Phytochemical and pharmacological profile of Aegle marmelos (L.) Correa: A comprehensive review of therapeutic potential, mechanisms of action, and translational relevance

Amitha Shetty Lowel Fernandes Devendranath Shambhavi Manohar Mahadev Akhilesh Dubey   

Open Access   

Published:  Oct 08, 2025

DOI: 10.7324/JAPS.2026.273299
Abstract

Aegle marmelos (L.) Correa, commonly known as Bael, is a botanically and culturally significant plant of the Indian subcontinent, widely valued for its therapeutic versatility. This review presents a comprehensive synthesis of in vitro, in vivo, and clinical evidence on the pharmacological potential of Bael and its bioactive compounds, including marmelosin, aegeline, imperatorin, gallic acid, and rutin. A systematic literature search was conducted across PubMed, Scopus, and Google Scholar covering 1990–2025, restricted to English-language studies. Eligible studies included in vitro, in vivo, clinical, and translationally relevant investigations, and data were extracted and thematically synthesized to evaluate phytochemical composition, pharmacological functions, mechanisms of action, and clinical applications. Bael extracts from various plant parts have demonstrated therapeutic effects in inflammation, cancer, diabetes, microbial infections, neurodegeneration, wound healing, and mood disorders. Mechanistic insights highlight modulation of critical biological pathways such as Nuclear Factor kappa-light-chain-enhancer of activated B cells, Vascular Endothelial Growth Factor, DPP-4, aldose reductase, HO-1, and β-catenin. Notably, molecular docking studies reveal interactions with diverse targets, including HSULF-2, MAO-A, SARS-CoV-2 proteins, and SpaP, supporting its multifunctional pharmacological relevance. However, translation to clinical practice is challenged by limited high-quality clinical trials, variability in bioactive content across extracts, and a lack of standardized dosing and formulation strategies. Despite these gaps, Bael exhibits a favorable safety profile and holds promise as a complementary agent in integrative medicine. This review underscores the importance of advancing clinical research and formulation science to fully harness Bael’s potential in evidence-based healthcare and nutraceutical innovation.


Keyword:     Aegle marmelos (L.) Correa phytochemicals pharmacological activities mechanism of action translational medicine


Citation:

Shetty A, Fernandes L, Shambhavi D, Mahadev M, Dubey A. Phytochemical and pharmacological profile of Aegle marmelos (L.) Correa: A comprehensive review of therapeutic potential, mechanisms of action, and translational relevance. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.273299

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Sharma N, Radha, Kumar M, Zhang B, Kumari N, Singh D, et al. Aegle marmelos (L.) correa: an underutilized fruit with high nutraceutical values: a review. Int J Mol Sci. 2022;23(18):10889. doi: https://doi.org/10.3390/ijms231810889

2. Manandhar B, Paudel KR, Sharma B, Karki R. Phytochemical profile and pharmacological activity of Aegle marmelos Linn. J Integr Med. 2018;16(3):153–63. doi: https://doi.org/10.1016/j.joim.2018.04.007

3. Monika S, Thirumal M, Kumar PR. Phytochemical and biological review of Aegle marmelos Linn. Future Sci OA. 2023;9(3):FSO849. doi: https://doi.org/10.2144/fsoa-2022-0068

4. Garg N, Kumar S, Yadav P. Indian goose berry fortified, anti-oxidant rich bael (Aegle marmelos) fermented beverage. J Food Sci Technol. 2021;58(11):4437–41. doi: https://doi.org/10.1007/s13197-021-05129-x

5. Venthodika A, Chhikara N, Mann S, Garg MK, Sofi SA, Panghal A. Bioactive compounds of Aegle marmelos L., medicinal values and its food applications: a critical review. Phytother Res. 2021;35(4):1887–907. doi: https://doi.org/10.1002/ptr.6934

6. Katram N, Garlapati PK, Yadavalli C, Methal RE, Rajappa SBG, Raghavan AK. Aegle marmelos extract rich in marmelosin exacted ameliorative effect against chromium-induced oxidative stress and apoptosis through regulation of Gadd45 in HepG2 cell line. J Food Biochem. 2021;45(4):e13704. doi: https://doi.org/10.1111/jfbc.13704

7. Nigam V, Nambiar VS. Aegle marmelos leaf juice as a complementary therapy to control type 2 diabetes?randomised controlled trial in Gujarat, India. Adv Integrative Med. 2019;6(1):11–22. doi: https://doi.org/10.1016/J.AIMED.2018.03.002

