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1. INTRODUCTION
Type 2 diabetes (T2D) accounts for approximately 

96% of all diabetes cases and is primarily driven by obesity, 
sedentary lifestyles, and poor dietary habits [1]. The pathogenesis 
of T2D involves β-cell dysfunction and insulin resistance, 
leading to chronic hyperglycemia and metabolic disturbances 
[2,3]. Persistent hyperglycemia contributes to oxidative stress, 
inflammation, and cellular damage via apoptosis and necrosis, 
exacerbating disease complications [3–5]. Notably, obesity 
significantly increases the risk of developing T2D, with obese 

individuals being up to 80 times more likely to develop the 
condition than those with a normal body mass index [6]. Beyond 
metabolic dysfunction, chronic hyperglycemia is a key driver of 
diabetes-related comorbidities, including cardiovascular disease, 
neuropathy, retinopathy, and nephropathy [7]. Emerging evidence 
suggests that T2D also adversely affects male reproductive 
health, yet the underlying mechanisms remain incompletely 
understood. Metabolic imbalances associated with obesity and 
T2D have been implicated in testicular dysfunction, contributing 
to reduced fertility [8,9]. Oxidative stress plays a central role 
in diabetes-induced reproductive damage, leading to impaired 
steroidogenesis, disrupted spermatogenesis, and structural 
degeneration of the seminiferous tubules [10–14]. These 
alterations collectively exacerbate infertility risks, emphasizing 
the importance of antioxidants in mitigating diabetes-induced 
reproductive dysfunction. A well-established experimental 
model for studying T2D is the high-fat diet (HFD) combined 
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ABSTRACT
Type 2 diabetes (T2D) is a chronic metabolic disorder known to impair male reproductive function through 
mechanisms involving insulin resistance, hyperglycemia, and oxidative stress. This study aimed to investigate the 
potential of red rice bran extract (RBE), a dietary antioxidant, alone or in combination with metformin (Met), in 
alleviating reproductive dysfunction in a T2D rat model. Male Wistar rats were divided into five groups: non-diabetic 
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induced by a high-fat diet followed by a low-dose streptozotocin injection. After confirmation of diabetes, treatments 
were administered orally once daily for 12 weeks. Reproductive and oxidative stress markers were evaluated, 
including serum testosterone, sperm quality, Johnsen score (a histological index of spermatogenesis), antioxidant 
enzyme activities, and testicular histology. Diabetic rats showed significant reductions in testosterone levels, sperm 
parameters, Johnsen score, and testicular morphology, along with elevated malondialdehyde and reduced superoxide 
dismutase and glutathione levels. Treatment with RBE and/or Met improved sperm concentration, Johnsen score, and 
testicular architecture, and attenuated oxidative stress. However, sperm motility and testosterone levels did not return 
to control levels. These findings suggest that RBE may serve as a natural adjunctive therapy for diabetes-induced 
male reproductive impairment and warrant further investigation.

ARTICLE HISTORY
Received 27/03/2025
Accepted 21/08/2025
Available Online: XX

Key words:
Red rice bran extract, 
oxidative stress, diabetes, 
testicular dysfunction, 
metformin.

DOI: 10.7324/JAPS.2026.249609

https://orcid.org/0000-0002-3343-6842


002	 Jeefoo et al. / Journal of Applied Pharmaceutical Science 2025: Article in Press

Online F
irst

2. MATERIALS AND METHODS

2.1. Red rice bran aqueous extract preparation
Red glutinous rice bran (RB) was sourced from a 

Thai farmer in Ban Dok Bua, Phayao, Thailand. The RBE was 
prepared by boiling 100 g of dried red RB in 1,000 ml of distilled 
water at 100°C for 10 minutes. The extract was subsequently 
filtered and freeze-dried using a Scanvac freeze dryer (Lillerød, 
Denmark), yielding approximately 20% (w/w) [18]. The 
phenolic composition of RBE was previously analyzed using 
high-performance liquid chromatography by Ontawong et al. 
[18] in accordance with ISO/IEC 17025 standards. The analysis 
identified epicatechin as the predominant compound (15.5 mg/
kg), followed by protocatechuic acid (11.2 mg/kg), vanillic acid 
(5.32 mg/kg), and caffeic acid (0.55 mg/kg). The total phenolic 
content of RBE was 871.22 ± 12.24 mg GAE/kg RBE, while the 
anthocyanin content was 6.20 ± 0.24 mg catechin/g RBE [18].

