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1. INTRODUCTION
Pain and inflammation are fundamental biological 

responses triggered by injury, infection, or immune 
dysregulation [1,2]. While acute inflammation and nociception 
serve protective roles, their chronic manifestation contributes to 
the pathophysiology of various disorders, including rheumatoid 

arthritis, neuropathic pain, cancer, and autoimmune diseases 
[3,4]. At the molecular level, these processes are regulated by 
a complex network of pro-inflammatory mediators, notably 
cyclooxygenase (COX)-2 (COX-2) [5] and cytokines such 
as interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor 
necrosis factor-alpha (TNF-α) [6]. These mediators represent 
key targets in the development of anti-inflammatory and 
analgesic agents [7,8].

Due to their central role in inflammatory signaling, 
pharmacological intervention through modulation of these 
mediators remains the mainstay for managing pain and 
inflammation, primarily using non-steroidal anti-inflammatory 
drugs (NSAIDs) and corticosteroids. These drugs inhibit 
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ABSTRACT
Pogostemon cablin (Blanco) Benth. is a medicinal plant traditionally used to treat inflammation and pain. However, 
the phytochemical profile and pharmacological mechanisms of plants cultivated in North Konawe, Indonesia, are 
not well characterized. This study aimed to analyze the chemical constituents of its ethanolic extract using gas 
chromatography–mass spectrometry (GC-MS) and to evaluate its anti-inflammatory and antinociceptive effects 
through in vivo models. GC-MS analysis revealed 18 volatile compounds, with patchouli alcohol as the major 
component, followed by α-guaiene, seychellene, intermedeol, and β-caryophyllene derivatives.
The extract was tested in xylene-induced ear edema and formalin-induced nociceptive models in mice. Oral 
administration of the extract at doses of 25, 50, and 100 mg/kg significantly reduced ear edema thickness and pain 
responses in a dose-dependent manner. In the nociceptive model, the extract also suppressed systemic inflammatory 
responses, as indicated by reduced plasma levels of tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6, and 
cyclooxygenase-2 expression. These findings demonstrate that P. cablin exerts anti-inflammatory and antinociceptive 
effects, likely through inhibition of peripheral inflammatory mediators. The study highlights the therapeutic potential 
of P. cablin from North Konawe as a promising source of natural agents for inflammatory pain management.
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most published studies on P. cablin have used samples from 
regions with different environmental conditions (e.g., China, 
India, or Sumatra) [27–29]. Our study provides the first 
metabolite profiling of P. cablin cultivated in North Konawe, 
highlighting its potential chemical divergence.

Several studies have highlighted the broad 
pharmacological potential of P. cablin, encompassing 
antimicrobial, antioxidant [18,19,30], hepatoprotective [31], 
antidiabetic [19], and notably anti-inflammatory activities 
[18,19,32]. The essential oil of P. cablin is particularly rich in 
sesquiterpenes [33,34], including patchouli alcohol [17,35,36], 
α-bulnesene [17,34], and pogostol, which are bioactive 
compounds known for their therapeutic effects [37]. Among 
these, patchouli alcohol has been extensively studied for its 
anti-inflammatory properties, notably through inhibition of 
nitric oxide (NO) production [38,39] and suppression of the NF-
κB signaling pathway in lipopolysaccharide (LPS)-stimulated 
macrophages [40–42].

Moreover, in vitro studies have demonstrated that 
extracts of P. cablin can effectively inhibit pro-inflammatory 
cytokines [19,43] and reduce oxidative stress markers [19,44]. 
According to Xian et al. [45], patchouli alcohol markedly 
suppressed TNF-α and IL-6 levels in LPS-induced RAW264.7 
macrophages. Consistently, aqueous and ethanolic extracts 
of P. cablin have demonstrated anti-inflammatory effects by 
reducing edema and leukocyte infiltration in vivo, aligning with 
its ethnomedicinal applications [46,47]. 

Despite these promising findings, most research to 
date has primarily focused on the essential oil components 
of P. cablin and their in vitro bioactivities [19,45]. There 
remains a significant knowledge gap regarding the in vivo 
anti-inflammatory potential of ethanolic extracts, especially 
those derived from geographically distinct populations such 
as North Konawe, Southeast Sulawesi, Indonesia. Given 
that phytochemical composition can vary substantially with 
environmental factors, including soil type, altitude, and climate, 
as well as extraction methods [14], it is crucial to investigate 
the unique metabolite profiles and pharmacological efficacy of 
locally sourced P. cablin.

To date, no comprehensive study has integrated GC-
MS-based metabolite profiling with in vivo anti-inflammatory 
evaluation of the ethanolic extract of P. cablin collected 
from North Konawe. Moreover, previous research has not 
simultaneously examined the extract’s effects on the expression 
of key inflammatory biomarkers such as COX-2, IL-1β, IL-6, 
and TNF-α in an in vivo setting.

