished by a large 
surface area, high sorption capacity, and good selectivity for 
analytes because of their small particle size, together with 
a shorter duration in the extraction process [36–39]. MSPE 
operates through a sequence of well-defined steps that leverage 
the unique properties of MNPs. The process begins with the 
dispersion of MNPs into a sample containing target analytes. 
These nanoparticles are engineered with surface functional 
groups that facilitate selective binding. During the adsorption 
phase, analytes interact with the nanoparticle surfaces primarily 
through hydrophobic and van der Waals interactions, as well 
as hydrogen bonding, electrostatic forces, or specific chemical 
affinities (Fig. 5). Once adsorption is complete, an external 
magnetic field is applied to perform magnetic separation, 
efficiently isolating the analyte-bound nanoparticles from the rest 
of the sample without the need for filtration or centrifugation. 
In the elution step, a suitable solvent is introduced to desorb the 
analytes from the nanoparticles, transferring them into a clean 
solution for downstream analysis such as LC-MS or inductively 
coupled plasma MS (ICP-MS). Finally, the sorbent regeneration 
step allows the magnetic nanoparticles to be washed and reused, 
making MSPE a cost-effective, rapid, and sustainable method for 
sample preparation [40].

Recent advancements in MSPE have focused on 
the integration of  metal-organic frameworks (MOFs)  with 
MNPs to enhance selectivity and efficiency in pharmaceutical 
analysis. A notable development involves the use of NH₂-MIL-
101(Cr)-based magnetic nanocomposites, which combine the 
high surface area and porosity of MOFs with the magnetic 

Figure 5. Illustration of the magnetic solid phase extraction process involving functionalized magnetic nanoparticles selectively 
capturing target analyte through adsorption, followed by magnetic separation, and elution. (Adapted from Plastiras et al. [39].
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silica monoliths, and so on, have been successfully used in 
MEPS devices to extract various groups of analytes [54,55].

MEPS is extensively used for the extraction of several 
drugs in biological fluids (blood, saliva, and urine) and their 
quantification with different analytical tools. Ferrone et al. 
[56] employed MEPS in the clinical study for the bioanalysis 
of ciprofloxacin and linezolid among pneumonia patients using 
the UHPLC-PDA technique. Good recovery (92.4%–97.4%) 
of target analytes was achieved with a detection limit of 0.007 
and 0.004 ng/ml, respectively. Compared with the conventional 
SPE method, MEPS was found to be simpler, low-cost, requires 
a small sample volume (10 µl), as well as reduced sampling 
time. In another reported study [57], simultaneous extraction 
of the enantiomeric form (-R) and (-S) of metoprolol in blood 
plasma and saliva samples was accomplished with the help of 
the MEPS method. The recovery of the study was in the range 
of 93.1%–97.8% and bioanalysis was performed using LC-MS/
MS with high sensitivity. Besides, MEPS has been used for the 
detection of drugs of abuse such as opiates and cannabis as well 
as CNS-acting drugs in blood samples using hyphenated tools 
[58–63]. This pretreatment method offers rapid and effective 
clean up sample preparations, satisfactory recovery, and 
minimum matrix effect.

In a nutshell, MEPS is a miniaturized, syringe-
based solid-phase extraction technique that integrates sample 
extraction, cleanup, and preconcentration into a single, reusable 
device. It offers significant analytical advantages such as 
reduced sample and solvent consumption, high-throughput 
capability, and compatibility with automation and direct 

to selectively capture and concentrate target analytes from 
complex matrices such as biological fluids, environmental 
samples, and food extracts. It offers notable analytical benefits, 
including high selectivity, rapid processing, and reduced 
solvent consumption, making it particularly effective for trace-
level detection. From a technical standpoint, MSPE involves 
dispersing MNPs into the sample, allowing analytes to bind 
to their surfaces, and then using an external magnet to isolate 
the analyte-bound particles, streamlining the workflow and 
enabling easy automation. However, its performance can be 
hindered by nanoparticle aggregation, reduced efficiency in 
viscous or particulate-rich samples. In addition, there is a need 
for precise surface functionalization to maintain specificity and 
stability across diverse analyte types [51].