2.2. Animal model and experimental design
The experimental procedures were approved by the 

Ethics Committee of the Laboratory Animal Research Center, 
University of Phayao, Thailand (Protocol no. 640104013 and 
Protocol no. 2-002-65), with all efforts made to minimize animal 
suffering. A total of 30 male Wistar rats (170–220 g) were 
obtained from Nomura Siam International, Bangkok, Thailand. 
The rats were housed in a temperature- and humidity-controlled 
environment with a 12-hour light/dark cycle and acclimatized 
for 1 week prior to the experiment. During the acclimatization 
and experimental periods, rats had free access to water and 
food. As shown in Figure 1, the rats were divided into two 
dietary groups: one receiving a standard control diet (19.77% 
fat by energy, CP Mice Feed no. 082, Bangkok, Thailand) and 

with a low dose of streptozotocin (STZ), which mimics human 
T2D by inducing insulin resistance followed by selective 
β-cell impairment [15–17]. This model effectively reproduces 
metabolic disturbances observed in diabetic patients, making 
it valuable for investigating both disease pathophysiology and 
potential treatment strategies.

Red rice (Oryza sativa L.), a pigmented rice variety, 
has gained attention for its bioactive compounds, particularly 
in its bran, which contains potent antioxidants such as 
proanthocyanidins, catechins, γ-oryzanol, vitamin E, and 
coenzyme Q10 [18,19]. Red rice bran extract (RBE) has been 
shown to exert antioxidant, anti-inflammatory, and anti-apoptotic 
properties [20,21]. Given its strong antioxidant capacity, RBE 
may counteract oxidative stress-induced testicular damage and 
restore male reproductive function under diabetic conditions. 
Metformin (Met), a first-line anti-diabetic drug, is well 
known for its metabolic and antioxidant benefits. It has been 
shown to improve glycemic control, insulin resistance, and 
pancreatic morphology in HFD/STZ-induced diabetic models 
[18]. Additionally, Met has been reported to restore testicular 
function by reducing oxidative stress, improving mitochondrial 
function, and modulating hormonal balance in diabetic rats [13]. 
However, despite the well-established metabolic benefits of 
RBE, its potential role in mitigating diabetes-induced testicular 
dysfunction remains largely unexplored.

This study aims to evaluate the impact of RBE, alone 
or in combination with Met, on testicular function in HFD/
STZ-induced diabetic rats. Key reproductive parameters such 
as oxidative stress markers, testosterone levels, sperm quality, 
the Johnsen score (as an indicator of spermatogenesis), and 
testicular histology will be assessed to determine the therapeutic 
potential of RBE in restoring male reproductive health under 
diabetic conditions.

Figure 1.  Experimental design for induction and treatment. T2D = type 2 diabetes; FBG = fasting blood glucose; STZ = streptozotocin; HFD = high-fat diet; RBE = 
red rice bran extract; Met = metformin; RBE = red rice bran extract. 
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the other a HFD (60% fat by energy). After 2 weeks, the HFD 
group received a single intraperitoneal (i.p.) injection of STZ 
(40 mg/kg BW; Sigma-Aldrich, USA) dissolved in 0.09 M 
citrate buffer (pH 4.5), while the control group received only 
the buffer. Two weeks after STZ injection, fasting blood glucose 
(FBG) levels were measured. Rats with FBG levels exceeding 
250 mg/dl were classified as diabetic [22]. The diabetic rats 
were then randomly divided into four treatment groups (n = 6 
per group) as follows:
•	 Group 1 (Control Diet; CD): Non-diabetic rats fed a standard 
control diet without STZ injection.
•	 Group 2 (Diabetic Model; DM): Diabetic rats with no 
treatment.
•	 Group 3 (DM + RBE): Diabetic rats treated with RBE (1,000 
mg/kg BW, orally).
•	 Group 4 (DM + Met): Diabetic rats treated with Met (70 mg/
kg BW, orally).
•	 Group 5 (DM + RBE + Met): Diabetic rats treated with both 
RBE (1,000 mg/kg BW, orally) and Met (70 mg/kg body weight, 
orally). All treatments were administered via oral gavage once 
daily for 12 weeks. Dosages were based on previous studies [18].