Therefore, this study aims to evaluate the anti-
inflammatory and antinociceptive activities of the ethanolic 
extract of P. cablin from Southeast Sulawesi using GC-MS-
based metabolite profiling and in vivo biomarker analysis. By 
examining a broader range of bioactive compounds beyond 
essential oils and correlating them with pharmacological 
effects and inflammatory biomarkers, this study offers novel 
mechanistic and chemotaxonomic insights. The P. cablin 
used was collected from North Konawe, a region with unique 
agroecological characteristics that may influence its metabolite 
profile and therapeutic potential.

COX enzymes and subsequent prostaglandin synthesis, 
thereby alleviating inflammatory symptoms and pain [9,10]. 
Nonetheless, their prolonged use is often limited by serious 
adverse effects such as gastrointestinal ulceration, renal toxicity, 
and elevated cardiovascular risk [11,12]. Consequently, there 
is a growing interest in exploring natural products, especially 
plant-derived compounds, as alternative or complementary 
anti-inflammatory therapies with potentially safer toxicity 
profiles [13,14].

Among the various medicinal plants investigated 
for their anti-inflammatory potential, Pogostemon cablin 
(Blanco) Benth., commonly known as patchouli, is a perennial 
aromatic herb widely cultivated in tropical regions of Asia, 
including Indonesia [15]. The plant is primarily known for its 
essential oil, which has been widely studied for antimicrobial, 
antioxidant, and insecticidal properties [16,17]. Beyond its 
aromatic uses, P. cablin has a long history in Southeast Asian 
traditional medicine for managing inflammatory conditions, 
fever, and various skin ailments [18,19]. However, despite its 
ethnomedicinal applications, scientific studies investigating its 
anti-inflammatory effects, particularly the bioactive compounds 
responsible and their mechanisms of action, remain limited and 
underexplored.

Phytochemical investigations have revealed that the 
essential oil derived from its leaves is rich in sesquiterpenes and 
other volatile compounds, many of which have demonstrated 
bioactivity in preclinical studies [18,20]. However, the 
phytochemical profile and therapeutic efficacy of P. cablin can 
vary considerably depending on environmental conditions, 
cultivation practices, and geographic origin [20,21].

Recognizing this variability, it is essential to investigate 
the chemical and pharmacological profile of P. cablin from 
distinct ecological regions. North Konawe Regency, located in 
Southeast Sulawesi, Indonesia, presents a particularly promising 
area for the cultivation and study of P. cablin due to its unique 
agroclimatic characteristics. This region experiences a tropical 
rainforest climate with high humidity, abundant rainfall, and 
a stable temperature range, factors conducive to the optimal 
growth and secondary metabolite production in aromatic and 
medicinal plants. These conditions are believed to enhance 
the quality and diversity of essential oil components, which in 
turn may influence the pharmacological potential of the plant 
[22,23]. In addition, extensive mining activities in the region 
may affect soil composition, increase heavy metal exposure, and 
induce environmental stress in plants, potentially altering their 
phytochemical profiles. These socio-environmental pressures, 
especially from large-scale nickel extraction, may also pose 
indirect risks to human health and ecological balance [24–26]. 
In this context, the development of natural therapeutic resources 
from within the region gains added significance. P. cablin not 
only represents a sustainable agricultural commodity but also 
holds potential as a locally sourced medicinal plant capable 
of addressing inflammation-related health concerns, which 
may be exacerbated by industrialization-related environmental 
stressors.

These abiotic factors can significantly alter the 
biosynthesis of secondary metabolites in medicinal plants such 
as P. cablin. This aspect has not been previously explored, as 
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2. MATERIAL AND METHODS

2.1 Materials
The materials used in this study included dried leaves 

of P. cablin (North Konawe chemotype) and analytical-grade 
reagents. Ethanol 96% (Bratachem®, Indonesia) was used as the 
extraction solvent, sodium carboxymethyl cellulose (Na-CMC) 
0.5% was obtained from Sigma-Aldrich (USA), diclofenac 
sodium, EDTA, sodium citrate, and heparin. All solvents and 
reagents used were of analytical grade and used without further 
purification.

2.2 Collection, determination, and preparation of P. cablin 
leaves

Fresh P. cablin leaves were collected manually using 
clean pruning tools. The samples were then sorted to remove 
any damaged or contaminated material, thoroughly washed 
with running water, and air-dried. After drying, the leaves were 
cut into small pieces to facilitate the extraction process.