2.4. Microextraction by packed sorbent (MEPS) 
The miniaturisation of SPE modified into MEPS, 

in which the sorbent is integrated into the syringe; therefore, 
a separate robotic accessory is not required. MEPS may link 
online to different chromatographic systems (capillary, gas 
chromatography, and liquid chromatography) and can be fully 
automated [52]. MEPS comprises of syringe and barrel insert 
and needle (BIN) to perform sample extraction, and cleanup 
(Fig. 6). Thermo-packed sorbent is filled in a little tube of 
BIN, and target analytes are eluted in sequential phases after 
the syringe feeds the material through this BIN, enabling 
sample purification or speciation [53]. In addition, various 
commercial sorbents, including new varieties of graphitic 
sorbent, polyamide, polyaniline nanowires, functionalized 

Figure 6. Schematic representation of the workflow of the microextraction by packed sorbent involving selective analyte retention, washing, elution, and 
cleaning steps. (Adapted from Kabir et al. [50]. 
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samples. Besides, SPME has been employed extensively for the 
extraction of different analytes [72–75]. 

SPME is a solvent-free, miniaturized sample 
preparation technique that integrates sampling, extraction, 
and preconcentration into a single step using a coated fiber or 
arrow device. It is widely used for volatile and semi-volatile 
compounds in environmental, food, and clinical analyses due 
to its simplicity, high sensitivity, and compatibility with GC 
and LC systems. Technically, SPME operates via adsorption 
or absorption of analytes onto a polymer-coated fiber, either 
through headspace or direct immersion modes, and is easily 
automated for high-throughput workflows. However, its 
limitations include lower mechanical stability of traditional 
fibres, potential phase saturation in complex matrices, and 
sensitivity to solvent swelling, which can affect reproducibility 
and fiber longevity. Nevertheless, the development of SPME 
arrow has addressed some of these issues by offering larger 
sorption phases and improved robustness [76].

2.6. Deep eutectic solvent (DESs)
Deep eutectic solvents are increasingly recognized 

as an innovative and sustainable alternative for sample 
pretreatment of biofluids. DESs offer customizable 
physicochemical properties, low toxicity, and high extraction 
efficiency. Their ability to disrupt complex biological matrices 
makes them ideal for isolating small molecules, metabolites, 
and biomarkers from biofluids such as urine, plasma, and 
saliva. DESs facilitate protein precipitation and phase 
separation, enabling cleaner extracts as well as preserving 
thermolabile compounds [77].

Compared to conventional organic solvent-based 
liquid–liquid extraction, the DES-based approach provided 
superior selectivity, reduced matrix effects, and minimized 
environmental impact. The DES facilitated efficient 
solubilization of hydrophobic analytes while maintaining 
sample integrity, making it a promising alternative for clinical 
and forensic bioanalysis. The advantages of DESs in biofluid 
pretreatment include high analyte recovery, low matrix 
interference, and eco-friendly profiles. For instance, DES, 
composed of choline chloride and phenol (1:2 molar ratio), 
has been explored for extracting steroid hormones from human 
urine. The developed method achieved good analyte recoveries 
(85%–98%) for testosterone, estradiol, and progesterone [78].

Finally, natural DESs derived from food-grade 
components have been explored for metabolomics and therapeutic 
drug monitoring. These developments facilitate DESs as key 
enablers of green chemistry in bioanalytical science, with strong 
potential for industrial-scale adoption. However, their practical 
use is not without challenges: some formulations may still involve 
toxic precursors, and their performance can be inconsistent due to 
variability in viscosity, solubility, and stability [79]. These factors 
necessitate careful formulation and validation, particularly when 
used in sensitive analytical or biological systems. 

2.7. Solidified droplet microextraction (SDME)
Solidified droplet microextraction has emerged as 

a novel and efficient bioanalytical pretreatment method for 
biofluids over the past few years. This technique involves 
the use of a small volume of organic solvent suspended as a 

coupling to LC-MS or GC-MS systems. Technically, MEPS uses 
a small amount of sorbent (1–4 mg) packed within a syringe or 
barrel insert, allowing for efficient analyte interaction through 
repeated aspiration cycles, followed by washing and elution 
steps all within microliter volumes. Recent advancements in 
sorbent materials for MEPS are the integration of molecularly 
imprinted polymers (MIPs), which act as synthetic receptors 
with high affinity for specific target molecules. These MIPs 
are tailored through imprinting techniques that create selective 
binding sites complementary in shape and functionality to the 
analyte, enabling precise extraction even in trace concentrations. 
Despite several stellar benefits of MEPS, its performance is 
highly dependent on sorbent selection, and manual operation in 
flow rate control can introduce variability due to user-dependent 
handling. In addition, the issue of sorbent degradation over 
multiple cycles can affect reproducibility and sensitivity [64].