2.3. Sample collection
Upon completion of the study, rats were euthanized 

using gradual CO2 asphyxiation. Blood samples were collected 
via cardiac puncture for serum testosterone analysis. Following 
blood collection, the cauda epididymis and vas deferens were 
carefully dissected for sperm evaluation. The left testis was 
immediately frozen at −80°C for the biochemical analysis of 
malondialdehyde (MDA) and glutathione (GSH) levels, along 
with the activity of superoxide dismutase (SOD) and catalase 
(CAT). The right testis was fixed in 10% buffered formalin for 
histological examination.

2.4. Biochemical analysis
Testicular tissue was first homogenized (10% w/v) in 

ice-cold phosphate-buffered saline (PBS, 1 M, pH 7.4; P4417, 
Sigma-Aldrich, St. Louis, MO) containing a protease inhibitor 
(Calbiochem, Sigma-Aldrich, St. Louis, MO) using a Handheld 
Homogenizer D-160 (BioLogics, Manassas, VA). The 
homogenates were centrifuged at 4,000 × g for 15 minutes at 
4°C, and the resulting supernatants were used for MDA analysis. 
For antioxidant enzyme activity and GSH measurements, the 
samples were further centrifuged at 14,000 × g for 15 minutes at 
4°C. The MDA, GSH, and CAT were normalized to total protein 
content, which was determined using the Pierce® BCA Protein 
Assay Reagent Kit (Thermo Fisher Scientific, Rockford, IL). 
The following biochemical parameters were analyzed.
•	 MDA concentration was determined using a modified 
thiobarbituric acid reactive substances (TBARS) assay based 
on Jeefoo et al. [23]. Briefly, 40 µl of either the sample or 
standard (1,1,3,3-Tetramethoxypropane) was mixed with 80 µl 
of 8.1% sodium dodecyl sulfate, 600 µl of 20% acetic acid (pH 
3.5), and 600 µl of 0.8% thiobarbituric acid. The mixture was 
incubated at 95°C for 60 minutes, then cooled and centrifuged 
at 10,000 × g for 5 minutes at 4°C. Absorbance was measured 
at 540 nm using a microplate reader (Synergy H1; BioTek; 
Agilent Technologies, Inc.).

•	 SOD activity was measured using a commercial assay kit 
(S19160, MilliporeSigma), following the manufacturer’s 
protocol. Results were expressed as the percentage inhibition of 
WST-1 formazan formation.
•	 CAT activity was determined based on the degradation of 
H2O2. In brief, 20 µl of the sample was mixed with 100 µl of 6 
mM H2O2 and incubated at 37°C for 1 minute. The reaction was 
terminated by adding 100 µl of 32.4 mM ammonium molybdate, 
and absorbance was recorded at 405 nm using a microplate 
reader. Results were expressed as U/mg protein.
•	 GSH levels were quantified using a commercially available 
kit (Bioassay Systems, Hayward, CA), following the 
manufacturer’s protocol.

2.5. Testosterone analysis
Blood samples were centrifuged at 3,500 rpm for 

20 minutes at 4°C to separate serum. Total testosterone 
concentrations were determined using a fluorescent 
immunoassay (FIA), following the manufacturer’s protocol 
(Biotime FIA Analyser, Xiamen Biotime Biotechnology Co., 
Ltd, China). Each sample was analyzed in duplicate, and results 
were expressed in ng/ml. 

2.6. Semen evaluation
Semen samples were collected from both the cauda 

epididymis and vas deferens and diluted in 10 ml of 1 M PBS, 
followed by incubation at 36°C–37°C for 15 minutes. Sperm 
concentration was assessed using an improved Neubauer 
haemocytometer. A 10 µl aliquot of the sperm suspension 
was placed onto the haemocytometer and allowed to settle for 
5 minutes to ensure uniform distribution. Sperm cells in five 
designated squares were counted, and the total concentration 
was calculated by applying the dilution factor. Sperm motility 
was evaluated under a light microscope at 400× magnification. 
The percentage of motile sperm was calculated by dividing the 
number of motile sperm by the total sperm counted in a given 
field of view, multiplied by 100.