2.3 Extraction
Extraction was conducted using the maceration 

method with ethanol as the solvent.
Ethanol was chosen due to its efficiency in extracting 

a broad range of phytochemicals, including both polar and 
moderately non-polar compounds such as flavonoids, alkaloids, 
and phenolics, which are known for their anti-inflammatory 
activity. Moreover, ethanol is widely used in phytochemical 
research for its low toxicity and ability to preserve bioactive 
constituents. P. cablin samples were soaked in the solvent for 
3 × 24 hours at room temperature. Subsequently, the ethanolic 
extract was filtered through filter paper, and the solvent was 
evaporated under reduced pressure using a rotary evaporator at 
50°C to obtain a crude extract.

2.4 Phytochemical profiling by GC-MS
The ethanolic extract of P. cablin was analyzed 

using gas chromatography–mass spectrometry (GC-MS) to 
characterize its volatile constituents. A total of 1 g of the dried 
extract was dissolved in 2 ml of distilled water and homogenized 
using a shaker for 10 minutes. Then, 10 ml of ethyl acetate and 
10 g of anhydrous sodium sulfate (Merck®, Germany) were 
added to eliminate water content. The mixture was sonicated for 
10 minutes to enhance the extraction of bioactive compounds. 
After sonication, the sample was filtered through Whatman 
filter paper to remove solid residues. The filtrate was evaporated 
under ultrasonic conditions until all ethyl acetate solvent was 
removed. The resulting residue was reconstituted in 1 ml of 
n-hexane (Merck®, Germany) and transferred into a tightly 
sealed GC vial. GC-MS analysis was performed using an 
Agilent 8890 GC system coupled with a Xevo® TQ-GC mass 
spectrometer (UK). A DB-5MS column (30 m × 250 µm × 
0.25 µm) was used with helium as the carrier gas at a constant 
flow rate of 1.0 ml/min. The oven temperature program was 
as follows: initially 110°C (held for 3.5 min), ramped at 10°C/
min to 200°C (held for 1 min), followed by a second ramp of 
5°C/min to 280°C (held for 12 minutes), with a total runtime of 

41.5 minutes. The injector was set to splitless mode at 280°C, 
and 1 µl of the sample was injected. The mass spectrometer 
operated in electron ionization (EI+) mode, scanning a mass 
range of 50–500 m/z, with the ion source at 200°C and the 
transfer line at 250°C. Compound identification was carried out 
by comparing the mass spectra with those available in the NIST 
library (version 2011) [48]. No authentic standards were used, 
and retention indices were not determined.

2.5 Ethical approval
All experimental procedures involving animals were 

conducted in accordance with institutional guidelines and 
approved by the Institute of Research and Community Service, 
Universitas Halu Oleo, with ethical clearance number 3343/
UN29.20.1.2/PG/2024.

2.6 In vivo anti-inflammatory assay

2.6.1. Experimental animals
18 male BALB-C mice (aged 8–10 weeks, body weight 

20–30 g) were obtained from a certified laboratory animal 
supplier. Mice were housed under standard conditions (12 hours 
light/dark cycle, 22°C ± 2°C, relative humidity 60%–70%) with 
ad libitum access to standard food and water. All animals were 
acclimatized for at least 7 days before experimentation.

2.6.2. Inflammation induction and evaluation
Acute inflammation was induced by the topical 

application of 20 µl xylene to the anterior and posterior surfaces 
of the right ear of each mouse. Fifteen minutes after xylene 
application, mice were orally administered their respective 
treatments: 0.5% Na-CMC (negative control), diclofenac 
sodium 25 mg/kg BW (positive control), ethanolic extract 
of Pogostemon cablin (EEPC) at doses of 25, 50, and 100 
mg/kg BW. A sham group received no xylene or treatment. 
The thickness of the right ear was measured using a digital 
ultrasonic thickness gauge at 15, 30, and 45 minutes after xylene 
application. The percentage of inflammation was calculated 
using the formula:

% Inflammatory = [(Dt – D0)/ D0] × 100� (1)

where Dt is the ear thickness at each time point and 
D0 is the baseline thickness before induction. The percentage of 
inhibition was calculated as follows:

% Inhibition = [(a – b)/a] × 100� (2)

where a is the % inflammation in the naïve group and 
b is the % inflammation in the treatment group. The doses of 
25, 50, and 100 mg/kg BW were selected based on preliminary 
studies and literature reporting the effective dose range of P. 
cablin extracts in similar pharmacological evaluations [49].

