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1. INTRODUCTION concentration of organic solvent (preferably acetonitrile) and

Sample pretreatment is an integral part of bioanalysis
for the extraction of analytes from different matrices and their
quantitation using analytical tools [1]. Biological matrices
are often complicated due to the presence of endogenous
(e.g., Proteins, lipids, or the target analyte’s metabolites) or
exogenous chemicals (additives used in analysis) [2]. Besides,
matrix components that co-elute with target analytes during
chromatographic separation affected the mass spectrometry
(MS) detection of the analyte’s response, either positively (ion
enhancement impact) or negatively (ion suppression effect) [3].

Among the sample pretreatment methods available,
protein precipitation is a straightforward and affordable
method. The proteins in the sample are denatured by a high
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eventually precipitate out of the sample by centrifugation [4].
Liquid-liquid extraction (LLE) is another commonly used
pretreatment method, which involves the selection of two
immiscible solvents for the extraction of the desired analyte.
According to their partition coefficients, immiscible organic
solvents separate the target analyte into the organic layer and
can be extracted [5,6]. The advantage of this technique is that
highly clean extracts with strong selectivity for the desired
analyte can be produced with the careful selection of solvents,
pH of the aqueous phase, polarity, and analyte solubility in the
organic solvent. However, LLE suffers from certain limitations
such as the use of large amounts of organic solvent, lack of
automation, and time consumption [7]. Another important
pretreatment method is solid phase extraction (SPE), which
involves chemically separating the components of a sample by
using chromatographic packing material, usually in cartridge-
type devices. The selection of a suitable SPE extraction sorbent
depends upon the interaction between the sorbent and the
analyte of interest. SPE generally retains materials by van der
Waals forces (nonpolar interactions) [8]. The extraction steps of
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SPE include conditioning, equilibration, sample load, washing,
and elution [9]. SPE is widely employed in the LC-MS/MS
applications to quantify molecules in biofluids [10].

Overall, the traditional pretreatment methods are time-
consuming, labor-intensive, and poorly suited for large as well
as very small samples. Many conventional multistep procedures
do not have adequate sensitivity, selectivity, and reliability. In
addition, assays for metabolites or biomarker detection in clinical
samples at very low concentrations face a similar set of challenges.
In addition, improvements in sample preparation methods are
increasingly focused on improving the clean-up procedure
and exploring the possibility of automating, miniaturising, and
improving their specificity [1]. Therefore, sample pretreatment
has made significant progress in miniaturized and solvent-free
extraction techniques, and faster separation methods designated
as novel pretreatment methods [11]. A glimpse of the different
available sample pretreatment methods is shown in Figure 1.

Recent comprehensive reviews on bioanalytical
sample preparation techniques emphasize that matrix effects
remain one of the most significant challenges in achieving
accurate and reproducible analytical results [12]. Biological
matrices such as blood, plasma, urine, and tissues contain
various endogenous substances—proteins, lipids, and salts—
that can interfere with the detection and quantification of
target analytes. These interferences can suppress or enhance

analytical signals, leading to compromised data quality. As a
result, modern sample preparation methods increasingly focus
on minimizing matrix effects through improved extraction
efficiency, selectivity, and compatibility with advanced
analytical platforms like LC-MS/MS.

This review focuses on the recent developments in
novel pretreatment methods, covering their working principle,
applications (mainly pharmaceutical uses), and recent updates.
Much effort has been made to cover the maximum case studies
that involve novel pretreatment methods for analyte extraction
and hyphenated techniques for their detection. In addition,
different matrices (blood, urine, saliva, and so on) treated with
novel methods have been covered to understand their overall
applicability. Besides, a comparative analysis of different novel
methods has been performed to assess their overall performance
based on critical parameters. Furthermore, a separate section
dealing with recent trends in the bioanalytical pretreatment
methods provides the innovative strategies being developed and
explored in bioanalysis. The recent use of pretreatment methods
for the separation of biomarkers and their diagnostic uses has
also been covered.

2. NOVEL SAMPLE PRETREATMENT METHODS

| sample pretreatment methods are becoming

meore overcome the limitations of traditional methods.
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Figure 1. Overview of the traditional and novel sample pretreatment methods.
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These methods are the modified versions of either SPE or LLE
with the advantages of miniaturization, automation, and less time-
consuming with good efficiency. ICH Q2(R?) guideline emphasizes
the integration of method validation within the broader analytical
procedure lifecycle, aligning with ICH QI4. Pretreatment
methods largely affect the limit of detection (LOD) and limit of
quantitation (LOQ) of the analytical method and overall affect
the sensitivity of the technology employed. A literature survey in
the scientific database (PubMed) has been done for the last 10
years and showed a surge in the publications using these novel
methods (Fig. 2). Among them, solid phase microextraction
(SPME) showed the highest usage. Another survey in terms of the
application of these novel methods in diverse applications. The
trend showed that environment and food analysis are among the
top, followed by pharmaceutical and clinical applications (Fig.
3). These surveys demonstrate the growing interest among the
scientific community in novel methods to overcome the critical
issues encountered in the traditional methods.

This section deals with different novel methods
along with their working principle and is complemented by
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Figure 2. Trends of novel sample pretreatment methods in the scientific
database (PubMed) in the last 10 years [till December 2024].
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Figure 3. Applications of novel sample pretreatment methods in diverse areas
based on the scientific database (PubMed).

pharmaceutical applications. Prominent case studies under
each novel method have been briefly described. Finally, all
the case studies collectively are summarized in tabular form
(Table 1) based on the target analyte, novel methods, matrix
type, recovery, and hyphenated methods used, along with their
detection limits.