2.7. Histological examination
Following fixation, tissues were washed in running tap 

water for 10 minutes and then rinsed twice in PBS (pH 7.4) 
for 10 minutes each. The samples were dehydrated in graded 
ethanol, cleared in xylene, and embedded in paraffin blocks 
using standard histological techniques. Testis sections were cut 
at 5 µm, stained with haematoxylin (05-06002/L, Bio-Optica) 
and eosin (05-10003/L, Bio-Optica), and mounted under a cover 
glass. Histological examination and imaging were conducted 
using a light microscope (Nikon, Japan). For morphometric 
analysis, 20 seminiferous tubules with an approximately 
round shape were randomly selected per animal from different 
regions of each cross-section. The seminiferous tubule diameter 
(STD) was measured as the average of the shortest and longest 
diameters, while the height of the germinal epithelium (HE) 
was also assessed. ImageJ software (v1.53; National Institutes 
of Health) was used for all measurements. Additionally, the 
quality of spermatogenesis was evaluated using the Johnsen 
scoring system. For each animal, at least 50 seminiferous 
tubules were randomly selected from different regions of the 
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Figure 2. RBE and Met effects on oxidative stress markers in testes. (A) MDA levels; (B) SOD activity; (C) CAT activity; (D) GSH levels. Values 
are mean ± SEM (n = 6). One-way ANOVA and Dunnett’s post hoc test vs. DM group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. MDA = 
malondialdehyde; SOD = superoxide dismutase; CAT = catalase; GSH = glutathione; RBE = red rice bran extract; Met = metformin; DM = diabetic 
model; CD = control diet.
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testicular cross-section. Each tubule was scored from 1 to 10 
based on the most advanced germ cell type and the organization 
of the seminiferous epithelium, following the criteria described 
by Johnsen [24]. The mean Johnsen score was then calculated 
for each animal and used as an index of spermatogenic activity.

2.8. Statistical analysis
All data are presented as mean ± SEM. One-way 

analysis of variance was performed to determine overall group 
differences. Dunnett’s post-hoc test was used to compare all 
treatment groups against the DM group. Additionally, Tukey’s 
post-hoc test was applied to compare differences among 
treatment groups (DM + RBE, DM + Met, and DM + RBE + 
Met). A p-value <0.05 was considered statistically significant. 
Statistical analyses were conducted using GraphPad Prism 
(version 9.0, GraphPad Software, San Diego, CA).

3. RESULTS 

3.1. Oxidative stress markers in testicular tissue
As shown in Figure 2, MDA levels were significantly 

elevated in the DM group compared to the CD group (p < 
0.001), indicating enhanced lipid peroxidation. Treatment 
with RBE, Met, or their combination significantly reduced 
MDA levels (p < 0.001, p < 0.05, and p < 0.05, respectively) 
(Fig. 2A). SOD activity was markedly decreased in the DM 
group compared to the CD group (p < 0.0001), suggesting 
compromised antioxidant defense, while RBE, Met, and their 
combination significantly restored SOD activity (p < 0.0001, p 
< 0.001, and p < 0.01, respectively) (Fig. 2B). Although CAT 
activity was slightly elevated in the DM group, the change 
was not statistically significant, and no significant differences 
were observed in the treatment groups (Fig. 2C). GSH levels 
were significantly reduced in the DM group compared to the 

CD group (p < 0.0001), whereas all treatment groups exhibited 
significant improvements in GSH levels (p < 0.05, p < 0.05, and 
p < 0.01, respectively) (Fig. 2D).

3.2. Serum testosterone levels
As shown in Figure 3A, serum testosterone levels 

were significantly reduced in the DM group compared to the 
CD group (p < 0.001). Although a trend toward increased 
testosterone levels was observed in the DM + RBE, DM + 
Met, and DM + RBE + Met groups, the differences were not 
statistically significant when compared to the DM group (p > 
0.05).

3.3. Sperm parameters
Sperm concentration and motility were significantly 

lower in the DM group compared to the CD group (p < 
0.0001 and p < 0.05, respectively). Sperm concentration was 
significantly increased in the DM + Met and DM + RBE + 
Met groups compared to the DM group (p < 0.01 and p < 0.05, 
respectively). However, no significant changes in sperm motility 
were observed among the treatment groups. These findings are 
illustrated in Figure 3B and C, showing the differential effects 
of treatments on sperm quality parameters in diabetic rats.