2.5. Solid phase microextraction
Solid phase microextraction  is a solvent-free 

technique used for extracting analytes from biofluids such as 
blood and plasma. It employs a sorbent-coated fibre or probe 
that is directly exposed to the biological matrix, allowing 
analytes to partition between the biofluid and the coating 
based on equilibrium dynamics. Biocompatible SPME devices 
typically use C18-bonded porous silica particles embedded in 
a nonswelling binder, which resists fouling and enables direct 
in vivo or in vitro sampling. This simplifies sample cleanup, 
stabilises labile analytes, and reduces preparation steps, making 
it ideal for pharmacokinetic and metabolomic studies [65,66]. 
A key feature of SPME is the use of fused silica fibres coated 
with stationary phases of varying thicknesses and polarities, 
offering high selectivity for different analytes. The efficiency 
of extraction depends on factors such as ionic strength, contact 
time, and temperature [67,68]. SPME can be performed in three 
distinct modes: (a) Direct mode, where the fiber is submerged 
in the aqueous sample and analytes transfer directly into the 
coating, often aided by agitation with a small stirring bar; 
(b)  Headspace mode, where analytes are extracted from the 
gas phase above the sample to protect the fiber from matrix 
interferences like proteins; and (c) Membrane protection mode, 
where a selective membrane separates the sample from the fiber, 
allowing analytes to pass while blocking interfering substances. 
The membrane primarily serves to safeguard the fibre during 
extraction.

Gorynski et al. [69] have developed LC-MS/MS 
for the determination of rocuronium bromide and tranexamic 
acid in blood plasma (0.8 ml). Samples were extracted with a 
SPME containing a weak cation exchange thin film used as the 
sorbent and elution solvents for effective cleanup. Similarly, the 
determination and screening of cannabinoids in brain samples 
using polyamide-based SPME membrane coupled with LC-
MS-APCI were conducted by Yang and Xie [70]. This method 
has resulted in the maximum recovery (100 %) of cannabinoids. 

Another interesting study reported [71] using a novel 
SPME fibre coated with Fe304/CU3(BTC)2 metal-organic 
framework as a sorbent. This unit of SPME connects online with 
the HPLC unit for the determination and screening of several 
anti-inflammatory drugs (ibuprofen, diclofenac, naproxen, 
and nalidixic acid) from human urine, serum, and plasma 
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2.8.1. Immunosorbent
In this technique, antibodies have been immobilised 

on a solid phase, also known as immunoaffinity extraction 
sorbents. It offers good selectivity and high affinity due to 
the antigen–antibody interaction. The robust procedures 
allow one-step selective extraction and enrichment of specific 
compounds. Solid support is decorated with antibodies and 
packed in an SPE cartridge to create the immunosorbents. The 
formation of the antibody–antigen complex during this step is 
predominantly influenced by electrostatic forces. Desorption 
will only take place by significantly altering the experimental 
conditions due to the high energies of the biological 
interactions. However, matrix materials and sample additives 
can have an impact on analyte-antibody interactions, which 
can also reduce extraction recoveries [84]. Immunocapture 
methods  are gaining renewed attention in pharmaceutical 
and biomedical analysis due to their high specificity and 
adaptability for complex biological matrices. These techniques 
utilise antibodies or antibody fragments to selectively bind 
and isolate target molecules such as therapeutic proteins, 
biomarkers, or drug metabolites. When coupled with advanced 
analytical platforms like LC-MS, immunocapture enables 
sensitive and selective quantification, particularly useful 
in pharmacokinetic and pharmacodynamic studies. Recent 
innovations have focused on hybrid immunocapture LC-MS 
workflows that combine ligand-binding specificity with mass 
spectrometric sensitivity, streamlining assay development and 
improving throughput. These methods are especially valuable 
in early-stage drug development, where rapid and reliable 
bioanalytical tools are essential [85].

