Metabolite profiling and bioactivity of Pogostemon cablin L. from North Konawe: GC-MS analysis, anti-inflammatory, and antinociceptive mechanisms via COX-2/cytokine inhibition

Adryan Fristiohady Jafriati Irvan Anwar Rathapon Asasutjarit Idin Sahidin Sry Susanti Lidya Agriningsih Haruna La Ode Muh Julian Purnama Hariana Hutamy Viranda Rahman   

Open Access   

Published:  Oct 13, 2025

DOI: 10.7324/JAPS.2026.268636
Abstract

Pogostemon cablin (Blanco) Benth. is a medicinal plant traditionally used to treat inflammation and pain. However, the phytochemical profile and pharmacological mechanisms of plants cultivated in North Konawe, Indonesia, are not well characterized. This study aimed to analyze the chemical constituents of its ethanolic extract using gas chromatography–mass spectrometry (GC-MS) and to evaluate its anti-inflammatory and antinociceptive effects through in vivo models. GC-MS analysis revealed 18 volatile compounds, with patchouli alcohol as the major component, followed by α-guaiene, seychellene, intermedeol, and β-caryophyllene derivatives. 

The extract was tested in xylene-induced ear edema and formalin-induced nociceptive models in mice. Oral administration of the extract at doses of 25, 50, and 100 mg/kg significantly reduced ear edema thickness and pain responses in a dose-dependent manner. In the nociceptive model, the extract also suppressed systemic inflammatory responses, as indicated by reduced plasma levels of tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6, and cyclooxygenase-2 expression. These findings demonstrate that P. cablin exerts anti-inflammatory and antinociceptive effects, likely through inhibition of peripheral inflammatory mediators. The study highlights the therapeutic potential of P. cablin from North Konawe as a promising source of natural agents for inflammatory pain management.


Keyword:     Pogostemon cablin inflammation GC-MS cytokines COX-2 North Konawe


Citation:

Fristiohady A, Jafriati, Anwar I, Asasutjarit R, Sahidin I, Susanti S, Haruna LA, Purnama LOMJ, Hariana, Rahman HV. Metabolite profiling and bioactivity of Pogostemon cablin L. from North Konawe: GC-MS analysis, anti-inflammatory, and antinociceptive mechanisms via COX-2/cytokine inhibition. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS2026.268636

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 2018;12:72. doi: https://doi.org/10.3389/fncel.2018.00072

2. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9(6):7204–18. https://doi.org/10.18632/oncotarget.23208

3. Pahwa R, Goyal A, Jialal I. Chronic inflammation. Treasure Island, FL: StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK493173/

4. Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation. Science. 2016;354(6312):572–7. doi: https://doi.org/10.1126/science.aaf8924

5. Chun KS, Kim EH, Kim DH, Song NY, Kim W, Na HK, et al. Targeting cyclooxygenase-2 for chemoprevention of inflammation-associated intestinal carcinogenesis: an update. Biochem Pharmacol. 2024;226:116259. doi: https://doi.org/10.1016/j.bcp.2024.116259

6. Wautier JL, Wautier MP. Pro-and anti-inflammatory prostaglandins and cytokines in humans: a mini review. Int J Mol Sci. 2023;24(11):9647. doi: https://doi.org/10.3390/ijms24119647

7. Tajdari M, Peyrovinasab A, Bayanati M, Rabbani MIM, Abdolghaffari AH, Zarghi A. Dual COX-2/TNF-α inhibitors as promising anti-inflammatory and cancer chemopreventive agents: a review. Iran J Pharm Res. 2024;23(1):e151312. doi: https://doi.org/10.5812/ijpr-151312

8. Takeuchi T. Cytokines and cytokine receptors as targets of immune-mediated inflammatory diseases—RA as a role model. Inflamm Regen. 2022;42(1):35. doi: https://doi.org/10.1186/s41232-022-00221-x

9. Ghlichloo I, Gerriets V. Nonsteroidal anti-inflammatory drugs (NSAIDs). Treasure Island, FL: StatPearls Publishing; 2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547742/

10. Khalil NA, Ahmed EM, Tharwat T, Mahmoud Z. NSAIDs between past and present; a long journey towards an ideal COX-2 inhibitor lead. RSC Advances. 2024;14(42): 30647–61. doi: https://doi.org/10.1039/D4RA04686B