2.1. Supported liquid extraction

SLE is a modified version of LLE in which the
extraction is accomplished using a stationary phase, preferably
inert diatomaceous earth [ 1], which gives solid support to divide
the incompatible solvents in the SLE technique. In this method,
samples are applied onto the plate with a brief suction pulse and
then left to fully absorb the sorbent for a period. The extracting
solvent is passed through the plate before being dried down,
and the interfering matrix gets adsorbed to the solid substrate,
and the solvent extracts the analyte. SLE offers several benefits
as compared to conventional LLE, for instance, no emulsion
formation, excellent extraction effectiveness, and automation
compatibility [13]. In contrast to SPE, pre-deproteinization is
not essential in SLE [14,15].

SLE is widely used in bioanalytical applications using
different hyphenated tools such as liquid chromatography
tandem )%C-MS/MS) and gas liquid chromatography
tande -MS/MS), and is extensively used in drug

etabolism? food, and environmental analysis. In addition,
E 18-suitable for removing phospholipids, which frequently
vent the ionization of target components during MS analysis
[16,17]. Zheng et al. [18] applied SLE in combination with
UPLC-MS/MS for determining nine mental drugs in human
plasma (100 pl). Analytes were loaded onto a 96-well SLE
cartridge, and separation was done on Agilent Poroshell 120
EC-C ; columns. Recovery of the analyte was found to be in
the range of 53.11%-132.98% and the LOD was 0.02-0.25
ng/ml. Similarly, Meunier et al. [19] have developed an LC-
MS/MS-based detection of aldosterone in human plasma (450
ul). SLE was employed to extract the target analyte and was
found to be faster and more convenient than the traditional
methods (LLE and SPE) with a good LOD of 30-50 pmol/I.
Another interesting study was conducted by Rositano et al.
[15] for the simultaneous detection of psychostimulant drugs
(methylamphetamine, methylenedioxymethamphetamine, and
delta-9-tetrahydrocannabinol) in two biofluids (blood and oral
fluid) of drivers using the LC-MS/MS technique. Target drugs
were extracted using 96-well plates together with an internal
standard, as well as elution solvent. The sample pretreatment
method was found to be efficient with a recovery of 80% and a
detection limit of 1-5 ng/ml. In addition, SLE has been exploited
for diverse other analytes (benzodiazepine, eicosanoids and
related metabolite, polycyclic hydrocarbon and its metabolites,
alkaloids) in the biological matrices (plasma and urine) [20-24].

Overall, SLE offers more benefits than LLE and
SPE due to the automation, low sample requirement, faster,
minimal solvent waste, with good sensitivity. SLE is widely
used in bioanalytical, food, and environmental testing due to
its high recovery rates, reproducibility, and compatibility with
automation platforms like 96-well plates. Technically, SLE
simplifies workflows by eliminating the need for vigorous
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Upper S um PTFE Frit
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Filter/Packed Bed Assembly acts as a
depth filter for faster flow rates and
precipitated protein removal.

Lowser 0.2 pm
Hydrophobic Filter

Proprietary HybridSPE
Zirconia Coated Silica
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—Si-0 The Zr atom acts & a
Lewds ackd (electron
acceptor) because it
has empty d-orbitals.
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The phosphate molety of phospholipids Is a strong
Lewis base (electron doner) that interacts with 2r atoms
coated on the silica surface.

Figure 4. Mechanism of phospholipid removal plate-based extraction showing zirconia-coated silica
sorbent with integrated filters enabling efficient flow that binds through Lewis acid-base interactions.

(Adapted from Ahmad et al. [27].

mixing or phase separation, which are common in LLE. The
process involves loading a pretreated aqueous sample onto the
sorbent, allowing it to adsorb, and then eluting analytes with an
organic solvent. This results in cleaner extracts with reduced
matrix effects, making it ideal for LC-MS/MS applications.
Nevertheless, SLE is less effective for highly polar or
permanently ionized compounds, which may not partition well
into the organic phase. Furthermore, the technique require
careful selection of sorbent type and solvent system bas
analyte properties, and it may not be suitable for all Matfice
analyte classes.

(0)

2.2. Phospholipid removal plate

A phospholipid removal pla specialized SPE
device designed to selectively eliminate phospholipids from
biological samples such as plasma and serum before analytical
procedures like LC-MS. The plate contains a sorbent bed
made of zirconia-coated silica particles, positioned between
two filtration layers: an upper 5 um frit and a lower 0.2 pm
hydrophobic filter, which act as depth filters to maintain optimal
flow rates and prevent clogging (Fig. 4).

The zirconium atoms on the silica surface act as
Lewis acids due to their empty d orbitals, forming strong
electron donor-acceptor complexes with the phosphate groups
in phospholipids, which serve as Lewis bases. As the biofluid
sample passes through the plate, phospholipids are selectively
retained by the zirconia surface, while other components,
such as proteins and metabolites, flow through unretained.
This selective extraction significantly reduces matrix effects,
enhances analyte recovery, and improves sensitivity and
reproducibility in downstream analytical workflows [25].
Phospholipids are a major cause of ion suppression in blood and
plasma analysis. To address this, Hybrid SPE precipitation plates
have been developed wherein the plasma or serum samples
are first treated with acetonitrile for protein precipitation, then
passed through the Hybrid SPE precipitation plates packed bed
for phospholipid removal. Structurally, phospholipids consist of
a zwitterionic phosphonate moiety as the polar head group and
two hydrophobic fatty acyl chains as tails. The phosphate group

in all phospholipids interacts strongly with the zirconium atoms

functionalized on the surface of the particles, enabling selective

retention [26,27].