3.4. Histological changes in testicular tissue
Representative histological images of testicular tissue 

from different groups are shown in Figure 4A. The DM group 
exhibited a significant reduction in STD compared to the 
CD group (p < 0.0001) (Fig. 4B). However, treatment with 
RBE, Met, or their combination significantly increased STD 
compared to the DM group (p < 0.01, p < 0.001, and p < 0.001, 
respectively). Similarly, HE was significantly lower in the DM 
group than in the CD group (p < 0.0001) (Fig. 4C). In contrast, 
all treatment groups (DM + RBE, DM + Met, and DM + RBE + 

Figure 3. Serum testosterone levels and sperm parameters in diabetic rats. (A) Serum testosterone levels; (B) Sperm concentration; (C) Sperm motility. Values 
are presented as mean ± SEM (n = 6). Statistical analysis was performed using one-way ANOVA followed by Dunnett’s post hoc test vs. DM group. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001. RBE = red rice bran extract; Met = metformin; DM = diabetic model; CD = control diet.
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Met) showed a significant increase in HE compared to the DM 
group (p < 0.0001 for all groups). In addition, the Johnsen score, 
a marker of spermatogenic activity, was markedly decreased in 
the DM group relative to the CD group (p < 0.0001) (Fig. 4D). 
Treatment with RBE, Met, or their combination significantly 
elevated the Johnsen score compared to the DM group (p < 
0.0001 for all treatments). These findings indicate that RBE 
and Met may ameliorate diabetes-associated impairment of 
spermatogenesis.

4. DISCUSSION
This study demonstrates that RBE and Met, whether 

administered individually or in combination, ameliorate 
diabetes-induced testicular dysfunction in a well-established 
rat model of T2D. The protective effects observed included 
reductions in oxidative stress, restoration of testicular structure, 
and improvements in spermatogenic activity, suggesting that 
RBE and Met exert their benefits primarily through antioxidant 
pathways.

The diabetic condition induced by an HFD combined 
with STZ reliably replicated key features of human T2D, 

including chronic hyperglycaemia and compensatory 
hyperinsulinaemia. These metabolic disturbances are major 
contributors to diabetes-related complications. In particular, 
persistent hyperglycaemia promotes excessive reactive oxygen 
species (ROS) production, which plays a central role in 
testicular dysfunction. Insulin resistance exacerbates metabolic 
dysregulation by impairing glucose uptake and disrupting 
hormonal signaling, particularly within the hypothalamic–
pituitary–gonadal (HPG) axis [25,26]. These pathological 
changes contribute to reduced testosterone levels, impaired 
spermatogenesis, and degeneration of testicular tissue [8–
10,12,13,27,28].

To evaluate the involvement of oxidative stress in 
T2D-induced testicular dysfunction, we measured MDA, 
SOD, CAT, and GSH levels, consistent with several previous 
studies [29–31]. Diabetic rats exhibited significantly elevated 
MDA, a marker of lipid peroxidation, along with reduced 
levels of SOD and GSH, indicating a disruption of redox 
homeostasis and impaired antioxidant defenses. These findings 
are consistent with earlier reports demonstrating that chronic 
hyperglycemia promotes excessive ROS production, which 

Figure 4. Histological changes in testicular tissue. (A) H&E-stained sections (scale bar = 100 μm); (B) Seminiferous tubule diameter; (C) Epithelium height; 
(D) Johnsen score. Values are mean ± SEM (n = 6). One-way ANOVA and Dunnett’s post hoc test vs. DM group. **p < 0.01, ***p < 0.001, ****p < 0.0001. 
RBE = red rice bran extract; Met = metformin; DM = diabetic model; CD = control diet.
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contributes to oxidative damage in testicular tissue [8,32,33]. 
This redox imbalance may be mechanistically linked to the 
dysregulation of oxidative stress-responsive transcription 
factors. Specifically, T2D has been shown to impair the 
activation of Nrf2, a key regulator of antioxidant defense, while 
simultaneously promoting NF-κB signaling, which drives pro-
inflammatory gene expression. The resulting suppression of 
antioxidant capacity and persistent inflammation may establish 
a self-perpetuating cycle of testicular damage in diabetes [33].