11. Caplan A, Fett N, Rosenbach M, Werth VP, Micheletti RG. Prevention and management of glucocorticoid-induced side effects: a comprehensive review: gastrointestinal and endocrinologic side effects. J Am Acad Dermatol. 2017;76(1):11–6. doi: https://doi.org/10.1016/j.jaad.2016.02.1239

12. Fardet L, Fève B. Systemic glucocorticoid therapy: a review of its metabolic and cardiovascular adverse events. Drugs. 2014;74(15):1731–45. doi: https://doi.org/10.1007/s40265-014-0282-9

13. Gonfa YH, Tessema FB, Bachheti A, Rai N, Bachheti RK. Anti-inflammatory activity of phytochemicals from medicinal plants and their nanoparticles: a review. Curr Res Biotechnol. 2023;5:100134. doi: https://doi.org/10.1016/j.crbiot.2023.100134

14. Kerdar T, Rabienejad N, Alikhani Y, Moradkhani S, Dastan D. Clinical, in vitro and phytochemical studies of Scrophularia striata mouthwash on chronic periodontitis disease. J Ethnopharmacol. 2019;239:111872. doi: https://doi.org/10.1016/j.jep.2019.111872

15. Kumar A, Sharma N, Chanotiya CS, Lal RK. The pharmacological potential and the agricultural significance of the aromatic crop Patchouli (Pogostemon cablin Benth.): a review. Ecol Front. 2024;44(6):1109–18. doi: https://doi.org/10.1016/j.ecofro.2024.05.008

16. Srichavengsup W, Chalamkate T. Pogostemon cablin (Blanco) Benth’s antioxidant and antimicrobial properties. Int J Biosci Biochem. 2023;5(2):33–5. doi: https://doi.org/10.33545/26646536.2023.v5.i2a.57

17. Galovi?ová L, Borotová P, Valková V, ?úranová H, Štefániková J, et al. Biological activity of Pogostemon cablin essential oil and its potential use for food preservation. Agronomy. 2022;12(2):387. doi: https://doi.org/10.3390/agronomy12020387

18. Fatima S, Farzeen I, Ashraf A, Aslam B, Ijaz MU, Hayat S, et al. A comprehensive review on pharmacological activities of pachypodol: a bioactive compound of an aromatic medicinal plant Pogostemon cablin Benth. Molecules. 2023;28(8):3469. doi: https://doi.org/10.3390/molecules28083469

19. Junren C, Xiaofang X, Mengting L, Qiuyun X, Gangmin L, Huiqiong Z, et al. Pharmacological activities and mechanisms of action of Pogostemon cablin Benth: a review. Chin Med. 2021;16(5):1–20. doi: https://doi.org/10.1186/s13020-020-00413-y

20. Mrisho II, Musazade E, Chen H, Zhao H, Xing J, Li X, et al. Unlocking the therapeutic potential of patchouli leaves: a comprehensive review of phytochemical and pharmacological insights. Plants. 2025;14(7):1034. doi: https://doi.org/10.3390/plants14071034

21. Swamy MK, Sinniah UR. A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an aromatic medicinal plant of industrial importance. Molecules. 2015;20(5):8521–47. doi: https://doi.org/10.3390/molecules20058521

22. Ogwu MC, Izah SC, Joshua MT. Ecological and environmental determinants of phytochemical variability in forest trees. Phytochem Rev. 2025. doi: https://doi.org/10.1007/s11101-025-10066-0 23. Kumari A, Patni B, Bhattacharyya M, Purohit VK. Alarming influence of climate change and compromising quality of medicinal plants. PPR. 2021;27(2):195–207. doi: https://doi.org/10.1007/s40502-021-00616-x

24. Asiminicesei DM, Fertu DI, Gavrilescu M. Impact of heavy metal pollution in the environment on the metabolic profile of medicinal plants and their therapeutic potential. Plants. 2024;13(6):913. doi: https://doi.org/10.3390/plants13060913

25. IUCN Netherlands. Nickel mine exploitation threatens Sulawesi’s natural environment Internet]. The Hague: IUCN Netherlands; 2021 cited 2025 Jul 3]. Available from: https://www.iucn.nl/en/blog/nickel-mine-exploitation-threats-to-sulawesis-natural-environment/

26. Sunkar A, Putri MM, Bagus LH. Transparansi kebijakan dan janji kesejahteraan petani sawit: studi kasus Kabupaten Konawe Utara, Sulawesi Tenggara. Jakarta: Transparency International Indonesia; 2023.