&;)lipid removal plates have been found to
plications in the plasma extraction of several

] have implemented phospholipid removal plates in the
10analysis of budesonide and quantified using UPLC/MS/MS
and achieved a good LOD of 24 pg/ml. The developed method
was applied to compute various pharmacokinetic parameters.
Another interesting study reported the selective extraction of
(S)-enantiomers of metoprolol (B blocker) in blood samples
using LC-MS/MS [29]. Samples were extracted from the
biological matrix using phospholipid removal micro elution-
SPE plates, and eluates were reconstituted in acetonitrile with
methyl benzyl isocyanate for chiral derivatization. The method
offers maximum recovery (69.4%—78.7%) and a good LOQ of
0.5 ng/ml along with minimal matrix effect. In addition, this
pretreatment method has been widely used in various areas,
viz. cosmetic products, pesticides, as well as forensic sciences
[30-35].

Technically, these plates streamline workflows by
combining protein precipitation and phospholipid filtration in
a single step, making them compatible with 96-well formats
and automated systems. However, their selectivity can vary
depending on analyte chemistry, and some compounds may be
unintentionally retained or co-eluted. Despite its outperforming
traditional methods in phospholipid removal; however, all
matrix effects in complex samples may not be fully eliminated.
Besides, relatively higher cost and assay compatibility can limit
its routine adoption in analytical laboratories.

P
haye p
atvare used in various indications, such as asthma,
%& initis, and autoimmune hepatitis. Nilsson et al.

2.3. Magnetic solid phase extraction (MSPE)

The complexities associated with traditional SPE
methods, such as sorbent selection, isolation, and enrichment of
the analyte, can be overcome by using magnetic nanoparticles
(MNPs). The core of the nanoparticles comprises iron, nickel,
cobalt, and their oxides, while the inorganic materials (such as
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Figure 5. Illustration of the magnetic solid phase extraction process irﬁlol\aﬁZi
ti

capturing target analyte through adsorption, followed by magﬁﬁ
(S

silica, alumina, manganese oxide (IV), or graphene) are ug
for the surface coating. MNPs are distinguished *b

surface area, high sorption capacity, and good (%/' or
analytes because of their small particle sizé\together with
a shorter duration in the extraction fproce @ 9]. MSPE
operates through a sequence of well-def; steps that leverage
the unique properties of MNPs. The précess begins with the
dispersion of MNPs into a sample containing target analytes.
These nanoparticles are engineered with surface functional
groups that facilitate selective binding. During the adsorption
phase, analytes interact with the nanoparticle surfaces primarily
through hydrophobic and van der Waals interactions, as well
as hydrogen bonding, electrostatic forces, or specific chemical
affinities (Fig. 5). Once adsorption is complete, an external
magnetic field is applied to perform magnetic separation,
efficiently isolating the analyte-bound nanoparticles from the rest
of the sample without the need for filtration or centrifugation.
In the elution step, a suitable solvent is introduced to desorb the
analytes from the nanoparticles, transferring them into a clean
solution for downstream analysis such as LC-MS or inductively
coupled plasma MS (ICP-MS). Finally, the sorbent regeneration
step allows the magnetic nanoparticles to be washed and reused,
making MSPE a cost-effective, rapid, and sustainable method for
sample preparation [40].

Recent advancements in MSPE have focused on
the integration of metal-organic frameworks (MOFs) with
MNPs to enhance selectivity and efficiency in pharmaceutical
analysis. A notable development involves the use of NH,-MIL-
101(Cr)-based magnetic nanocomposites, which combine the
high surface area and porosity of MOFs with the magnetic

nalized magnetic nanoparticles selectively
elution. (Adapted from Plastiras et al. [39].

sponsiveness of Fe,O, nanoparticles. These hybrid materials
exhibit excellent adsorption capacity and photocatalytic
activity, making them effective for the removal and analysis
of pharmaceutical contaminants such as acebutolol from
aqueous environments. The amino-functionalized MIL-101(Cr)
enhances light absorption and charge transfer, while the magnetic
core facilitates rapid separation and reusability, supporting
sustainable and high-throughput analytical workflows [41].
Asgharinezhad and Ebrahimzadeh [42] extracted
nonsteroidal  anti-inflammatory  drugs, viz. naproxen,
diclofenac, and ibuprofen from urine samples by the MSPE
method. Good recovery of analytes was observed (85%—90%)
with a LOD in the range of 0.007—-2000 pg/ml, which indicates
the high efficiency of the extraction method. A preclinical study
conducted by Wang et al. [43] in which the bioactive compound
puerarin was efficiently extracted with the MSPE method
based on C18 magnetic silica nanoparticles in rat plasma, and
its bioanalysis was performed by HPLC. Another interesting
study on hair samples pretreatment by MSPE for simultaneous
determination of elements, viz. Cr(III), Cu(II), Pb(II), and Zn(IT)
and quantified by inductively coupled plasma-optical emission
spectrometry [44]. The method was found highly efficient with
good recovery (85%—-104.5%) and a detection limit of 0.01-
0.06 pg/ml, and can be suitable for trace element determination.
Besides, the MSPE method has been extensively employed for
the extraction of secondary metabolites of aflatoxins in food
products, drug metabolites and phthalate detection in industrials
and cosmetic products [45-50].
Overall, MSPE is a modern sample pretreatment
method that employs functionalized magnetic nanoparticles
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to selectively capture and concentrate target analytes from
complex matrices such as biological fluids, environmental
samples, and food extracts. It offers notable analytical benefits,
including high selectivity, rapid processing, and reduced
solvent consumption, making it particularly effective for trace-
level detection. From a technical standpoint, MSPE involves
dispersing MNPs into the sample, allowing analytes to bind
to their surfaces, and then using an external magnet to isolate
the analyte-bound particles, streamlining the workflow and
enabling easy automation. However, its performance can be
hindered by nanoparticle aggregation, reduced efficiency in
viscous or particulate-rich samples. In addition, there is a need
for precise surface functionalization to maintain specificity and
stability across diverse analyte types [51].