2.6.3. Determinations of cytokine levels
After the final ear thickness measurement at 45 minutes 

post-xylene induction, animals were sacrificed by cervical 
dislocation. Approximately 3 ml of blood was collected via 
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intracardiac puncture into EDTA-coated tubes. The collected 
blood was immediately centrifuged at 3000 rpm for 15 minutes 
to separate plasma. The plasma samples were then stored at 
−80°C until analysis. The concentration of TNF-α, IL-1β, and 
IL-6 was determined using enzyme-linked immunosorbent 
assay (ELISA) kits (Elabscience®, Houston, TX, USA; Cat. No. 
E-EL-M0037, E-EL-M0039, and E-EL-M0046, respectively), 
according to the manufacturer’s instructions [50]. In this 
experiment, the vehicle-treated group served as the negative 
control, and the diclofenac sodium-treated group was used as 
the positive control for cytokine inhibition.

2.7 In vivo antinociceptive assay

2.7.1. Experimental animals
18 male BALB-C mice (aged 8–10 weeks, body weight 

20–30 g) were obtained from a certified laboratory animal 
supplier. Mice were housed under standard conditions (12 hours 
light/dark cycle, 22°C ± 2°C, relative humidity 60%–70%) with 
ad libitum access to standard food and water. All animals were 
acclimatized for at least 7 days before experimentation.

2.7.2. Induction and assessment of nociceptive response
Mice were fasted for 18 hours before the experiment 

but had free access to water. Animals were randomly divided 
into six groups (n = 3 per group): normal control, negative 
control (Na-CMC 0.5%), positive control (diclofenac sodium 
50 mg/kg BW), and three test groups receiving P. cablin extract 
at doses of 25, 50, and 100 mg/kg BW orally. One hour after 
treatment, each mouse received a subplantar injection of 50 µl 
of 5% formalin into the left hind paw. Nociceptive behavior 
was observed for 60 minutes, and the time spent licking the 
injected paw was recorded in the early phase (0–5 minutes) and 
late phase (15–30 minutes). The percentage of inhibition was 
calculated compared to the negative control group [51].

%Protection = Rt (negative control– test substance) 
/Rt (negative control) × 100� (3)

where Rt is the response time.

2.7.3. Measurement of cytokine and COX-2 levels
At the third hour after formalin injection, mice were 

euthanized, and blood samples were collected via cardiac 
puncture. The blood was placed in EDTA tubes and centrifuged 
at 2,500 rpm for 15 minutes to separate plasma. The plasma 
was stored at –80°C until further analysis. The concentrations 
of TNF-α, IL-1β, IL-6, and COX-2 in plasma were measured 
using a colorimetric commercial ELISA kit (Elabscience®, 
Houston, TX) according to the manufacturer’s instructions [47]. 
The vehicle-treated group served as the negative control, and 
the diclofenac sodium-treated group was used as the positive 
control in the cytokine and COX-2 inhibition analysis.

2.8 Data analysis
The data obtained from all in vivo experiments, 

including xylene-induced ear edema, formalin-induced 
nociceptive response, and COX-2 levels, were analyzed using 

IBM SPSS Statistics version 22. Statistical comparisons between 
groups were performed using one-way analysis of variance 
(ANOVA) followed by Tukey’s post hoc test. A p-value < 0.05 
was considered statistically significant. All results are presented 
as mean ± SD.

3. RESULTS AND DISCUSSION

3.1 GC-MS analysis of P. cablin essential oil from North 
Konawe

The GC–MS analysis provided detailed insights into the 
chemical composition of the ethanolic extract of P. cablin  leaves 
collected from North Konawe, identifying 18 volatile constituents 
(Table 1), with the corresponding chromatogram presented in 
Figure 1. The major compound was patchouli alcohol, followed 
by α-guaiene, seychellene, intermedeol, neointermedeol, and 
β-caryophyllene derivatives. These sesquiterpenes are widely 
recognized for their anti-inflammatory, antioxidant, and 
antimicrobial activities (Table 2) [17,19,43]. Patchouli alcohol, 
in particular, is a well-established bioactive marker of P. cablin, 
recognized for its anti-inflammatory and antiarthritic effects 
via inhibition of NO production and modulation of NF-κB 
signaling [35,39,40,42]. The presence of α-guaiene, seychellene, 
intermedeol, and β-caryophyllene further supports the anti-
inflammatory potential of the extract, possibly through synergistic 
mechanisms among sesquiterpene constituents [34,37]. 
Additionally, eugenol, known for its analgesic, anti-inflammatory, 
and antioxidant properties [38], contributes to the extract’s 
therapeutic relevance. Compounds with limited or no established 
pharmacological relevance were not emphasized in this discussion 
to maintain focus on the major bioactive constituents. Generally, 
the GC-MS profile reveals a phytochemical composition rich in 
pharmacologically active sesquiterpenes, supporting the potential 
of P. cablin from Southeast Sulawesi as a promising source of 
anti-inflammatory agents.