27. Liu F, Deng C, Cao W, Zeng G, Deng X, Zhou Y. Phytochemicals of Pogostemon cablin (Blanco) Benth. aqueous extract: their xanthine oxidase inhibitory activities. Biomed Pharmacother. 2017;89:544– 8. doi: https://doi.org/10.1016/j.biopha.2017.01.040

28. Mansuri A, Lokhande K, Kore S, Gaikwad S, Nawani N, Swamy KV, Junnarkar M, Pawar S. Antioxidant, anti-quorum sensing, biofilm inhibitory activities and chemical composition of Patchouli essential oil: in vitro and in silico approach. J Biomol Struct Dyn. 2022;40(1):154–65. doi: https://doi.org/10.1080/07391102.2020.1810124

29. Faradilla M, Fidrianny I, Iwo MI. Antioxidant and immunomodulatory activities of ethanol extracts from Syzygium cumini L. Skeels and Pogostemon cablin Benth. Narra J. 2024;4(3):e918. doi: https://doi.org/10.52225/narra.v4i3.015

30. Yuniarty T, Atmaja RFD, Usman JIS, Orno TG. In vitro antibacterial activity of patchouli batik (Pogostemon cablin) plant extract varieties from Southeast Sulawesi and South Sulawesi. J Teknol Laboratorium. 2023;12(2). doi: https://doi.org/10.29238/teknolabjournal.v12i2.439

31. Wu X, Xu N, Li M, Huang Q, Wu J, Gan Y, et al. Protective effect of patchouli alcohol against high-fat diet induced hepatic steatosis by alleviating endoplasmic reticulum stress and regulating VLDL metabolism in rats. Front Pharmacol. 2019;10:1134. doi: https://doi.org/10.3389/fphar.2019.01134

32. Wu YJ, Li SM, Chen CL, Chen ZR, Chen JJ. Anti-inflammatory activity of Pogostemon cablin: bioactive components and their modulation of MAPK and NF-κB signaling pathway. Bioorg Chem. 2025;161:108516. doi: https://doi.org/10.1016/j.bioorg.2025.108516

33. Tang Y, Zhong L, Wang X, Zheng H, Chen L. Molecular identification and expression of sesquiterpene pathway genes responsible for patchoulol biosynthesis and regulation in Pogostemon cablin. Bot Stud. 2019;60(1):11. doi: https://doi.org/10.1186/s40529-019-0259-9

34. Chen Y, Wu YG, Xu Y, Zhang JF, Song XQ, Zhu GP, et al. Dynamic accumulation of sesquiterpenes in essential oil of Pogostemon cablin. Rev Bras Farmacogn. 2014;24(6):626–34. doi: https://doi.org/10.1016/j.bjp.2014.11.001

35. Wahyudiono, Asri AAT, Gautama PRB, Winardi S, Adschiri T, Goto M, et al. Enrichment of patchouli alcohol in extracted patchouli oil from Pogostemon cablin Benth. leaves using supercritical carbon dioxide. Case Stud Chem Environ Eng. 2025;11:101046. doi: https://doi.org/10.1016/j.cscee.2024.101046

36. Isnaini N, Khairan K, Faradhilla M, Sufriadi E, Prajaputra V, Ginting B, et al. A study of essential oils from patchouli (Pogostemon cablin Benth.) and its potential as an antivirus agent to relieve symptoms of COVID-19. J Patchouli Essent Oil Prod. 2022;1(2):27–35. doi: https://doi.org/10.24815/jpeop.v1i2.23763

37. Lima Santos L, Barreto Brandão L, Lopes Martins R, de Menezes Rabelo E, Lobato Rodrigues AB, da Conceição Vieira Araújo CM, et al. Evaluation of the larvicidal potential of the essential oil Pogostemon cablin (Blanco) Benth in the control of Aedes aegypti. Pharmaceuticals (Basel). 2019;12(2):53. doi: https://doi.org/10.3390/ph12020053