2.4. Microextraction by packed sorbent (MEPS)

The miniaturisation of SPE modified into MEPS,
in which the sorbent is integrated into the syringe; therefore,
a separate robotic accessory is not required. MEPS may link
online to different chromatographic systems (capillary, gas
chromatography, and liquid chromatography) and can be fully
automated [52]. MEPS comprises of syringe and barrel insert
and needle (BIN) to perform sample extraction, and cleanup
(Fig. 6). Thermo-packed sorbent is filled in a little tube of
BIN, and target analytes are eluted in sequential phases after
the syringe feeds the material through this BIN, enabling
sample purification or speciation [53]. In addition, various

sorbent, polyamide, polyaniline nanowires, fungtion

AA

silica monoliths, and so on, have been successfully used in
MEPS devices to extract various groups of analytes [54,55].
MEPS is extensively used for the extraction of several
drugs in biological fluids (blood, saliva, and urine) and their
quantification with different analytical tools. Ferrone et al.
[56] employed MEPS in the clinical study for the bioanalysis
of ciprofloxacin and linezolid among pneumonia patients using
the UHPLC-PDA technique. Good recovery (92.4%—-97.4%)
of target analytes was achieved with a detection limit of 0.007
and 0.004 ng/ml, respectively. Compared with the conventional
SPE method, MEPS was found to be simpler, low-cost, requires
a small sample volume (10 pl), as well as reduced sampling
time. In another reported study [57], simultaneous extraction
of the enantiomeric form (-R) and (-S) of metoprolol in blood
plasma and saliva samples was accomplished with the help of
the MEPS method. The recovery of the study was in the range
0f 93.1%-97.8% and bioanalysis was performed using LC-MS/
MS with high sensitivity. Besides, MEPS has been used for the
detection of drugs of abuse such as opiates and cannabis as well
as CNS-acting drugs in blood samples using hyphenated tools
[58-63]. This pretreatment method offers rapid and effective
clean up sample preparations, satisfactory recovery, and

minimum matrix effect.
I %utshell, MEPS is a miniaturized, syringe-
e extraction technique that integrates sample

eanup, and preconcentration into a single, reusable

uced sample and solvent consumption, high-throughput
capability, and compatibility with automation and direct

based seol
e tp@
icor It offers significant analytical advantages such as

commercial sorbents, including new varieties of graphit'@
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Figure 6. Schematic representation of the workflow of the microextraction by packed sorbent involving selective analyte retention, washing, elution, and

cleaning steps. (Adapted from Kabir ez al. [50].
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coupling to LC-MS or GC-MS systems. Technically, MEPS uses
a small amount of sorbent (14 mg) packed within a syringe or
barrel insert, allowing for efficient analyte interaction through
repeated aspiration cycles, followed by washing and elution
steps all within microliter volumes. Recent advancements in
sorbent materials for MEPS are the integration of molecularly
imprinted polymers (MIPs), which act as synthetic receptors
with high affinity for specific target molecules. These MIPs
are tailored through imprinting techniques that create selective
binding sites complementary in shape and functionality to the
analyte, enabling precise extraction even in trace concentrations.
Despite several stellar benefits of MEPS, its performance is
highly dependent on sorbent selection, and manual operation in
flow rate control can introduce variability due to user-dependent
handling. In addition, the issue of sorbent degradation over
multiple cycles can affect reproducibility and sensitivity [64].

2.5. Solid phase microextraction

Solid phase microextraction is a solvent-free
technique used for extracting analytes from biofluids such as
blood and plasma. It employs a sorbent-coated fibre or probe
that is directly exposed to the biological matrix, allowing
analytes to partition between the biofluid and the coating
based on equilibrium dynamics. Biocompatible SPME devices
typically use C18-bonded porous silica particles embedded in
a nonswelling binder, which resists fouling and enables direct
in vivo or in vitro sampling. This simplifies sample cleanup,

it ideal for pharmacokinetic and metabolomic studies

A key feature of SPME is the use of fused silica,fi

with stationary phases of varying thicknesse :xe ities,
offering high selectivity for different ana !@ fficiency
of extraction depends on factors such éngth, contact
time, and temperature [67,68]. SPME can be’performed in three
distinct modes: (a) Direct mode, where the fiber is submerged
in the aqueous sample and analytes transfer directly into the
coating, often aided by agitation with a small stirring bar;
(b) Headspace mode, where analytes are extracted from the
gas phase above the sample to protect the fiber from matrix
interferences like proteins; and (c) Membrane protection mode,
where a selective membrane separates the sample from the fiber,
allowing analytes to pass while blocking interfering substances.
The membrane primarily serves to safeguard the fibre during
extraction.