Based on the chromatographic profile, patchouli alcohol 
was identified as the predominant constituent, accompanied 
by α-guaiene, seychellene, intermedeol, neointermedeol, and 
β-caryophyllene, which is consistent with the patchoulol-type 
chemotype. Compared with other Indonesian regions, the North 
Konawe sample differs from P. cablin from Kolaka, Southeast 
Sulawesi, which contains lower patchouli alcohol but relatively 
higher δ- and α-guaiene, while Aceh oils typically show 
patchouli alcohol levels of 28.9%–42.8% with notable regional 
variation in guaiene and aciphyllene. International comparisons 
further reveal diversity: Chinese chemotypes include both 
patchoulol- and pogostone-types, Indian cultivars tend to 
yield high patchouli alcohol (~34%), whereas Vietnamese oils 
are more balanced, with patchouli alcohol (~32%) alongside 
α-guaiene and α-bulnesene [15,19–21]. These divergences are 
attributed to environmental, ecological, and agronomic factors 
[22–24], suggesting that the North Konawe sample represents a 
distinct patchoulol-type profile shaped by its local terroir.

3.2 In vivo anti-inflammatory activity of P. cablin ethanolic 
extract

To evaluate the anti-inflammatory potential of P. 
cablin, the xylene-induced ear edema model in mice was 
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employed. After xylene induction, the mice were treated with 
EEPC at doses of 25, 50, and 100 mg/kg BW. Na-CMC (0.5%) 
was used as the negative control, while diclofenac sodium was 
the positive control. Ear edema was induced topically using 
xylene, and ear thickness was measured at 0 (pre-induction), 
15, 30, and 45 minutes post-induction (Fig. 2).

As illustrated in Figure 2, the negative control group 
showed a time-dependent increase in ear thickness, peaking 
at 45 minutes. EEPC-treated groups significantly reduced ear 
edema compared to the negative control, with the 100 mg/kg 
dose exhibiting the strongest effect, comparable to diclofenac 
sodium (p = 0.195).

As illustrated in Figure 3, diclofenac sodium exhibited 
the highest edema inhibition (69.83% ± 1.83%). The EEPC 100 
mg/kg group showed a comparable inhibition (69.28% ± 0.32%; 
p = 1.000), indicating no significant difference. The 50 and 
25 mg/kg groups showed lower inhibition percentages of 
60.82% ± 6.18% (p = 0.062) and 53.14% ± 4.42% (p = 0.001), 

respectively, suggesting a dose-dependent anti-inflammatory 
effect.

The development of ear edema is primarily triggered 
by the rapid release of inflammatory mediators, including 
histamine, serotonin, bradykinin, and prostaglandins, which 
contribute to enhanced vascular permeability and local plasma 
extravasation, leading to tissue swelling [52,53]. The anti-
inflammatory effect observed in the ethanolic extract of P. 
cablin  is likely attributed to its rich phytochemical composition, 
including patchouli alcohol, flavonoids, terpenoids, and 
phenolic compounds [20–21,29]. These bioactive constituents 
have been previously reported to exhibit anti-inflammatory 
properties by modulating the production of pro-inflammatory 
mediators and downregulating key pathways such as COX [54–
56] and NF-κB signaling [40]. Specifically, patchouli alcohol 
has been shown to suppress the expression of TNF-α and IL-6 
by inhibiting NF-κB activation and IκB-α phosphorylation in 
LPS-induced macrophages [42].

Table 1. Compounds identified in the ethanolic extract of Pogostemon cablin leaves from North Konawe by GC–MS analysis.

No Retention time
Molecular 

weight 
(MW)

Match Reverse 
match

Probability 
(%) Compounds name Biological activity

1. 4.417 106 678 681 12.9 o-Xylene (C8H10) Antibacterial

2. 10.864 338 614 623 10.1 Uvidin C, diacetate (C19H30O5) Antiinflammation, antioxidant 

3. 10.864 164 636 636 13.3 Eugenol (C10H12O2)
Antiinflammation, analgesic, 
anticancer, antioxidant

4. 13.092 204 703 706 5.74 α-Guaiene (C15H24)
Antiinflammation, antioxidant, 
antimicrobial

5. 13.648 204 686 687 11.2 Seychellene (C15H24) Antimicrobial, antioxidant

6. 18.217 228 617 650 11.8 5-Bromoadamantan-2-one (C10H13BrO) Anticancer 

7. 21.042 222 662 675 7.91 Neointermedeol (C15H26O) Antiinflammation, Antimicrobial

8. 21.042 222 657 672 6.85 Intermedeol (C15H26O) Antiinflammation, antioxidant

9. 21.283 229 549 570 15.2 5-Methyl-1,2,4,5-tetrahydrospiro[benzo[c]
azepine-3,1’-cyclohexane] (C16H23N) Antidepressant, anticancer 