Given this mechanistic insight into oxidative 
disruption, we evaluated whether antioxidant-based 
interventions could reverse redox imbalance in diabetic testes. 
In this context, both RBE and Met significantly improved 
markers of oxidative stress, indicating a restoration of redox 
homeostasis. Of particular interest, the combination treatment 
elicited the most pronounced increase in GSH levels. This 
enhanced GSH response may reflect differential regulatory 
mechanisms, as GSH synthesis is largely dependent on Nrf2-
mediated gene expression, while SOD activity is primarily 
enzymatic. Previous studies have shown that RBE exerts 
antioxidant and anti-inflammatory effects through modulation 
of Nrf2 and NF-κB signaling pathways, particularly in brown 
adipose tissue under HFD-induced obesity [34]. However, no 
prior studies have investigated these mechanisms in testicular 
tissue. In contrast, the role of Met in regulating Nrf2 and NF-κB 
pathways has been well documented in testicular tissue under 
diabetic conditions, as evidenced by studies demonstrating 
increased Nrf2 expression and reduced oxidative stress 
following treatment [33,35].

These observations suggest that both agents may 
mitigate testicular oxidative stress, at least in part, through 
activation of Nrf2 signaling, contributing to reduced MDA 
levels and improved antioxidant defenses. Additionally, 
RBE is rich in bioactive phytochemicals such as epicatechin, 
protocatechuic acid, anthocyanins, and γ-oryzanol [18], all of 
which are reported to scavenge ROS, inhibit lipid peroxidation, 
and enhance endogenous antioxidant systems. These properties 
likely underlie the observed protective effects of RBE in 
this study and reinforce its potential as a natural antioxidant 
and anti-inflammatory compound. Of note, CAT activity is 
commonly reported to decline in diabetic conditions due to 
oxidative inactivation [8,36,37]. However, we did not observe a 
significant reduction in CAT activity in the present model. This 
discrepancy may be attributed to tissue-specific antioxidant 
responses or compensatory mechanisms that maintained 
enzyme function despite persistent oxidative stress. 

While these findings support a plausible role for Nrf2 
and NF-κB signaling in mediating the observed effects of RBE 
and Met, it is important to acknowledge that this study did not 
include direct molecular or protein-level assessments of these 
pathways. Therefore, the mechanistic interpretations provided 
here remain speculative and are derived from prior literature 
rather than direct experimental evidence. Future investigations 
should incorporate targeted analyses of Nrf2 and NF-κB 
activity to confirm their involvement in testicular protection 
under diabetic conditions.

While molecular mechanisms remain hypothetical, 
histological findings provide direct evidence of testicular 

impairment and therapeutic restoration at the tissue level. 
Histological evaluation revealed substantial testicular damage 
in diabetic rats, including reduced STD and thinning of the 
germinal epithelium. These alterations reflect impaired Sertoli 
cell support and germ cell degeneration, consistent with 
previous findings that chronic hyperglycaemia and oxidative 
stress impair spermatogenic cell integrity, disrupt Sertoli cell 
function, and induce germ cell apoptosis leading to testicular 
atrophy [38]. T2D impairs male fertility through both direct 
and indirect mechanisms. Oxidative stress is a key contributor 
to diabetes-related testicular dysfunction, promoting lipid 
peroxidation, mitochondrial dysfunction, sperm DNA damage, 
and apoptosis [29,30,39]. Excessive ROS particularly damages 
germ cells and spermatozoa due to their high polyunsaturated 
fatty acid content [40–42]. Additionally, diabetes disrupts 
the HPG axis by impairing insulin and leptin signaling in the 
hypothalamus, reducing GnRH secretion and consequently 
decreasing LH and FSH levels, ultimately compromising 
Leydig cell testosterone synthesis [25,30,36]. Consistent with 
these mechanisms, our findings suggest that oxidative damage 
likely contributed to both Leydig and Sertoli cell dysfunction in 
diabetic rats, reflected by reduced testosterone production and 
impaired germ cell development and maturation.

This structural damage is further compounded by 
endocrine dysfunction, as reflected in serum testosterone levels. 
Despite these structural improvements, serum testosterone 
levels remained significantly suppressed in diabetic rats 
and did not return to control levels following treatment, 
although a trend towards improvement was observed. While 
testosterone deficiency serves as a key indicator of Leydig cell 
dysfunction, it should be noted that this study did not measure 
gonadotropins such as FSH or LH, representing a limitation 
that precludes a complete assessment of hypothalamic–pituitary 
involvement. Moreover, Sertoli cell dysfunction may result 
not only from direct oxidative damage but also from reduced 
testosterone-mediated support, further compounding impaired 
spermatogenesis.