Immunosorbent-based extraction methods largely 
find their application in the screening of biomarkers for disease 
diagnosis and their progression [86,87]. For instance, human 
chorionic gonadotropin, a biomarker, has been successfully 
extracted and analysed by Johannsen et al. [88] using the 
combination of paper-bound streptavidin as an anchor for 
biotinylated antibodies and quantified by LC-MS. Similarly, 
cytokeratin fragments are a high-potential biomarker in many 
epithelial cell cancers. A high-performance immunosorbent-
based biosensor technique was employed for the extraction 
of this biomarker [89]. It involves the affinity of an antigen 
towards antibodies mechanism using Photographic paper/
Ag ink/antibody as a capturing plate and [Fe (CN)6]

3-/4-/KCl 
solution as a solvent. In addition, a rapid colourimetry sensing 
system using competitive enzyme-linked immunosorbent 
assay (ELISA) on a microfluidic paper-based analytical device 
has been developed for the detection and determination of 
ketamine in oral fluid (3 µl) using a coated ketamine antibody 
[90].

2.8.2. Molecular imprinted polymers
MIP is a selective sorbent for SPE, which has gained 

popularity recently for selective extraction of analytes [91]. 
Functional polymers were grafted (Fig. 7) on the surface 
of silica particles and then cross-linked with the templates 
sustained by dipole interactions or hydrogen bonding [92]. 
MIPs are of tremendous interest because they can be produced 

droplet in the sample matrix, which solidifies under controlled 
conditions to facilitate analyte extraction. SDME is particularly 
advantageous for biofluid analysis due to its minimal solvent 
consumption, high enrichment factors, and compatibility with 
downstream analytical techniques such as GC-MS and LC-
MS. The method is especially effective for isolating trace-
level analytes from complex matrices such as urine, plasma, 
and saliva, offering a green and cost-effective alternative to 
traditional liquid–liquid extraction [80].

The integration of SDME with DESs represents a 
significant advancement in bioanalytical sample preparation. It 
combines the environmental benefits of green solvents with the 
operational simplicity of microextraction techniques. Recent 
developments in droplet microfluidics have further refined 
this method, enabling precise control over droplet formation, 
manipulation, and solidification [81]. These innovations have 
expanded the applicability of SDME to high-throughput clinical 
diagnostics, therapeutic drug monitoring, and metabolomics. A 
recent study [82] highlights the application of dispersive liquid–
liquid microextraction based on the solidification of floating 
organic droplets for the extraction of different pharmaceutical 
residues (ibuprofen, naproxen, and diclofenac) from human 
urine. The researchers utilized a DES as the extraction medium, 
which was solidified post-extraction to isolate the analytes. The 
developed method showed enhanced extraction efficiency with 
good analyte recovery (88% to 95%). Besides, this approach 
also reduced matrix interference, leading to improved sensitivity 
and reproducibility in mass spectrometric analysis.

Overall, SDME is a minimalist, eco-conscious 
sample preparation technique that uses a single microdroplet of 
organic solvent either suspended directly in the sample or in its 
headspace to extract and preconcentrate analytes. Its analytical 
appeal lies in its simplicity, low cost, and minimal solvent 
usage, aligning well with green chemistry principles. Despite its 
advantages, SDME faces limitations such as droplet instability, 
slow extraction kinetics, and limited surface area, which can 
affect reproducibility and sensitivity. To address these issues, 
solidification of floating organic drop microextraction has been 
developed by stabilizing the droplet and improving recovery 
[82].

2.8. Affinity sorbent extraction
The most current developments in the field of 

sample preparation include frameworks modified with various 
biomolecules (such as proteins, nucleobases, amino acids, 
aptamers, and so on) as ligands to create affinity-based sorbents. 
These affinity materials’ synthesis and inclusion methods, as well 
as their use as sorbents for the selective extraction of molecules 
and the cleanup of intricate samples. These sorbents have been 
used in sample treatment directly, or they have been specifically 
created to satisfy the needs of analytical applications [83]. 
Immunoextraction, molecular imprinted polymer, and aptamers 
are the methods that work on the principle of affinity sorbent 
extraction. The literature survey revealed that the application 
of the affinity sorbent extraction methods is primarily in the 
diagnosis of diseases by detecting the biomarkers in the blood 
samples. Representative case studies have been summarized in 
Table 2.
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2.8.3. Aptamers
Aptamers are synthetic, single-stranded 