10. 21.283 214 545 591 13.5
4H-1,2,4-Triazole, 
4-(2,4,5-trimethylbenzylidenamino)- 
(C12H14N4)

Antifungal, antimicrobial

11. 22.605 222 623 623 16.1 Patchouli alcohol (C15H26O) Antiinflammation, antiarthritic, 
anticancer

12. 23.044 206 486 511 10.2 4-(2,4,4-Trimethyl-bicyclo[4.1.0]hept-2-en-
3-yl)-butan-2-one (C14H22O) Antioxidant

13. 24.235 368 505 611 19.8 Phenylphosphonic acid, dodecyl propyl 
ester (C21H37O3P) Antimicrobial

14. 24.619 372 646 657 4.43 i-Propyl 7,10,13,16,19-docosapentaenoate 
(C25H40O2)

Antiinflammation, 
antihyperlipidemic

15. 26.131 338 614 623 10.1 Uvidin C, diacetate (C19H30O5) Antiinflammation, antioxidant

16. 26.453 204 447 632 20.9 Hydratropic acid, p-(2-methylpropenyl) 
(C13H16O2)

Antiinflammation, antioxidant, 
antimicrobial

17. 23.63 224 653 655 69.7
4-Hydroxy-6-methyl-3-(4-
methylpentanoyl)-2H-pyran-2-one 
(C12H16O4)

Antiinflammation, anticancer

18. 25.18 218 636 655 19.1
2(3H)-Naphthalenone, 4,4a,5,6,7,8-
hexahydro-4a,5-dimethyl-3-(1-
methylethylidene)- (C15H22O)

Antimicrobial, antiinflammation
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In general, anti-inflammatory agents may exert their 
effects through various mechanisms, including suppression 
of inflammatory cytokines (e.g., TNF-α, IL-1β, and IL-6) 
[19,43], inhibition of prostaglandin synthesis via COX-1/COX-
2 inhibition [54,55], modulation of reactive oxygen species 
[57], or by downregulating transcription factors such as NF-κB 
[40]. The anti-inflammatory activity observed in EEPC-treated 
groups may involve one or more of these mechanisms.

These results confirm the dose-dependent anti-
inflammatory effect of EEPC in an acute inflammation model. 
The comparable efficacy of the 100 mg/kg dose with diclofenac 
suggests that EEPC may serve as a promising alternative for 
managing early-stage inflammatory responses, likely through 
modulation of vascular permeability and mediator release.

3.3 Effect of Pogostemon cablin ethanolic extract on pro-
inflammatory cytokine levels

To explore the molecular mechanism behind the 
anti-inflammatory effect observed, we analyzed the plasma 

levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-
6). EEPC treatment significantly attenuated these cytokines in 
a dose-dependent manner, with the 100 mg/kg dose showing 
comparable efficacy to diclofenac.

As shown in Figure 4, mice in the negative control 
group exhibited significantly elevated levels of TNF-α, IL-
1β, and IL-6. Treatment with diclofenac sodium (25 mg/kg) 
markedly reduced the levels of these cytokines compared to 
the negative control group (p = 0.000). Similarly, all EEPC-
treated groups (25, 50, and 100 mg/kg) significantly attenuated 
TNF-α, IL-1β, and IL-6 levels in a dose-dependent manner (p 
= 0.000). Notably, the 100 mg/kg EEPC group demonstrated 
cytokine inhibition that was statistically comparable to that of 
the diclofenac-treated group (p = 0.053).

The suppression of TNF-α, IL-1β, and IL-6 levels 
suggests that EEPC may exert its anti-inflammatory effects 
through the inhibition of early-phase inflammatory signaling. 
These cytokines play pivotal roles in recruiting immune 
cells, increasing vascular permeability, and promoting 
the synthesis of other inflammatory mediators such as 
prostaglandins and leukotrienes. Their inhibition could 
therefore explain the reduction in ear swelling observed in 
the edema model.

These findings are consistent with previous studies 
reporting the anti-inflammatory properties of P. cablin, 
particularly due to its major bioactive constituents such as 
patchouli alcohol, flavonoids, terpenoids, tannins, and alkaloids. 
Patchouli alcohol, for instance, has been reported to inhibit 
NF-κB activation [40], reduce COX-2 expression [54,55], and 
modulate MAPK signaling pathways mechanisms [32] that 
collectively downregulate the production of pro-inflammatory 
cytokines and enzymes [19,43]. These compounds may work 

Table 2. Summary of the major volatile metabolites identified from 
Pogostemon cablin ethanolic leaf extract, categorized by chemical 

class, based on GC-MS analysis.
Chemical class Identified compounds

Sesquiterpenes Patchouli alcohol, α-guaiene, seychellene, 
β-caryophyllene, intermedeol, neointermedeol