Gorynski et al. [69] have developed LC-MS/MS
for the determination of rocuronium bromide and tranexamic
acid in blood plasma (0.8 ml). Samples were extracted with a
SPME containing a weak cation exchange thin film used as the
sorbent and elution solvents for effective cleanup. Similarly, the
determination and screening of cannabinoids in brain samples
using polyamide-based SPME membrane coupled with LC-
MS-APCI were conducted by Yang and Xie [70]. This method
has resulted in the maximum recovery (100 %) of cannabinoids.

Another interesting study reported [71] using a novel
SPME fibre coated with Fe,0,/CU,(BTC), metal-organic
framework as a sorbent. This unit of SPME connects online with
the HPLC unit for the determination and screening of several
anti-inflammatory drugs (ibuprofen, diclofenac, naproxen,
and nalidixic acid) from human urine, serum, and plasma

stabilises labile analytes, and reduces preparation steps, malg@

samples. Besides, SPME has been employed extensively for the
extraction of different analytes [72—75].

SPME is a solvent-free, miniaturized sample
preparation technique that integrates sampling, extraction,
and preconcentration into a single step using a coated fiber or
arrow device. It is widely used for volatile and semi-volatile
compounds in environmental, food, and clinical analyses due
to its simplicity, high sensitivity, and compatibility with GC
and LC systems. Technically, SPME operates via adsorption
or absorption of analytes onto a polymer-coated fiber, either
through headspace or direct immersion modes, and is easily
automated for high-throughput workflows. However, its
limitations include lower mechanical stability of traditional
fibres, potential phase saturation in complex matrices, and
sensitivity to solvent swelling, which can affect reproducibility
and fiber longevity. Nevertheless, the development of SPME
arrow has addressed some of these issues by offering larger
sorption phases and improved robustness [76].

2.6. Deep eutectic solvent (DESs)

Deep eutectic solvents are increasingly recognized
as an innovative and sustainable alternative for sample
pretreatme of biofluids. DESs offer customizable
physicoc r&l properties, low toxicity, and high extraction
effici % ability to disrupt complex biological matrices

s'thef ideal for isolating small molecules, metabolites,

d biomarkers from biofluids such as urine, plasma, and

liva. DESs facilitate protein precipitation and phase

separation, enabling cleaner extracts as well as preserving
thermolabile compounds [77].

Compared to conventional organic solvent-based
liquid-liquid extraction, the DES-based approach provided
superior selectivity, reduced matrix effects, and minimized
environmental impact. The DES facilitated efficient
solubilization of hydrophobic analytes while maintaining
sample integrity, making it a promising alternative for clinical
and forensic bioanalysis. The advantages of DESs in biofluid
pretreatment include high analyte recovery, low matrix
interference, and eco-friendly profiles. For instance, DES,
composed of choline chloride and phenol (1:2 molar ratio),
has been explored for extracting steroid hormones from human
urine. The developed method achieved good analyte recoveries
(85%—-98%) for testosterone, estradiol, and progesterone [78].

Finally, natural DESs derived from food-grade
components have been explored for metabolomics and therapeutic
drug monitoring. These developments facilitate DESs as key
enablers of green chemistry in bioanalytical science, with strong
potential for industrial-scale adoption. However, their practical
use is not without challenges: some formulations may still involve
toxic precursors, and their performance can be inconsistent due to
variability in viscosity, solubility, and stability [ 79]. These factors
necessitate careful formulation and validation, particularly when
used in sensitive analytical or biological systems.

2.7. Solidified droplet microextraction (SDME)

Solidified droplet microextraction has emerged as
a novel and efficient bioanalytical pretreatment method for
biofluids over the past few years. This technique involves
the use of a small volume of organic solvent suspended as a
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droplet in the sample matrix, which solidifies under controlled
conditions to facilitate analyte extraction. SDME is particularly
advantageous for biofluid analysis due to its minimal solvent
consumption, high enrichment factors, and compatibility with
downstream analytical techniques such as GC-MS and LC-
MS. The method is especially effective for isolating trace-
level analytes from complex matrices such as urine, plasma,
and saliva, offering a green and cost-cffective alternative to
traditional liquid-liquid extraction [80].

The integration of SDME with DESs represents a
significant advancement in bioanalytical sample preparation. It
combines the environmental benefits of green solvents with the
operational simplicity of microextraction techniques. Recent
developments in droplet microfluidics have further refined
this method, enabling precise control over droplet formation,
manipulation, and solidification [81]. These innovations have
expanded the applicability of SDME to high-throughput clinical
diagnostics, therapeutic drug monitoring, and metabolomics. A
recent study [82] highlights the application of dispersive liquid—
liquid microextraction based on the solidification of floating
organic droplets for the extraction of different pharmaceutical
residues (ibuprofen, naproxen, and diclofenac) from human
urine. The researchers utilized a DES as the extraction medium,
which was solidified post-extraction to isolate the analytes. The
developed method showed enhanced extraction efficiency with
good analyte recovery (88% to 95%). Besides, this approach
also reduced matrix interference, leading to improved sensitivity
and reproducibility in mass spectrometric analysis.