oligonucleotides that are short (up to 110 base pairs), fold 
into distinctive shapes with high specificity. Aptamers use 
conformational complementarity to identify and bind their 
target. Furthermore, adjustments in the buffering system (salt 
composition and ionic strength) cause the release of the bound 
target molecules. Aptamers also aid in reducing the utilization 
of research animals, unlike antibodies, which frequently need 
animals for both initial discovery and manufacturing. Finally, 
SELEX (Systematic Evolution of Ligands by Exponential 
Enrichment) can be used to create specific aptamers [105] 
for a given target analyte, as shown in (Fig. 8). Aptamer 
functionalized materials (AFMs) are created by immobilizing 
aptamers on a solid support using a linking agent (linker). 
Compared to free aptamers, AFMs have higher chemical, 
biological, and mechanical stability in addition to their intrinsic 
high selectivity and strong affinity [106]. The stellar benefits 
of aptamers, such as high thermal stability, tailored specificity, 
good affinity, and scalability of production, have resulted in 
large-scale use in rapid diagnostic applications [107]. Besides, 
they can be explored in various immunoassays such as ELISA, 
western blot, immunohistochemistry, and flow cytometry in 
biomedical research and clinical diagnostic applications [108]. 

Hypoxia-inducible factor-1 (HIF-1α) is a transcription 
factor that has been proven to be widely involved in hypoxia 
metabolism and has developed into an essential regulator of 
myocardial injury. A highly sensitive colorimetry technique 
has been created to measure HIF-1α in a circulating rat serum 
exosome, which is an early indicator for myocardial infarction. 
Wang et al. [109] investigated the growth of gold nanospheres 
functionalized with HIF-1α binding aptamer using seed-mediated 
culture. Na2HPO4, citric acid, H2O2, and TMB (coloring agent) 
were used as solvents in the detection and extraction of HIF-1α 
biomarker in 50 µl of serum sample. This method was able to offer 
good recovery (≥ 80%) of biomarkers, and the lowest LOD was 
found to be 0.2 ng/l. Dalirirad et al. [110] reported the detection 

more cheaply, have greater chemical and physical stability, and 
can be reused. However, molecular imprinting takes a long time 
and can have issues like heterogeneous imprinting, whereas 
macromolecule imprinting is challenging [93–95].

Several studies have reported for the use of MIPs-
based extraction procedures and be highly robust, chemically 
stable, have less extraction time, and have high selectivity [96]. 
Magnetic multiwalled carbon nanotubes have been developed by 
Madrakian et al. [97] via synthetic amidoamine as the monomer 
and naproxen as the template. This method has been used for 
the bioanalysis of naproxen in human urine and detected by 
spectrofluorometric methods. Yang et al. [98] have performed 
a test on a simple Pickering emulsion polymerization method 
used to prepare bisphenol A imprinted polymer microspheres 
and used for the extraction from the human urine sample. 
Similarly, several analytes have also been extracted by MIPs in 
different biological matrices with good [99–103]. 

MIPs are synthetic materials engineered to mimic 
natural molecular recognition systems, such as antibodies, 
by creating highly specific binding sites tailored to a target 
molecule. Their appeal lies in their robustness, chemical 
stability, and adaptability across various formats, making 
them valuable in applications such as sensors, separation, drug 
delivery, and environmental monitoring. Technically, MIPs 
are formed by polymerizing functional monomers around 
a template molecule, which is later removed to leave behind 
complementary cavities. This lock-and-key mechanism enables 
selective recognition even in complex matrices. However, a few 
challenges associated with MIPs are template removal, limited 
binding site accessibility, and reduced performance in aqueous 
environments due to disrupted noncovalent interactions. In 
addition, their commercial translation is hindered by difficulties 
in reproducibility, scalability, and integration into real-world 
devices. Finally, the innovative application of conducting 
polymer-based MIPs and stimuli-responsive designs is helping 
bridge the gap between laboratory research and practical 
deployment [104].

Figure 7. Mechanistic understanding of molecular imprinted polymer, where functional monomers are polymerized around a template 
molecule and subsequently removed to create selective binding sites complementary to the target analyte. (Adapted from Sajini and Mathew 
[95]. 
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3. RECENT TRENDS IN BIOANALYTICAL 
PRETREATMENT METHODS

Bioanalytical laboratories are increasingly prioritizing 
green sample preparation methods to align with sustainability 
goals and reduce environmental impact. In addition, bioanalytical 
pretreatment methods for biofluids have undergone a significant 
transformation, driven by the need for higher sensitivity, 
sustainability, and automation. For instance, solvent-free or 
solvent-reducing techniques such as microextraction and 
direct chromatographic methods that eliminate or minimize the 
need for hazardous solvents. The integration of biocompatible 
materials, miniaturized devices, and multitarget extraction 
systems—capable of isolating diverse analytes in a single 
step—further supports eco-friendly practices [119].

