Type 2 diabetes (T2D) is a chronic metabolic disorder known to impair male reproductive function through mechanisms involving insulin resistance, hyperglycemia, and oxidative stress. This study aimed to investigate the potential of red rice bran extract (RBE), a dietary antioxidant, alone or in combination with metformin (Met), in alleviating reproductive dysfunction in a T2D rat model. Male Wistar rats were divided into five groups: non-diabetic control, untreated diabetic, RBE-treated diabetic, Met-treated diabetic, and RBE+Met-treated diabetic. Diabetes was induced by a high-fat diet followed by a low-dose streptozotocin injection. After confirmation of diabetes, treatments were administered orally once daily for 12 weeks. Reproductive and oxidative stress markers were evaluated, including serum testosterone, sperm quality, Johnsen score (a histological index of spermatogenesis), antioxidant enzyme activities, and testicular histology. Diabetic rats showed significant reductions in testosterone levels, sperm parameters, Johnsen score, and testicular morphology, along with elevated malondialdehyde and reduced superoxide dismutase and glutathione levels. Treatment with RBE and/or Met improved sperm concentration, Johnsen score, and testicular architecture, and attenuated oxidative stress. However, sperm motility and testosterone levels did not return to control levels. These findings suggest that RBE may serve as a natural adjunctive therapy for diabetes-induced male reproductive impairment and warrant further investigation.
Jeefoo WP, Ontawong A, Pengnet S, Promsrisuk T, Kangwan N, Phachonpai W, Pudgerd A. Red rice bran extract attenuates oxidative stress and testicular damage in high-fat diet/streptozotocin-induced diabetic rats. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.249609
1. Ong KL, Stafford LK, McLaughlin SA, Boyko EJ, Vollset SE, Smith AE, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203–34. https://doi.org/10.1016/S0140-6736(23)01301-6
2. Tan SY, Wong JLM, Sim YJ, Wong SS, Elhassan SAM, Tan SH, et al. Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr. 2019;13(1):364–72. https://doi.org/10.1016/j.dsx.2018.10.008
3. Reed J, Bain S, Kanamarlapudi V. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments, and future perspectives. Diabetes Metab Syndr Obes. 2021;14:3567– 602. https://doi.org/10.2147/DMSO.S319895
4. El Husseny MWAA, Mamdouh M, Shaban S, Abushouk AIA, Zaki MMM, Ahmed OM, et al. Adipokines: potential therapeutic targets for vascular dysfunction in type II diabetes mellitus and obesity. J Diabetes Res. 2017;2017:8095926. https://doi.org/10.1155/2017/8095926
5. Aleissa MS, Alkahtani S, Abd Eldaim MMA, Ahmed AM, Bung?u SG, Almutairi B, et al. Fucoidan ameliorates oxidative stress, inflammation, DNA damage, and hepatorenal injuries in diabetic rats intoxicated with aflatoxin B1. Oxid Med Cell Longev. 2020;2020:9316751. https://doi.org/10.1155/2020/9316751
6. Chobot A, Górowska-Kowolik K, Soko?owska M, Jarosz-Chobot P. Obesity and diabetes-Not only a simple link between two epidemics. Diabetes Metab Res Rev. 2018;34(7):e3042. https://doi.org/10.1002/dmrr.3042
7. Dilworth L, Facey A, Omoruyi F. Diabetes mellitus and its metabolic complications: the role of adipose tissues. Int J Mol Sci. 2021;22(14):7644. https://doi.org/10.3390/ijms22147644
8. Al-Megrin WA, El-Khadragy MF, Hussein MH, Mahgoub S, Abdel-Mohsen DM, Taha H, et al. Green Coffea arabica extract ameliorates testicular injury in high-fat diet/streptozotocin-induced diabetes in rats. J Diabetes Res. 2020;2020:6762709. https://doi.org/10.1155/2020/6762709
9. Choubey M, Ranjan A, Bora PS, Krishna A. Protective role of adiponectin against testicular impairment in high-fat diet/streptozotocin-induced type 2 diabetic mice. Biochimie. 2020;168:41–52. https://doi.org/10.1016/j.biochi.2019.10.014
10. Laleethambika N, Anila V, Manojkumar C, Muruganandam I, Giridharan B, Ravimanickam T, et al. Diabetes and sperm DNA damage: efficacy of antioxidants. SN Compr Clin Med. 2019;1:49–59.