8. Aziz M, Debnath R, Ayub TE, Islam F, Aktar F, Aman S. Effect of Aegle marmelos fruit pulp powder on chronic subclinical inflammatory status (Phase 3 clinical trial) of Type 2 diabetic patients. J Curr Adv Med Res. 2021;8(1):17–20. doi: https://doi.org/10.3329/JCAMR.V8I1.52476

9. Tian M, Zhou S, Li W, Li J, Yang L, Peng Y, et al. Metabolic activation of aegeline mediated by CYP2C19. Xenobiotica. 2021;51(11):1217–28. doi: https://doi.org/10.1080/00498254.2021.1913666

10. Ellis CR, Elston DM. Psoralen-induced phytophotodermatitis. Dermatitis. 2021;32(3):140–3. doi: https://doi.org/10.1097/DER.0000000000000691

11. Zhu L, Sun S, Wu W, Zhang Y, Lin C, Ji L. Xanthotoxol alleviates secondary brain injury after intracerebral hemorrhage by inhibiting microglia-mediated neuroinflammation and oxidative stress. Neurochirurgie. 2023;69(3):101426. doi: https://doi.org/10.1016/j.neuchi.2023.101426

12. Nugroho AE, Anas Y, Arsito PN, Wibowo JT, Riyanto S, Sukari MA. Effects of marmin, a compound isolated from Aegle marmelos Correa, on contraction of the guinea pig-isolated trachea. Pak J Pharm Sci. 2011;24(4):427–33.

13. Gunasekaran P, Velmurugan Y, Arputharaj DS, Savaridasson JK, Hemamalini M, Venkatachalam R. In vitro contraceptive activities, molecular docking, molecular dynamics, MM-PBSA, noncovalent interaction and DFT studies of bioactive compounds from Aegle marmelos. Linn., leaves. Front Chem. 2023;11:1096177. doi: https://doi.org/10.3389/fchem.2023.1096177

14. Chakthong S, Weaaryee P, Puangphet P, Mahabusarakam W, Plodpai P, Voravuthikunchai SP, et al. Alkaloid and coumarins from the green fruits of Aegle marmelos. Phytochemistry. 2012;75:108–13. doi: https://doi.org/10.1016/j.phytochem.2011.11.018

15. Anandakumar P, Kamaraj S, Vanitha MK. D-limonene: a multifunctional compound with potent therapeutic effects. J Food Biochem. 2021;45(1):e13566. doi: https://doi.org/10.1111/jfbc.13566

16. Balahbib A, El Omari N, Hachlafi NE, Lakhdar F, El Menyiy N, Salhi N, et al. Health beneficial and pharmacological properties of p-cymene. Food Chem Toxicol. 2021;153:112259. doi: https://doi.org/10.1016/j.fct.2021.112259

17. Radice M, Durofil A, Buzzi R, Baldini E, Martínez AP, Scalvenzi L, et al. Alpha-phellandrene and alpha-phellandrene-rich essential oils: a systematic review of biological activities, pharmaceutical and food applications. Life. 2022;12(10):1602. doi: https://doi.org/10.3390/life12101602

18. Soares-Castro P, Soares F, Reis F, Lino-Neto T, Santos PM. Bioprospection of the bacterial β-myrcene-biotransforming trait in the rhizosphere. Appl Microbiol Biotechnol. 2023;107(16):5209–24. doi: https://doi.org/10.1007/s00253-023-12650-w

19. Abe M, Asada N, Kimura M, Fukui C, Yamada D, Wang Z, et al. Antitumor activity of α-pinene in T-cell tumors. Cancer Sci. 2024;115(4):1317–32. doi: https://doi.org/10.1111/cas.16086

20. Hu Q, Zuo T, Deng L, Chen S, Yu W, Liu S, et al. β-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats. Phytomedicine. 2022;102:154112. doi: https://doi.org/10.1016/j.phymed.2022.154112

21. Dos Santos ÉRQ, Maia JGS, Fontes-Júnior EA, do Socorro Ferraz Maia C. Linalool as a therapeutic and medicinal tool in depression treatment: a review. Curr Neuropharmacol. 2022;20(6):1073–92. doi: https://doi.org/10.2174/1570159X19666210920094504

22. Menezes IO, Scherf JR, Martins AOBPB, Ramos AGB, Quintans JSS, Coutinho HDM, et al. Biological properties of terpinolene evidenced by in silico, in vitro and in vivo studies: a systematic review. Phytomedicine. 2021;93:153768. doi: https://doi.org/10.1016/j.phymed.2021.153768.