38. Wenguang J, Xiaoyu L, Chu LI, Xiaoliang Z, Xianlong C, Penglong W, et al. Anti-inflammatory mechanism of the non-volatile ingredients originated from Guanghuoxiang based on high performance liquid chromatography-heated electron spray ionization-high resolution mass spectroscope and cell metabolomics. J Tradit Chin Med. 2024;44(2):260–7. doi: https://doi.org/10.19852/j.cnki.jtcm.20240203.003

39. Lee HS, Lee J, Smolensky D, Lee SH. Potential benefits of patchouli alcohol in prevention of human diseases: a mechanistic review. Int Immunopharmacol. 2020;89(Pt A):107056. doi: https://doi.org/10.1016/j.intimp.2020.107056

40. Deng Y, Liang X, Zhao L, Zhou X, Liu J, Li Z, et al. Pogostemon cablin acts as a key regulator of NF-κB signaling and has a potent therapeutic effect on intestinal mucosal inflammation. Mediat Inflamm. 2025;2025:9000672. doi: https://doi.org/10.1155/mi/9000672

41. Lu Q, Jiang C, Hou J, Qian H, Chu F, Zhang W, et al. Patchouli alcohol modulates the pregnancy X receptor/toll-like receptor 4/nuclear factor kappa B axis to suppress osteoclastogenesis. Front Pharmacol. 2021;12:684976. doi: https://doi.org/10.3389/fphar.2021.684976

42. Zhang G, Liu M, Song M, Wang J, Cai J, Lin C, et al. Patchouli alcohol activates PXR and suppresses the NF-κB-mediated intestinal inflammatory. J Ethnopharmacol. 2020;248:112302. doi: https://doi.org/10.1016/j.jep.2019.112302

43. Choo JH, Kim D, Min K, Lee SY, Kang NG. Pogostemon cablin extract promotes wound healing through OR2AT4 activation and exhibits anti-inflammatory activity. Curr Issues Mol Biol. 2024;46(8):9136–48. doi: https://doi.org/10.3390/cimb46080540

44. Santoso T, Khairani AF, Bashari MH, Ramadhanti J, Rohmawati E, Oktora MP, et al. Patchouli ethanol extract Pogostemon cablin Benth. against aging profiles in doxorubicin-induced 3T3-L1 fibroblast cell lines. Aging Med (Milton). 2025;8(2):156–63. doi: https://doi.org/10.1002/agm2.70014

45. Xian YF, Li YC, Ip SP, Lin ZX, Lai XP, Su ZR. Anti-inflammatory effect of patchouli alcohol isolated from Pogostemonis Herba in LPS-stimulated RAW264.7 macrophages. Exp Ther Med. 2011;2(3):545–50. doi: https://doi.org/10.3892/etm.2011.233

46. Silva-Filho SE, Wiirzler LAM, Cavalcante HAO, Uchida NS, de Souza Silva-Comar FM, Cardia GFE, et al. Effect of patchouli (Pogostemon cablin) essential oil on in vitro and in vivo leukocytes behavior in acute inflammatory response. Biomed Pharmacother. 2016;84:1697–704. doi: http://dx.doi.org/10.1016/j. biopha.2016.10.084

47. Li CW, Wu XL, Zhao XN, Su ZQ, Chen HM, Wang XF, et al. Anti-inflammatory property of the ethanol extract of the root and rhizome of Pogostemon cablin (Blanco) Benth. Sci World J. 2013;2013:434151. doi: https://doi.org/10.1155/2013/434151

48. Shoily MA, Islam ME, Rasel NM, Parvin S, Barmon J, Aqib AH, et al. Unveiling the biological activities of Heliotropium indicum L. plant extracts: anti-inflammatory activities, GC-MS analysis, and in-silico molecular docking. Sci Rep. 2025;15(1):3285. doi: https://doi.org/10.1038/s41598-024-79559-w

49. Fristiohady A, Mahmud T, Nuralifah, Idrus LS, Purnama LOMJ, Haruna LA, et al. Anti-inflammatory activities of lycopene on xylene-induced ear oedema in mice and its in-vitro evaluation towards protein denaturation. Res J Pharm Technol. 2025;18(3):1052–7. doi: https://doi.org/10.52711/0974-360X.2025.00151