11. Alahmar AT. Role of oxidative stress in male infertility: an updated review. J Hum Reprod Sci. 2019;12(1):4–18. https://doi.org/10.4103/jhrs.JHRS_150_18
12. Mu Y, Luo LB, Wu SJ, Gao Y, Qin XL, Zhao J, et al. Bezafibrate alleviates diabetes-induced spermatogenesis dysfunction by inhibiting inflammation and oxidative stress. Heliyon. 2024;10(6):e28284. https://doi.org/10.1016/j.heliyon.2024.e28284
13. Abd El-Hameed AM. Polydatin-loaded chitosan nanoparticles ameliorates early diabetic nephropathy by attenuating oxidative stress and inflammatory responses in streptozotocin-induced diabetic rat. J Diabetes Metab Disord. 2020;19(2):1599–607. https://doi.org/10.1007/s40200-020-00699-7
14. Van Nguyen T, Chumnanpuen P, Parunyakul K, Srisuksai K, Fungfuang W. A study of the aphrodisiac properties of Cordyceps militaris in streptozotocin-induced diabetic male rats. Vet World. 2021;14(2):537. https://doi.org/10.14202/vetworld.2021.537-544
15. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52(4):313–20. https://doi.org/10.1016/j.phrs.2005.05.004
16. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49(11):1390–4. https://doi.org/10.1053/meta.2000.17721
17. Magalhães DAD, Kume WT, Correia FS, Queiroz TS, Allebrandt Neto EW, dos Santos MP, et al. High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: a new proposal. An Acad Bras Cienc. 2019;91(1):e20180314. https://doi.org/10.1590/0001-3765201920180314
18. Ontawong A, Pengnet S, Thim-Uam A, Vaddhanaphuti CS, Munkong N, Phatsara M, et al. Red rice bran aqueous extract ameliorate diabetic status by inhibiting intestinal glucose transport in high fat diet/STZ-induced diabetic rats. J Tradit Complement Med. 2024;14(4):391–402. https://doi.org/10.1016/j.jtcme.2023.12.003
19. Munkong N, Somnuk S, Jantarach N, Ruxsanawet K, Nuntaboon P, Kanjoo V, et al. Red rice bran extract alleviates high-fat diet-induced non-alcoholic fatty liver disease and dyslipidemia in mice. Nutrients. 2023;15(1):246. https://doi.org/10.3390/nu15010246
20. Surarit W, Jansom C, Lerdvuthisopon N, Kongkham S, Hansakul P. Evaluation of antioxidant activities and phenolic subtype contents of ethanolic bran extracts of Thai pigmented rice varieties through chemical and cellular assays. Int J Food Sci Technol. 2015;50(4):990–8. https://doi.org/10.1111/ijfs.12703
21. Munkong N, Lonan P, Mueangchang W, Yadyookai N, Kanjoo V, Yoysungnoen B. Red rice bran extract attenuates adipogenesis and inflammation on white adipose tissues in high-fat diet-induced obese mice. Foods. 2022;11(13):1865. https://doi.org/10.3390/foods11131865
22. Fajardo RJ, Karim L, Calley VI, Bouxsein ML. A review of rodent models of type 2 diabetic skeletal fragility. J Bone Miner Res. 2014;29(5):1025–40. https://doi.org/10.1002/jbmr.2210
23. Jeefoo WP, Phachonpai W, Duangjai A, Ontawong A, Amornlerdpison D. Purple eggplant (Solanum melongena L.) ameliorates D-galactose-induced cognitive impairment through inhibition of oxidative stress and acetylcholinesterase in the hippocampus of an aging rat model. Trends Sci. 2024;21(1):7245. https://doi.org/10.48048/tis.2024.7245
24. Johnsen SG. Testicular biopsy score count–a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormone Res Paediatr. 1970;1(1):2–25. https://doi.org/10.1159/000178170
25. Zheng H, Hu Y, Zhou J, Zhou B, Qi S. Protective effect of black rice cyanidin-3-glucoside on testicular damage in STZ-induced type 1 diabetic rats. Foods. 2024;13(5):727–27. https://doi.org/10.3390/foods13050727
26. Kharazi U, Keyhanmanesh R, Hamidian GR, Ghaderpour S, Ghiasi R. Voluntary exercise could reduce sperm malformations by improving hypothalamus-hypophysis-gonadal axis and kisspeptin/leptin signaling in type 2 diabetic rats. Iran J Basic Med Sci. 2021;24(12):1624–30. https://doi.org/10.22038/IJBMS.2021.58740.13048
27. AL-Tamimi JZ, AlFaris NA, Aljabryn DH, Alagal RI, Alshammari GM, Aldera H, et al. Ellagic acid improved diabetes mellitus-induced testicular damage and sperm abnormalities by activation of Nrf2. Saudi J Biol Sci. 2021;28(8):4300–10. https://doi.org/10.1016/j.sjbs.2021.04.005