Phenolics Eugenol

Fatty acid derivatives Hydrastropic acid, uvidin C diacetate

Others 4-hydroxy-6-methyl-3-(4-methylpentanoyl)-2H-
pyran-2-one

Figure 1. GC–MS chromatogram of ethanolic extract of Pogostemon cablin (Blanco) Benth leaves showing identified major constituents, including patchouli 
alcohol, α-guaiene, seychellene, and α-patchoulene. Compounds were identified based on retention time and mass spectral matching using the NIST library. Peak 
intensities are expressed in relative abundance (%).
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synergistically to reduce cytokine production and alleviate tissue 
inflammation. The significant inhibition of TNF-α, IL-1β, and 
IL-6 levels reinforces the potential of P. cablin as a natural anti-
inflammatory agent. Its ability to modulate key inflammatory 

mediators indicates a promising therapeutic value in managing 
inflammation-related conditions. However, further studies are 
warranted to isolate specific active compounds and elucidate 
their molecular targets within the inflammatory cascade.

Figure 2. Effect of ethanolic extract of Pogostemon cablin (EEPC) on xylene-induced ear edema in mice. EEPC significantly reduced ear swelling compared to the 
control group. Data are represent mean ± SD (n = 3). *Significantly different from diclofenac sodium (p < 0.05); **Not significantly different (p > 0.05).

Figure 3. Percentage inhibition by ethanolic extract of Pogostemon cablin (EEPC) on xylene-induced ear inflammation in mice. 
EEPC demonstrated dose-dependent anti-inflammatory activity. Data is presented as mean ± SD (n = 3). *Significantly different 
from diclofenac sodium (p < 0.05); **Not significantly different (p > 0.05).
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3.4 Nociceptive activity of P. cablin ethanolic extract
The EEPC was evaluated for its antinociceptive effect 

using the formalin-induced pain model. As shown in Table 3, the 
negative control group exhibited the longest licking durations 
in both early (0–5 minutes) and late (15–30 minutes) phases, 
indicating high nociceptive activity due to the absence of 
analgesic treatment. In contrast, EEPC-treated groups showed 
a dose-dependent reduction in nociceptive response, with the 
100 mg/kg group demonstrating the shortest licking duration. 
These findings align with Lu et al. [58], who demonstrated that 
P. cablin extract exhibits significant antinociceptive activity in 
various pain models, particularly at higher doses. This activity 
is likely attributed to its major constituents, such as pachypodol, 
a methoxylated flavonoid known for its peripheral and central 
analgesic effects. Pachypodol may exert its antinociceptive 
properties by modulating opioid pathways, inhibiting COX 
activity, and suppressing pro-inflammatory mediators such as 
prostaglandins and cytokines. Additionally, it may interfere with 
key signaling pathways, including NF-κB and MAPK, which 
are involved in pain perception and inflammation [18,19,59].

The highest percentage of protection was observed 
in the 100 mg/kg group, reaching 66.32% ± 1.95% (early 
phase) and 67.49% ± 2.66% (late phase), which was close 
to the positive control with 73.69% ± 3.64% and 76.37% ± 
2.57%, respectively (Fig. 5). The greater protection in the late 
phase reflects involvement of inflammatory mediators like 
prostaglandins and cytokines, where peripherally acting drugs 
such as NSAIDs are more effective.

The antinociceptive effect of EEPC is likely associated 
with its phytochemical constituents, including alkaloids, 
flavonoids, saponins, and tannins. Flavonoids in particular 
may act as COX-2 and PGE2 inhibitors, mimicking NSAIDs 
in reducing inflammatory pain. This inhibition suppresses the 
arachidonic acid pathway and limits prostaglandin synthesis, 
thereby alleviating pain and inflammation [56,60].

The 100 mg/kg dose of EEPC demonstrated an effect 
comparable to the positive control group, whereas the 25 and 
50 mg/kg doses provided moderate protection, significantly 
reducing nociceptive response compared to the untreated control. 
Thus, EEPC at 100 mg/kg BW exhibited a comparable analgesic 
effect to diclofenac sodium, reinforcing its potential as a natural 
pain-relieving agent. These results support the potential of P. 
cablin ethanolic extract as an effective natural analgesic agent, 
particularly at a dose of 100 mg/kg BW, with effects comparable 
to diclofenac sodium in the formalin-induced pain model.