Overall, SDME is a minimalist, ecq;con 'o@
sample preparation technique that uses a single micro, le
organic solvent either suspended directly in the sample its

ialytes. Uts

headspace to extract and preconcentrat
appeal lies in its simplicity, low cos inimal solvent
usage, aligning well with green chemist ciples. Despite its
advantages, SDME faces limitations such as droplet instability,
slow extraction kinetics, and limited surface area, which can
affect reproducibility and sensitivity. To address these issues,
solidification of floating organic drop microextraction has been
developed by stabilizing the droplet and improving recovery
[82].

alytical

2.8. Affinity sorbent extraction

The most current developments in the field of
sample preparation include frameworks modified with various
biomolecules (such as proteins, nucleobases, amino acids,
aptamers, and so on) as ligands to create affinity-based sorbents.
These affinity materials’ synthesis and inclusion methods, as well
as their use as sorbents for the selective extraction of molecules
and the cleanup of intricate samples. These sorbents have been
used in sample treatment directly, or they have been specifically
created to satisfy the needs of analytical applications [83].
Immunoextraction, molecular imprinted polymer, and aptamers
are the methods that work on the principle of affinity sorbent
extraction. The literature survey revealed that the application
of the affinity sorbent extraction methods is primarily in the
diagnosis of diseases by detecting the biomarkers in the blood
samples. Representative case studies have been summarized in
Table 2.

2.8.1. Immunosorbent

In this technique, antibodies have been immobilised
on a solid phase, also known as immunoaffinity extraction
sorbents. It offers good selectivity and high affinity due to
the antigen—antibody interaction. The robust procedures
allow one-step selective extraction and enrichment of specific
compounds. Solid support is decorated with antibodies and
packed in an SPE cartridge to create the immunosorbents. The
formation of the antibody—antigen complex during this step is
predominantly influenced by electrostatic forces. Desorption
will only take place by significantly altering the experimental
conditions due to the high energies of the biological
interactions. However, matrix materials and sample additives
can have an impact on analyte-antibody interactions, which
can also reduce extraction recoveries [84]. Immunocapture
methods are gaining renewed attention in pharmaceutical
and biomedical analysis due to their high specificity and
adaptability for complex biological matrices. These techniques
utilise antibodies or antibody fragments to selectively bind
and isolate target molecules such as therapeutic proteins,
biomarkers, or drug metabolites. When coupled with advanced
analytical platforms like LC-MS, immunocapture enables
sensitive ang selective quantification, particularly useful
in .ph@tic and pharmacodynamic studies. Recent
imngvations_have focused on hybrid immunocapture LC-MS

rkflows that combine ligand-binding specificity with mass

ectrometric sensitivity, streamlining assay development and

proving throughput. These methods are especially valuable
in early-stage drug development, where rapid and reliable
bioanalytical tools are essential [85].

Immunosorbent-based extraction methods largely
find their application in the screening of biomarkers for disease
diagnosis and their progression [86,87]. For instance, human
chorionic gonadotropin, a biomarker, has been successfully
extracted and analysed by Johannsen er al. [88] using the
combination of paper-bound streptavidin as an anchor for
biotinylated antibodies and quantified by LC-MS. Similarly,
cytokeratin fragments are a high-potential biomarker in many
epithelial cell cancers. A high-performance immunosorbent-
based biosensor technique was employed for the extraction
of this biomarker [89]. It involves the affinity of an antigen
towards antibodies mechanism using Photographic paper/
Ag ink/antibody as a capturing plate and [Fe (CN),J*"*/KCl
solution as a solvent. In addition, a rapid colourimetry sensing
system using competitive enzyme-linked immunosorbent
assay (ELISA) on a microfluidic paper-based analytical device
has been developed for the detection and determination of
ketamine in oral fluid (3 pl) using a coated ketamine antibody
[90].

2.8.2. Molecular imprinted polymers

MIP is a selective sorbent for SPE, which has gained
popularity recently for selective extraction of analytes [91].
Functional polymers were grafted (Fig. 7) on the surface
of silica particles and then cross-linked with the templates
sustained by dipole interactions or hydrogen bonding [92].
MIPs are of tremendous interest because they can be produced
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Figure 7. Mechanistic understanding of molecular imprinted polymer, where functional monomers are polymerized around a template
molecule and subsequently removed to create selective binding sites complementary to the target analyte. (Adapted from Sajini and Mathew

[95].

more cheaply, have greater chemical and physical stability, and
can be reused. However, molecular imprinting takes a long time
and can have issues like heterogeneous imprinting, whereas
macromolecule imprinting is challenging [93-95].

Several studies have reported for the use of MIPs-
based extraction procedures and be highly robust, chemically

stable, have less extraction time, and have high selectivity [96

Magnetic multiwalled carbon nanotubes have been develo e
Madrakian et al. [97] via synthetic amidoamine a tl?e

and naproxen as the template. This method has

the bioanalysis of naproxen in human

spectrofluorometric methods. Yang et e performed
a test on a simple Pickering emulsio erization method
used to prepare bisphenol A imprinted polymer microspheres
and used for the extraction from the human urine sample.
Similarly, several analytes have also been extracted by MIPs in
different biological matrices with good [99-103].