28. Zhao Y, Song W, Wang Z, Wang Z, Jin X, Xu J, et al. Resveratrol attenuates testicular apoptosis in type 1 diabetic mice: role of Akt-mediated Nrf2 activation and p62-dependent Keap1 degradation. Redox Biol. 2018;14:609–17. https://doi.org/10.1016/j.redox.2017.11.007
29. Alshehri MA, Ali Seyed M, Alasmari A, Panneerselvam C, Hajad Alboqami H, Ahmed Alkeridis L, et al. Retama raetam extract for testicular health in type 2 diabetic rats: insight view on the steroidogenesis, antioxidants, and molecular docking scores of bioactive compounds against Bax. J Food Biochem. 2024;2024(1):7945589. https://doi.org/10.1155/2024/7945589
30. Naghibi M, Nasrabadi HT, Rad JS, Garjani A, Farashah MSG, Mohammadnejad D. Forskolin improves male reproductive complications caused by hyperglycemia in type 2 diabetic rats. Int J Fertil Steril. 2023;17(4):268–74. https://doi.org/10.22074/ijfs.2022.544368.1235
31. Gaderpour S, Ghiasi R, Hamidian G, Heydari H, Keyhanmanesh R. Voluntary exercise improves spermatogenesis and testicular apoptosis in type 2 diabetic rats through alteration in oxidative stress and mir- 34a/SIRT1/p53 pathway. Iran J Basic Med Sci. 2021;24(1):58–64. https://doi.org/10.22038/ijbms.2020.49498
32. Soetan OA, Ajao FO, Ajayi AF. Erythritol attenuates testicular dysfunction in diabetic rat via suppression of oxidative stress, inflammation and apoptosis. Biochem Biophys Res Commun. 2024;690:149254. https://doi.org/10.1016/j.bbrc.2023.149254
33. Odetayo AF, Abdulrahim HA, Yusuf AM, Aromokhame WO, Olaitan AM, Ugoji MC, et al. Combination therapy with vitamin D and metformin: a potential approach to mitigate testicular dysfunction in type 2 diabetes mellitus. Reprod Sci. 2024;31(12):3795–807. https://doi.org/10.1007/s43032-024-01708-3
34. Jantarach N, Mueangchang W, Prathumtet J, Munkong N. Beneficial effects of red rice bran extract on brown adipose tissue whitening, inflammation, and oxidative stress in mice with obesity induced by a high-fat diet. Pharm Sci Asia. 2023;50(3):257–65. https://doi.org/10.29090/psa.2023.03.23.105
35. Ebokaiwe AP, Obeten KE, Okori SO, David EE, Olusanya O, Chukwu CJ, et al. Co-administration of selenium nanoparticles and metformin abrogate testicular oxidative injury by suppressing redox imbalance, augmenting sperm quality and Nrf2 protein expression in streptozotocin-induced diabetic rats. Biol Trace Element Res. 2020;198(2):544–56. https://doi.org/10.1007/s12011-020-02082-2
36. Abd El-Hakim YM, Abdel-Rahman Mohamed A, Khater SI, Hamed Arisha A, Metwally MM, Nassan MA, et al. Chitosan-stabilized selenium nanoparticles and metformin synergistically rescue testicular oxidative damage and steroidogenesis-related genes dysregulation in high-fat diet/streptozotocin-induced diabetic rats. Antioxidants. 2020;10(1):17. https://doi.org/10.3390/antiox10010017
37. Nagy AM, Fahmy HA, Abdel-Hameed MF, Taher RF, Ali AM, Amin MM, et al. Protective effects of Euphorbia heterophylla against testicular degeneration in streptozotocin-induced diabetic rats in relation to phytochemical profile. PLoS One. 2025;20(1):e0314781. https://doi.org/10.1371/journal.pone.0314781
38. Shukla KK, Mahdi AA, Rajender S, Jaiswar SP, Shankhwar SN, Singh V. Dyslipidemia and oxidative stress in diabetic male infertility: a case-control study. Andrologia. 2020;52(2):e13568. https://doi.org/10.1111/and.13568
39. Allam MA, Khowailed AA, Elattar S, Mahmoud AM. Umbelliferone ameliorates oxidative stress and testicular injury, improves steroidogenesis and upregulates peroxisome proliferator-activated receptor gamma in type 2 diabetic rats. J Pharm Pharmacol. 2022;74(4):573–84. https://doi.org/10.1093/jpp/rgab083
40. Nna VU, Bakar ABA, Ahmad A, Mohamed M. Down-regulation of steroidogenesis-related genes and its accompanying fertility decline in streptozotocin-induced diabetic male rats: ameliorative effect of metformin. Andrology. 2019;7(1):110–23. https://doi.org/10.1111/andr.12567
41. Shoorei H, Khaki A, Khaki AA, Hemmati AA, Moghimian M, Shokoohi M. The ameliorative effect of carvacrol on oxidative stress and germ cell apoptosis in testicular tissue of adult diabetic rats. Biomed Pharmacother. 2019;111:568–78. https://doi.org/10.1016/j.biopha.2018.12.054
42. Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25(10):2415–26. https://doi.org/10.1093/humrep/deq214
Year
Month