In drug analysis, green sample preparation is gaining 
traction through innovations that combine sustainability with 
high analytical performance, reflecting a broader commitment 
to environmentally responsible science. Techniques such as 
solidified droplet microextraction, DESs, and natural DESs 
are replacing traditional solvent-intensive methods. These 
approaches reduce environmental impact, minimize sample 
volume requirements, and improve analyte stability, aligning 
with sustainability goals and decentralized healthcare models. 
Similarly, the development of advanced microextraction 
strategies like dispersive liquid–liquid microextraction, 
hollow fiber liquid-phase microextraction, and electro-
membrane extraction offers improved analyte recovery, 
reduced solvent usage, and compatibility with high-throughput 
workflows. Microsampling technologies such as volumetric 
absorptive microsampling, microneedle-based sampling, and 
dried blood spot methods are also gaining huge attraction 
among pharmaceutical scientists. These technologies enable 
decentralized and offer minimally invasive sample collection 
while maintaining analyte stability [50,120]. 

In recent years, a major innovation has been 
the integration of  artificial intelligence (AI) and  online 
automation  into bioanalytical workflows [121]. AI is being 
used to optimize sample processing, predict analyte behavior, 
and enhance data interpretation, particularly in metabolomics 

of cortisol (stress biomarker) using duplex deoxyribonucleic acid 
(DNA) aptamer conjugated to the surface of gold nanoparticles by 
Au-S bonds as the sensor probe in a lateral flow assay. Similarly, 
the aptamer method of extraction is widely used in the diagnosis 
of biomarkers for diseases like cancer, diabetes, and diseases 
related to the central nervous system and analytical application in 
biological samples reported in studies [111–117]. 

Aptamers are short, single-stranded DNA or RNA 
molecules selected through the SELEX process for their 
ability to bind specific targets with high affinity and specificity, 
offering a promising alternative to antibodies in diagnostics, 
therapeutics, and biosensing. Their key analytical advantages 
include low immunogenicity, ease of chemical synthesis, 
and the ability to function under a wide range of conditions, 
making them ideal for applications in complex biological 
environments. Technically, aptamers can be engineered and 
modified post-SELEX to enhance stability, binding strength, 
and resistance to nucleases, with strategies such as truncation, 
multivalent integration, and chemical modification improving 
their performance. However, aptamers face notable limitations: 
they are prone to rapid degradation in biological fluids, often 
exhibit poor in vivo stability, and their small size leads to fast 
renal clearance. In addition, the SELEX process can be labor-
intensive and may yield aptamers with suboptimal binding 
characteristics, requiring further optimization to ensure 
reproducibility and clinical viability [118].

In summary, all the novel sample pretreatment methods 
are found to offer stellar benefits of automation, good recovery, 
and faster cleanup (Table 3). However, they differ in terms of 
their versatile application and cost-effectiveness. Among all, 
immunosorbents and aptamers were found to be relatively 
costly due to frequent changes in the sorbent and have very 
specific applications in biomarker studies. On the other hand, 
other novel methods possess wide applications in drug analysis 
and are found to be less costly. Despite several advantages, there 
are some associated limitations, for instance, clogging of the 
sorbent, carryover effect, issues about hydrophobic analytes, 
template bleeding, and so on. However, these limitations have 
been overcome by applying innovative interventions in the 
pretreatment procedure to some extent. 

Figure 8. Representation of aptamer-based recognition mechanism, binding to the target, and subsequently target release. (Adapted from 
Mayol et al. [117]. 
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transformative role in pharmaceutical bioanalysis, particularly in 
the extraction of drugs and biomarkers from complex biological 
matrices such as plasma, serum, and urine. These innovative 
techniques are designed to address the persistent challenges of 
matrix effects, low recovery, and labor-intensive workflows that 
are common in conventional sample preparation methods.