50. Fristiohady A, Malaka MH, Safitri ARW, Diha D, Saripuddin, Purnama LOMJ, et al. Anti-inflammatory activity of ethanol extract of marine sponge Petrosia sp. by suppression of the level of tumor necrosis factor-alpha. Res J Pharm Technol. 2021;14(8):4435–9. doi: https://doi.org/10.52711/0974-360X.2021.00770

51. Yaghooti P, Alimoahmmadi S. Assessment of antinociceptive property of Cynara scolymus L. and possible mechanism of action in the formalin and writhing models of nociception in mice. Korean J Pain. 2024;37(3):218–32. doi: https://doi.org/10.3344/kjp.23355

52. Narayanan KB. Enzyme-based anti-inflammatory therapeutics for inflammatory diseases. Pharmaceutics. 2025;17(5):606. doi: https://doi.org/10.3390/pharmaceutics17050606

53. Chuncharunee A, Khosuk P, Naovarat R, Kaliyadan F, Sreekanth GP. ASPP 092, a phenolic diarylheptanoid from Curcuma comosa suppresses experimentally-induced inflammatory ear edema in mice. Saudi J Biol Sci. 2021;28(10):5937–46. doi: https://doi.org/10.1016/j.sjbs.2021.06.056

54. Raharjo SJ, Kikuchi T. Molecular dynamic screening sesquiterpenoid Pogostemon Herba as suggested cyclooxygenase inhibitor. Acta Inform Med. 2016;24(5):332–7. doi: https://doi.org/10.5455/aim.2016.24.332-337

55. Raharjo SJ, Mahdi C, Arifin N, Fatchiyah F. Patchouli alcohol isomers of Pogostemon herba predicted virtually as selective novel COX-1/COX-2 inhibitor. J Biol Res. 2014;18(2):98–102. doi: https://doi.org/10.23869/bphjbr.18.2.20134

56. Karim N, Khan I, Khan W, Khan I, Khan A, Halim SA, et al. Anti-nociceptive and anti-inflammatory activities of Asparacosin A involve selective cyclooxygenase 2 and inflammatory cytokines inhibition: an in-vitro, in-vivo, and in-silico approach. Front Immunol. 2019;10:581. doi: https://doi.org/10.3389/fimmu.2019.00581

57. Zhao L, Wang L, Guo Z, Zhang N, Feng Q, Li B. Polysaccharides from Pogostemon cablin (Blanco) Benth.: characterization and antioxidant activities. Front Pharmacol. 2022;13:933669. doi: https://doi.org/10.3389/fphar.2022.933669

58. Lu TC, Liao JC, Huang TH, Lin YC, Liu CY, Chiu YJ, et al. Analgesic and anti-inflammatory activities of the methanol extract from Pogostemon cablin. Evid Based Complement Alternat Med. 2011;2011:671741. doi: https://doi.org/10.1093/ecam/nep183

59. Kim EK, Kim JH, Jeong S, Choi YW, Choi HJ, Kim CY, et al. Pachypodol, a methoxyflavonoid isolated from Pogostemon cablin Bentham exerts antioxidant and cytoprotective effects in HepG2 cells: possible role of ERK-dependent Nrf2 activation. Int J Mol Sci. 2019;20(17):4082. doi: https://doi.org/10.3390/ijms20174082

60. Md Idris MH, Mohd Amin SN, Nyokat N, Khong HY, Selvaraj M, Zakaria ZA, et al. Flavonoids as dual inhibitors of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX): molecular docking and in vitro studies. Beni-Suef Univ J Basic Appl Sci. 2022;11:117. doi: https://doi.org/10.1186/s43088-022-00296-y

61. Stojanovi? NM, Ran?elovi? PJ, Simonovi? M, Radi? M, Todorovi? S, Corrigan M, et al. Essential oil constituents as anti-inflammatory and neuroprotective agents: an insight through microglia modulation. Int J Mol Sci. 2024;25(10):1–105168. doi: https://doi.org/10.3390/ijms25105168

Article Metrics
16 Views 4 Downloads 20 Total

Year

Month

Related Search

By author names