MIPs are synthetic materials engineered to mimic
natural molecular recognition systems, such as antibodies,
by creating highly specific binding sites tailored to a target
molecule. Their appeal lies in their robustness, chemical
stability, and adaptability across various formats, making
them valuable in applications such as sensors, separation, drug
delivery, and environmental monitoring. Technically, MIPs
are formed by polymerizing functional monomers around
a template molecule, which is later removed to leave behind
complementary cavities. This lock-and-key mechanism enables
selective recognition even in complex matrices. However, a few
challenges associated with MIPs are template removal, limited
binding site accessibility, and reduced performance in aqueous
environments due to disrupted noncovalent interactions. In
addition, their commercial translation is hindered by difficulties
in reproducibility, scalability, and integration into real-world
devices. Finally, the innovative application of conducting
polymer-based MIPs and stimuli-responsive designs is helping
bridge the gap between laboratory research and practical
deployment [104].

cted by

2.8.3. Aptamers
Aptamers are synthetic, single-stranded
oligonucleotides that are short (up to 110 base pairs), fold

into d shapes with high specificity. Aptamers use
0& al complementarity to identify and bind their
g rthermore, adjustments in the buffering system (salt
mposition and ionic strength) cause the release of the bound
target molecules. Aptamers also aid in reducing the utilization
of research animals, unlike antibodies, which frequently need
animals for both initial discovery and manufacturing. Finally,
SELEX (Systematic Evolution of Ligands by Exponential
Enrichment) can be used to create specific aptamers [105]
for a given target analyte, as shown in (Fig. 8). Aptamer
functionalized materials (AFMs) are created by immobilizing
aptamers on a solid support using a linking agent (linker).
Compared to free aptamers, AFMs have higher chemical,
biological, and mechanical stability in addition to their intrinsic
high selectivity and strong affinity [106]. The stellar benefits
of aptamers, such as high thermal stability, tailored specificity,
good affinity, and scalability of production, have resulted in
large-scale use in rapid diagnostic applications [107]. Besides,
they can be explored in various immunoassays such as ELISA,
western blot, immunohistochemistry, and flow cytometry in
biomedical research and clinical diagnostic applications [108].
Hypoxia-inducible factor-1 (HIF-1a) is a transcription
factor that has been proven to be widely involved in hypoxia
metabolism and has developed into an essential regulator of
myocardial injury. A highly sensitive colorimetry technique
has been created to measure HIF-1a in a circulating rat serum
exosome, which is an early indicator for myocardial infarction.
Wang et al. [109] investigated the growth of gold nanospheres
functionalized with HIF-1a binding aptamer using seed-mediated
culture. Na,HPO,, citric acid, H,0,, and TMB (coloring agent)
were used as solvents in the detection and extraction of HIF-1a
biomarker in 50 pl of serum sample. This method was able to offer
good recovery (> 80%) of biomarkers, and the lowest LOD was
found to be 0.2 ng/l. Dalirirad et al. [110] reported the detection
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Figure 8. Representation of aptamer-based recognition mechanism, binding to the target, and subsequently target release. (Adapted from

Mayol et al. [117].

of cortisol (stress biomarker) using duplex deoxyribonucleic acid
(DNA) aptamer conjugated to the surface of gold nanoparticles by
Au-S bonds as the sensor probe in a lateral flow assay. Similarly,
the aptamer method of extraction is widely used in the diagnosis
of biomarkers for diseases like cancer, diabetes, and discases
related to the central nervous system and analytical application in
biological samples reported in studies [111-117].

Aptamers are short, single-stranded DNA or RNA
molecules selected through the SELEX process for their
ability to bind specific targets with high affinity and specificity.

offering a promising alternative to antibodies in diagnosti@

therapeutics, and biosensing. Their key analytical dvant
include low immunogenicity, ease of chemic 1s,
itions,
making them ideal for applications biological
environments. Technically, aptamers engineered and
modified post-SELEX to enhance stability, binding strength,
and resistance to nucleases, with strategies such as truncation,
multivalent integration, and chemical modification improving
their performance. However, aptamers face notable limitations:
they are prone to rapid degradation in biological fluids, often
exhibit poor in vivo stability, and their small size leads to fast
renal clearance. In addition, the SELEX process can be labor-
intensive and may yield aptamers with suboptimal binding
characteristics, requiring further optimization to ensure
reproducibility and clinical viability [118].

In summary, all the novel sample pretreatment methods
are found to offer stellar benefits of automation, good recovery,
and faster cleanup (Table 3). However, they differ in terms of
their versatile application and cost-effectiveness. Among all,
immunosorbents and aptamers were found to be relatively
costly due to frequent changes in the sorbent and have very
specific applications in biomarker studies. On the other hand,
other novel methods possess wide applications in drug analysis
and are found to be less costly. Despite several advantages, there
are some associated limitations, for instance, clogging of the
sorbent, carryover effect, issues about hydrophobic analytes,
template bleeding, and so on. However, these limitations have
been overcome by applying innovative interventions in the
pretreatment procedure to some extent.