Table 3. Nociceptive activity of Pogostemon cablin ethanolic extract in the formalin-induced 
pain model in mice (mean ± SD, n = 3)

Sample Early phase (0–5 min) 
response time (s)

Protection 
early (%)

Late phase (15–30 min) 
response time (s)

Protection 
late (%)

Control (−) 210.00 ± 10.00 0.00 ± 0.00 96.00 ± 3.61 0.00 ± 0.00

Control (+) 55.00 ± 5.00 73.69 ± 3.64 22.00 ± 2.00 76.37 ± 2.57

EEPC 100 mg/kg 70.67 ± 4.04 66.32 ± 1.95 29.67 ± 2.08 67.49 ± 2.66

EEPC 50 mg/kg 87.67 ± 2.52 58.17 ± 2.76 36.67 ± 3.06 59.15 ± 1.87

EEPC 25 mg/kg 101.00 ± 7.94 51.92 ± 2.51 43.33 ± 4.16 52.79 ± 3.84

Figure 4. Plasma levels of pro-inflammatory cytokines in mice after treatment 
with ethanolic extract of Pogostemon cablin (EEPC): (a) TNF-α, (b) IL-1β, and 
(c) IL-6. Data are presented as mean ± SD (n = 3). *Significantly different from 
diclofenac sodium (p < 0.05); **Not significantly different (p > 0.05).
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3.5 Cytokine levels and COX-2 expression in the nociceptive 
model

The plasma concentrations of TNF-α, IL-1β, IL-6, 
and COX-2 following nociceptive induction and treatment with 

EEPC are shown in Figure 6. The negative control exhibited 
elevated levels of TNF-α, IL-1β, IL-6, and COX-2 compared to 
the normal control group (p = 0.000), indicating strong systemic 
inflammation due to nociceptive stimulation.

Figure 5. Percentage of nociceptive inhibition by ethanolic extract of Pogostemon cablin (EEPC) during the early (neurogenic) and late (inflammatory) 
phases of formalin-induced nociceptive response in mice. Data are presented as mean ± SD (n = 3).

Figure 6. Levels of pro-inflammatory cytokines and COX-2 in mice plasma after treatment with ethanolic extract of Pogostemon cablin 
(EEPC): (a) TNF-α, (b) IL-1β, (c) IL-6, and (d) COX-2. Data are presented as mean ± SD (n = 3). *Significantly different from diclofenac 
sodium (p < 0.05); **Not significantly different (p > 0.05).
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All doses of EEPC produced a dose-dependent 
and statistically significant reduction in the levels of pro-
inflammatory cytokines and COX-2 compared to the negative 
control group (p = 0.000). At 100 mg/kg, TNF-α was reduced 
to 67.86 ± 0.56 pg/ml, IL-1β to 6.28 ± 0.61 pg/ml, IL-6 
to 6.80 ± 0.34 pg/ml, and COX-2 to 5.66 ± 0.73 pg/ml; 
these results were comparable to the positive control group 
(p = 0.060).

The marked reduction of TNF-α, IL-1β, and IL-6 
levels supports the role of EEPC in modulating the inflammatory 
pathways that underlie nociceptive pain. These cytokines are 
known to sensitize peripheral nociceptors and amplify pain 
signaling, while COX-2 is a key enzyme in prostaglandin 
synthesis that enhances hyperalgesia. By attenuating these 
mediators, EEPC likely interferes with both peripheral and 
central components of the nociceptive cascade [40,45].

The phytoconstituents in P. cablin, such as patchouli 
alcohol and β-caryophyllene, may contribute to these effects 
via inhibition of NF-κB and MAPK signaling pathways or 
activation of cannabinoid type 2 receptors, both of which are 
implicated in cytokine suppression and COX-2 regulation 
[40,61]. These findings highlight the potential of EEPC as a 
natural antinociceptive agent through modulation of pro-
inflammatory cytokines and COX-2 expression.

However, this study has some limitations. Although 
the extract showed significant anti-inflammatory activity at 
the tested doses, formal acute or chronic toxicity studies were 
not conducted. The absence of such data limits the ability to 
fully evaluate the safety profile of the extract, especially under 
prolonged or repeated use. Future studies should focus on 
detailed toxicological evaluations to establish the long-term 
safety and therapeutic window of P. cablin extract.

4. CONCLUSION
This study confirms that P. cablin essential oil from 

North Konawe possesses significant anti-inflammatory and 
antinociceptive activities, as demonstrated by the suppression 
of COX-2, TNF-α, IL-1β, and IL-6 levels in a nociceptive 
mouse model. These pharmacological effects are supported by 
the presence of bioactive compounds identified through GC-
MS analysis. The findings suggest that P. cablin essential oil 
has strong potential as a natural therapeutic agent for managing 
inflammation-related conditions. Furthermore, the unique 
agroclimatic characteristics of North Konawe may contribute 
to the plant’s phytochemical richness, reinforcing the value of 
promoting locally derived medicinal resources. Future studies 
are warranted to explore its mechanisms in more detail and to 
develop standardized formulations for clinical use.
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