Biodegradable BPMO@DTX (B@D) nanoparticles were successfully synthesized, exhibiting potent anticancer activity while mitigating the systemic toxicity of docetaxel (DTX). To advance the development of an injectable B@D nanoformulation, an accurate and robust method for DTX quantification was required. High-performance liquid chromatography (HPLC) was employed, with sample preparation based on a biodegradation technique, Glutathione (GSH-induced degradation), which was selected as the optimized procedure. Ultrasonication was evaluated only during the method development stage as a comparative approach. Key parameters—including solvent type, sample-to-solvent ratio, and biodegradation time—were optimized, and the method was validated according to International Conference on Harmonization Q2(R2) guidelines. The optimized HPLC conditions comprised a mobile phase of acetonitrile:water (60:40, v/v), PDA detection at 230 nm, a Gemini 5 μm C18 (250 × 4.6 mm) column, 30°C temperature, 1.2 ml/minute flow rate, and 20 μl injection volume, all meeting validation requirements. Ultrasonication resulted in only ~30% DTX recovery, rendering it unsuitable for quantification. In contrast, the biodegradation method—incubating B@D with 20 mM GSH for 48 hours, followed by dichloromethane extraction (1:5 ratio, 5 minutes, 6,000 rpm, repeated five times)—achieved >99% recovery. This validated method provides a reliable analytical tool for DTX quantification in B@D formulations, supporting further pharmaceutical development.
Nguyen HV, Le QM, Nguyen TD, Nguyen NHT, Duong MC, Ha AN, Le TTT, Nguyen DK, Doan TLH, Le TM. Development of a HPLC method for the quantification of Docetaxel in the BPMO@DTX injectable formulation. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.252951
1. Das T, Anand U, Pandey SK, Ashby CR Jr, Assaraf YG, Chen ZS, et al. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist Updat. 2021;55:100754. doi: https://doi.org/10.1016/j.drup.2021.100754
2. Alalawy AI. Key genes and molecular mechanisms related to paclitaxel resistance. Cancer Cell Int. 2024;24(1):244. doi: https://doi.org/10.1186/s12935-024-03415-0
3. Beheshtizadeh N, Amiri Z, Tabatabaei SZ, Seraji AA, Gharibshahian M, Nadi A, et al. Boosting antitumor efficacy using docetaxel-loaded nanoplatforms: from cancer therapy to regenerative medicine approaches. J Transl Med. 2024;22(1):520. doi: https://doi.org/10.1186/s12967-024-05347-9
4. Panthi VK, Bashyal S, Paudel KR. Docetaxel-loaded nanoformulations delivery for breast cancer management: challenges, recent advances, and future perspectives. J Drug Deliv Sci Technol. 2024;92:105314. doi: https://doi.org/10.1016/j.jddst.2023.105314
5. Alshamrani M, Ayon NJ, Alsalhi A, Akinjole O. Self-assembled nanomicellar formulation of docetaxel as a potential breast cancer chemotherapeutic system. Life (Basel). 2022;12(4):536. doi: https://doi.org/10.3390/life12040485
6. Ha Nguyen Van, Nguyen LHT, Mai NXD, Ha NA, Le TTT, Nguyen TBA, et al. Enhancing docetaxel efficacy and reducing toxicity using biodegradable periodic mesoporous organosilica nanoparticles. Heliyon. 2024;10(22):e40131. doi: https://doi.org/10.1016/j.heliyon.2024.e40131
7. Chaurawal N, Raza K. Nano-interventions for the drug delivery of docetaxel to cancer cells. Health Sci Rev (Oxf). 2023;7:100101. doi: https://doi.org/10.1016/j.hsr.2023.100101
8. Imran M, Saleem S, Chaudhuri A, Ali J, Baboota S. Docetaxel: an update on its molecular mechanisms, therapeutic trajectory and nanotechnology in the treatment of breast, lung and prostate cancer. J Drug Deliv Sci Technol. 2020;60:101959. doi: https://doi.org/10.1016/j.jddst.2020.101959