A central focus of the review is the working principles 
of various emerging techniques, including SPME, MSPE, 
and novel sorbent-based methods such as immunosorbents 
and aptamer-functionalized materials. These methods are 
evaluated not only for their analytical performance but also for 
their compatibility with miniaturization and automation, two 
critical factors for high-throughput pharmaceutical analysis. 
The review systematically compiles case studies that detail the 
analytical parameters of these methods, such as recovery rates, 
LOD, and the detection techniques employed (e.g., LC-MS/
MS, GC-MS, and HPLC). Immunosorbents and aptamers have 
shown exceptional promise in clinical diagnostics due to their 

and personalized medicine. Automation technologies such as 
robotic liquid handlers and online SPE systems are streamlining 
sample preparation, improving reproducibility, and enabling 
high-throughput analysis [122]. These systems not only reduce 
human error but also significantly increase sample throughput, 
as compared to manual methods. Predictive analytics and real-
time monitoring are also being incorporated to support adaptive 
trial designs and faster decision-making in clinical research. 

Overall, the adoption of green sampling technologies 
together with the convergence of AI and automation not only 
reduces waste and energy consumption but also enhances 
analytical efficiency. These developments have a significant 
impact in making bioanalytical science more accessible, eco-
conscious, and adaptable to modern healthcare needs. 

4. CONCLUSION
The present review comprehensively explores the 

landscape of novel sample pretreatment methods and their 

Table 3. Comparative analysis of different novel sample pretreatment methods.

Novel pretreatment 
method 

Miniaturization Automation Cleanup 
speed

Recovery Matrix 
effect

Cost Application Reusable Limitation

SLE Yes Yes Good Not 
satisfactory

Yes Medium 
cost

Versatile One time 
use

Single use 
consumable 
requirement

PRP Yes Yes Good Satisfactory No Low 
cost

Versatile Reusable Limitations for 
Hydrophobic analyte

MSPE Yes Yes Fast Satisfactory No Low 
cost

Versatile Reusable -Set magnetic 
beads apart from 
other methods 

of sample isolation, 
which might 
have different 
protocols for different 
types of samples.

MEPS Yes Yes Fast Satisfactory No High 
cost

Versatile Reusable Clogging of Sorbent, 
large volume sample 
performing problem, 
& carry over effect

SPME Yes Yes Fast Satisfactory No Low 
cost

Versatile Reusable Low effectiveness of 
process due to small 
amount of PDMS 
coated on fiber 

IMMUNOSORBENT Yes Yes Time 
consuming

Satisfactory No High 
cost

Specific One time 
use

Animal requirement, 
specific antigen 
require, time 
consuming, & risk of 
cross reactivity

MIPS Yes No Fast Satisfactory No Medium 
cost

Specific Reusable Possible template 
bleeding, sometimes 
tedious synthesis 
procedures, & 
problematic application 
to aqueous samples.

APTAMERS Yes No Fast Satisfactory No Medium 
cost

Specific One time 
use

Susceptible to 
nuclease degradation, 
limited building block 
diversity, PCR bias in 
SELEX method



	 Haneef and Mohammed / Journal of Applied Pharmaceutical Science 2025: Article in Press	 023

Online F
irst

using LC-MS/MS. Analyst. 2014;139(10):2265–76. doi: https://doi.
org/10.1039/C4AN00094C 

2.	 Singleton C. Recent advances in bioanalytical sample preparation for 
LC–MS analysis. Bioanalysis. 2012;4(9):1123–40. doi: https://doi.
org/10.4155/bio.12.73 

3.	 Kole PL, Venkatesh G, Kotecha J, Sheshala R. Recent advances in 
sample preparation techniques for effective bioanalytical methods. 
Biomed Chromatogr. 2011;25(1‐2):199–217. doi: https://doi.
org/10.1002/bmc.1560 

4.	 van de Merbel N. Sample preparation for LC-MS bioanalysis of 
proteins. In: Li W, Jian W, Fu Y, editors. Sample preparation in LC-MS 
bioanalysis. John Wiley & Sons, Inc; 2019. 304–18 pp. doi: https://
doi.org/ HYPERLINK “https://doi.org/10.1002/9781119274315.
ch24”10.1002/9781119274315.ch24

5.	 Mulvana DE. Critical topics in ensuring data quality in bioanalytical 
LC–MS method development. Bioanalysis. 2010;2(6):1051–72. doi: 
https://doi.org/10.4155/bio.10.60 