To further assess spermatogenic function beyond 
hormonal changes, we evaluated histological and functional 
sperm parameters. The Johnsen score, a quantitative marker of 
spermatogenic activity, was markedly reduced in diabetic rats, 
indicating impaired germ cell development and maturation. This 
reduction corresponded with a significant decline in both sperm 
concentration and motility. Treatment with RBE, Met, or their 
combination led to a significant improvement in Johnsen scores, 
reflecting a partial restoration of spermatogenesis. Notably, 
sperm concentration was significantly increased in the Met and 
combination groups; however, sperm motility did not improve 
significantly in any treatment group. These findings suggest 
that while antioxidant therapy may enhance spermatogenic 
output, sperm motility may be governed by additional factors 
beyond oxidative stress, such as mitochondrial function, energy 
metabolism, and ATP production. These factors should be the 
subject of further investigation.

The comparable improvements observed across 
treatment groups and the absence of statistically significant 
differences suggest overlapping mechanisms of action for RBE 
and Met, particularly their antioxidant and anti-inflammatory 
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properties. Polyphenolic compounds present in RBE, such as 
epicatechin and protocatechuic acid, as well as anthocyanins, 
have been shown to enhance insulin sensitivity and reduce 
oxidative stress, while Met also promotes Nrf2 activation and 
mitochondrial protection. These shared mechanisms likely 
account for the similar protective effects observed in this 
study.

Several limitations of this study should be 
acknowledged. First, although the potential involvement of 
Nrf2 and NF-κB pathways was discussed, no direct molecular 
or protein-level analyses were performed; thus, mechanistic 
conclusions remain speculative. Second, only total testosterone 
levels were measured, without assessment of sex hormone-
binding globulin, which limits accurate interpretation of 
androgen status. Third, the use of fixed treatment doses and a 12-
week intervention period may not reflect the optimal therapeutic 
regimen. Additionally, the sample size, while sufficient for 
detecting most outcomes, may have been underpowered to 
detect subtle changes, particularly in testosterone recovery and 
sperm motility. Finally, although the Johnsen score provided a 
semi-quantitative assessment of spermatogenesis, more detailed 
histological parameters such as the spermatid-to-Sertoli cell 
ratio were not evaluated.

In summary, RBE and Met significantly ameliorated 
diabetes-induced oxidative stress, preserved testicular 
architecture, and improved spermatogenic activity, as evidenced 
by histological recovery and improved Johnsen scores. However, 
neither intervention fully restored testosterone levels or sperm 
motility, indicating persistent endocrine dysfunction. These 
findings highlight the potential of RBE as a natural adjunct to 
existing treatments for diabetes-associated male reproductive 
impairment. Future research should explore optimised dosing 
strategies, extended treatment durations, and detailed molecular 
analyses to elucidate mechanisms and maximise therapeutic 
efficacy.

5. CONCLUSION
In summary, this study demonstrates that both RBE 

and Met offer protective effects against testicular damage 
associated with T2D. Improvements were evident in oxidative 
stress markers, testicular histology, and spermatogenic activity, 
particularly through reductions in MDA levels, restoration 
of SOD and GSH, and increased Johnsen scores. Among the 
treatments, RBE alone demonstrated the most consistent overall 
effect in mitigating oxidative stress, showing the greatest 
reduction in MDA levels and the most significant improvement 
in SOD activity. Although the combination treatment yielded 
the highest increase in GSH levels, RBE’s broader antioxidant 
impact suggests it is the most effective single intervention for 
restoring redox balance in diabetic testicular tissue.

The underlying mechanisms are likely related to 
antioxidant actions, possibly involving modulation of the Nrf2 
and NF-κB signaling pathways, although these were not directly 
examined in the present study. Importantly, testosterone levels 
and sperm motility did not return to normal following treatment, 
indicating that some aspects of endocrine and functional 
recovery may require further intervention.

Overall, the findings support the potential role of RBE 
as a natural adjunct to existing therapies for diabetes-induced 

reproductive complications. Further studies are needed to 
confirm molecular mechanisms, optimize treatment parameters, 
and assess long-term outcomes in both preclinical and clinical 
settings.
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