9. Zhang C, Xie H, Zhang Z, Wen B, Cao H, Bai Y, et al. Applications and biocompatibility of mesoporous silica nanocarriers in the field of medicine. Int J Nanomedicine. 2022;17:7471–92. doi: https://doi.org/10.3389/fphar.2022.829796
10. Lérida-Viso A, Estepa-Fernández A, García-Fernández A, Martí- Centelles V, Martínez-Mañez R. Biosafety of mesoporous silica nanoparticles: towards clinical translation. Adv Drug Deliv Rev. 2023;201:115049. doi: https://doi.org/10.1016/j.addr.2023.115049
11. Xu J, Song M, Fang Z, Zheng L, Huang X, Liu K. Applications and challenges of ultra-small particle size nanoparticles in tumor therapy. J Control Release. 2023;353:699–712. doi: https://doi.org/10.1016/j.jconrel.2022.12.028
12. Hu L, Ma J, Wei X, Li Y, Jiang S, Ji X, et al. Biodegradable polydopamine and tetrasulfide bond co-doped hollowed mesoporous silica nanospheres as GSH-triggered nanosystem for synergistic chemo-photothermal therapy of breast cancer. Mater Des. 2022;215:110467. doi: https://doi.org/10.1016/j.matdes.2022.110467
13. Padiyar N, Ale Y, Galwan D. Formulation, characterization and stability aspects of mesoporous silica nanoparticles. Int J Drug Deliv Technol. 2024;14(2):1217–24. doi: https://doi.org/10.25258/ijddt.14.2.88
14. United States Pharmacopeia. USP Monographs, Docetaxel Injection. USP–NF. Rockville, MD: United States Pharmacopeia; 2024.
15. Manzano M, Vallet-Regí M. Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chem Commun (Camb). 2019;55(19):2731–40. doi: https://doi.org/10.1039/C8CC09389J
16. Mai NXD, Birault A, Matsumoto K, Ta HKT, Intasa-ard SG, Morrison K, et al. Biodegradable periodic mesoporous organosilica (BPMO) loaded with daunorubicin: a promising nanoparticle-based anticancer drug. Molecules. 2020;25(7):1593. doi: https://doi.org/10.1002/cmdc.201900595
17. He Y, Liang S, Long M, Xu H. Mesoporous silica nanoparticles as potential carriers for enhanced drug solubility of paclitaxel. Mater Sci Eng C Mater Biol Appl. 2017;78:12–7. doi: https://doi.org/10.1016/j.msec.2017.04.049
18. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Validation of analytical procedures Q2(R2). ICH harmonised guideline. Geneva, Switzerland: ICH; 2023. Available from: https://www.ich.org/page/quality-guidelines
19. US Food and Drug Administration. NDA 202356 – Docetaxel: chemistry review [Internet]. Silver Spring, MD: Center for Drug Evaluation and Research; 2024. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/202356Orig1s000ChemR.pdf
20. Huang W. Open tubular ion chromatography: a state-of-the-art review. Anal Chim Acta. 2021;1143:210–24. doi: https://doi.org/10.1016/j.aca.2020.08.012
21. Groskreutz SR, Weber SG. Quantitative evaluation of models for solvent-based, on-column focusing in liquid chromatography. J Chromatogr A. 2015;1409:116–24. doi: https://doi.org/10.1016/j.chroma.2015.07.038
22. Pérez RA, Albero B. Ultrasound-assisted extraction methods for the determination of organic contaminants in solid and liquid samples. TrAC Trends Anal Chem. 2023;166:117204. doi: https://doi.org/10.1016/j.trac.2023.117204
23. Asmawi AA, Salim N, Abdulmalek E, Abdul Rahman MB. Development and validation of HPLC method for quantification of docetaxel in palm-based nanoemulsion aerosols. Malays J Anal Sci. 2020;24(2):165–72. ISSN (Electronic): 1394-2506. Available from: https://mjas.analis.com.my/mjas/v24n2/pdf/Azren2422.pdf
24. Rafiei P, Michel D, Haddadi A. Application of a rapid ESI-MS/MS method for quantitative analysis of docetaxel in polymeric matrices of PLGA and PLGA-PEG nanoparticles through direct injection to mass spectrometer. Am J Anal Chem. 2015;6:164–75. doi: https://doi.org/10.4236/ajac.2015.62015
Year
Month