6.	 Aubry AF. LC–MS/MS bioanalytical challenge: ultra-high 
sensitivity assays. Bioanalysis. 2011;3(16):1819–25. doi: https://doi.
org/10.4155/bio.11.166 

7.	 Zhao L, Lucas D, Long D, Richter B, Stevens J. Multi-class multi-
residue analysis of veterinary drugs in meat using enhanced matrix 
removal lipid cleanup and liquid chromatography-tandem mass 
spectrometry. J Chromatogr A. 2018;1549:14–24. doi: https://doi.
org/10.1016/j.chroma.2018.03.033 

8.	 Vaghela A, Patel A, Patel A, Vyas A, Patel N. Sample preparation in 
bioanalysis: a review. Int J Sci Technol Res. 2016;5(05):6–10. 

9.	 Côté C, Bergeron A, Mess JN, Furtado M, Garofolo F. Matrix effect 
elimination during LC–MS/MS bioanalytical method development. 
Bioanalysis. 2009;1(7):1243–57. doi: https://doi.org/10.4155/
bio.09.117 

10.	 Lahaie M, Mess JN, Furtado M, Garofolo F. Elimination of LC–MS/
MS matrix effect due to phospholipids using specific solid-phase 
extraction elution conditions. Bioanalysis. 2010;2(6):1011–21. doi: 
https://doi.org/10.4155/bio.10.65 

11.	 Hyötyläinen T. Novel sample extraction and chromatographic 
techniques in environmental analysis. LCGC Eur. 2009;22(4):172–9. 

12.	 Ingle RG, Zeng S, Jiang H, Fang WJ. Current developments of 
bioanalytical sample preparation techniques in pharmaceuticals. 
J Pharm Anal. 2022;12(4):517–29. doi: https://doi.org/10.1016/j.
jpha.2022.03.001 

13.	 Zhang Y, Cao H, Jiang H. Supported liquid extraction versus 
liquid–liquid extraction for sample preparation in LC–MS/MS-
based bioanalysis. Bioanalysis. 2013;5(3):285–8. doi: https://doi.
org/10.4155/bio.12.335 

14.	 Svanström C, Hansson GP, Svensson LD, Sennbro CJ. Development 
and validation of a method using supported liquid extraction for 
the simultaneous determination of midazolam and 1′-hydroxy-
midazolam in human plasma by liquid chromatography with tandem 
mass spectrometry detection. J Pharm Biomed Anal. 2012;58:71–7. 
doi: https://doi.org/10.1016/j.jpba.2011.09.015 

15.	 Rositano J, Harpas P, Kostakis C, Scott T. Supported liquid 
extraction (SLE) for the analysis of methylamphetamine, 
methylenedioxymethylamphetamine and delta-9-
tetrahydrocannabinol in oral fluid and blood of drivers. Forensic 
Sci Int. 2016;265:125–30. doi: https://doi.org/10.1016/j.
forsciint.2016.01.017 

16.	 Sauve EN, Langødegård M, Ekeberg D, Øiestad AML. Determination 
of benzodiazepines in ante-mortem and post-mortem whole blood 
by solid-supported liquid–liquid extraction and UPLC–MS/MS. J 
Chromatogr B. 2012;883:177–88. doi: https://doi.org/10.1016/j.
jchromb.2011.10.033 

17.	 Wu J, Lu J, Wilson C, Lin Y, Lu H. Effective liquid–liquid 
extraction method for analysis of pyrethroid and phenylpyrazole 
pesticides in emulsion-prone surface water samples. J Chromatogr 
A. 2010;1217(41):6327–33. doi: https://doi.org/10.1016/j.
chroma.2010.08.004 

high specificity and binding affinity, making them ideal for the 
selective extraction of biomarkers. Despite their advantages, 
the widespread adoption of these novel methods in routine 
pharmaceutical workflows is currently limited by higher initial 
costs and the need for specialized materials or instrumentation. 
However, ongoing research and technological advancements 
are steadily reducing these barriers, paving the way for broader 
implementation.

In a nutshell, the review underscores that while 
traditional methods still hold value, the integration of novel 
pretreatment techniques is essential for improving the 
efficiency, sensitivity, and reliability of pharmaceutical assays. 
These advancements are expected to significantly influence the 
future of bioanalytical workflows, especially as the demand for 
personalized medicine and rapid diagnostics continues to grow.
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