3. RECENT TRENDS IN BIOANALYTICAL
PRETREATMENT METHODS

Bioanalytical laboratories are increasingly prioritizing
green sample preparation methods to align with sustainability
goalsandreduce environmental impact. In addition, bioanalytical
pretreatm thods for biofluids have undergone a significant
transf %l driven by the need for higher sensitivity,

and automation. For instance, solvent-free or

reducmg techniques such as microextraction and

ct chromatographic methods that eliminate or minimize the

need for hazardous solvents. The integration of biocompatible

materials, miniaturized devices, and multitarget extraction

systems—capable of isolating diverse analytes in a single
step—further supports eco-friendly practices [119].

In drug analysis, green sample preparation is gaining
traction through innovations that combine sustainability with
high analytical performance, reflecting a broader commitment
to environmentally responsible science. Techniques such as
solidified droplet microextraction, DESs, and natural DESs
are replacing traditional solvent-intensive methods. These
approaches reduce environmental impact, minimize sample
volume requirements, and improve analyte stability, aligning
with sustainability goals and decentralized healthcare models.
Similarly, the development of advanced microextraction
strategies like dispersive liquid-liquid microextraction,
hollow fiber liquid-phase microextraction, and electro-
membrane extraction offers improved analyte recovery,
reduced solvent usage, and compatibility with high-throughput
workflows. Microsampling technologies such as volumetric
absorptive microsampling, microneedle-based sampling, and
dried blood spot methods are also gaining huge attraction
among pharmaceutical scientists. These technologies enable
decentralized and offer minimally invasive sample collection
while maintaining analyte stability [50,120].

In recent years, a major innovation has been
the integration of artificial intelligence (AI) and online
automation into bioanalytical workflows [121]. Al is being
used to optimize sample processing, predict analyte behavior,
and enhance data interpretation, particularly in metabolomics
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Table 3. Comparative analysis of different novel sample pretreatment methods.

Novel pretreatment ~ Miniaturization Automation Cleanup Recovery Matrix Cost Application Reusable Limitation
method speed effect
SLE Yes Yes Good Not Yes Medium  Versatile One time  Single use
satisfactory cost use consumable
requirement
PRP Yes Yes Good Satisfactory ~ No Low Versatile Reusable Limitations for
cost Hydrophobic analyte
MSPE Yes Yes Fast Satisfactory ~ No Low Versatile Reusable -Set magnetic
cost beads apart from
other methods
of sample isolation,
which might
have different
protocols for different
types of samples.
MEPS Yes Yes Fast Satisfactory ~ No High Versatile Reusable Clogging of Sorbent,
cost large volume sample
performing problem,
& carry over effect
SPME Yes Yes Fast Satisfactory  No Low Versatile Reusable Low effectiveness of
cost process due to small
amount of PDMS
coated on fiber
IMMUNOSORBENT  Yes Yes Time Specific One time  Animal requirement,

MIPS Yes No

O

APTAMERS Yes No Fast

Satisfactory ¢ N
consuming 6 ost use
FaSt @actory No
\ cost

Satisfactory  No

specific antigen
require, time
consuming, & risk of
cross reactivity

Medium  Specific Reusable Possible template
bleeding, sometimes
tedious synthesis
procedures, &
problematic application

to aqueous samples.

Medium  Specific One time
cost use

Susceptible to
nuclease degradation,
limited building block
diversity, PCR bias in
SELEX method

and personalized medicine. Automation technologies such as
robotic liquid handlers and online SPE systems are streamlining
sample preparation, improving reproducibility, and enabling
high-throughput analysis [122]. These systems not only reduce
human error but also significantly increase sample throughput,
as compared to manual methods. Predictive analytics and real-
time monitoring are also being incorporated to support adaptive
trial designs and faster decision-making in clinical research.
Overall, the adoption of green sampling technologies
together with the convergence of Al and automation not only
reduces waste and energy consumption but also enhances
analytical efficiency. These developments have a significant
impact in making bioanalytical science more accessible, eco-
conscious, and adaptable to modern healthcare needs.

4. CONCLUSION

The present review comprehensively explores the
landscape of novel sample pretreatment methods and their

transformative role in pharmaceutical bioanalysis, particularly in
the extraction of drugs and biomarkers from complex biological
matrices such as plasma, serum, and urine. These innovative
techniques are designed to address the persistent challenges of
matrix effects, low recovery, and labor-intensive workflows that
are common in conventional sample preparation methods.

A central focus of the review is the working principles
of various emerging techniques, including SPME, MSPE,
and novel sorbent-based methods such as immunosorbents
and aptamer-functionalized materials. These methods are
evaluated not only for their analytical performance but also for
their compatibility with miniaturization and automation, two
critical factors for high-throughput pharmaceutical analysis.
The review systematically compiles case studies that detail the
analytical parameters of these methods, such as recovery rates,
LOD, and the detection techniques employed (e.g., LC-MS/
MS, GC-MS, and HPLC). Immunosorbents and aptamers have
shown exceptional promise in clinical diagnostics due to their
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high specificity and binding affinity, making them ideal for the
selective extraction of biomarkers. Despite their advantages,
the widespread adoption of these novel methods in routine
pharmaceutical workflows is currently limited by higher initial
costs and the need for specialized materials or instrumentation.
However, ongoing research and technological advancements
are steadily reducing these barriers, paving the way for broader
implementation.

In a nutshell, the review underscores that while
traditional methods still hold value, the integration of novel
pretreatment techniques is essential for improving the
efficiency, sensitivity, and reliability of pharmaceutical assays.
These advancements are expected to significantly influence the
future of bioanalytical workflows, especially as the demand for
personalized medicine and rapid diagnostics continues to grow.
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