23. Di Petrillo A, Orrù G, Fais A, Fantini MC. Quercetin and its derivates as antiviral potentials: a comprehensive review. Phytother Res. 2022;36(1):266–78. doi: https://doi.org/10.1002/ptr.7309

24. Negahdari R, Bohlouli S, Sharifi S, Maleki Dizaj S, Rahbar Saadat Y, et al. Therapeutic benefits of rutin and its nanoformulations. Phytother Res. 2021;35(4):1719–38. doi: https://doi.org/10.1002/ptr.6904

25. Lei S, Hu X, Song S, Zhang Y, Zhao H, Xu X, et al. Injectable catechin-based supramolecular hydrogel for highly efficient application in HPV-associated OSCC. J Mater Chem B. 2023;11(6):1191-1202. doi: https://doi.org/10.1039/d2tb01938h

26. Dong X, Zhou S, Nao J. Kaempferol as a therapeutic agent in Alzheimer’s disease: evidence from preclinical studies. Ageing Res Rev. 2023;87:101910. doi: https://doi.org/10.1016/j.arr.2023.101910

27. Kamei R, Fujimura T, Matsuda M, Kakihara K, Hirakawa N, Baba K, et al. A flavanone derivative from the Asian medicinal herb (Perilla frutescens) potently suppresses IgE-mediated immediate hypersensitivity reactions. Biochem Biophys Res Commun. 2017;483(1):674–9. doi: https://doi.org/10.1016/j.bbrc.2016.12.083

28. Ding SB, Chu XL, Jin YX, Jiang JJ, Zhao X, Yu M. Epigallocatechin gallate alleviates high-fat diet-induced hepatic lipotoxicity by targeting mitochondrial ROS-mediated ferroptosis. Front Pharmacol. 2023;14:1148814. doi: https://doi.org/10.3389/fphar.2023.1148814

29. Zhang H, Jiang H, Zhang H, Liu J, Hu X, Chen L. Anti-tumor efficacy of phellamurin in osteosarcoma cells: Involvement of the PI3K/AKT/mTOR pathway. Eur J Pharmacol. 2019;858:172477. doi: https://doi.org/10.1016/j.ejphar.2019.172477

30. Deng B, Yang B, Chen J, Wang S, Zhang W, Guo Y, et al. Gallic acid induces T-helper-1-like Treg cells and strengthens immune checkpoint blockade efficacy. J Immunother Cancer. 2022;10(7):e004037. doi: https://doi.org/10.1136/jitc-2021-004037

31. Miao M, Xiang L. Pharmacological action and potential targets of chlorogenic acid. Adv Pharmacol. 2020;87:71–88. doi: https://doi.org/10.1016/bs.apha.2019.12.002

32. Khan F, Bamunuarachchi NI, Tabassum N, Kim YM. Caffeic acid and its derivatives: antimicrobial drugs toward microbial pathogens. J Agric Food Chem. 2021;69(10):2979–3004. doi: https://doi.org/10.1021/acs.jafc.0c07579

33. Zdu?ska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 2018;31(6):332–6. doi: https://doi.org/10.1159/000491755

34. Yu XD, Zhang D, Xiao CL, Zhou Y, Li X, Wang L, et al. P-coumaric acid reverses depression-like behavior and memory deficit via inhibiting AGE-RAGE-mediated neuroinflammation. Cells. 2022;11(10):1594. doi: https://doi.org/10.3390/cells11101594

35. Mercola J, D’Adamo CR. Linoleic acid: a narrative review of the effects of increased intake in the standard American diet and associations with chronic disease. Nutrients. 2023;15(14):3129. doi: https://doi.org/10.3390/nu15143129

36. Ashar Y, Teng Q, Wurpel JND, Chen ZS, Reznik SE. Palmitic acid impedes extravillous trophoblast activity by increasing MRP1 expression and function. Biomolecules. 2022;12(8):1162. doi: https://doi.org/10.3390/biom12081162

37. Naghshi S, Aune D, Beyene J, Mobarak S, Asadi M, Sadeghi O. Dietary intake and biomarkers of alpha linolenic acid and risk of all cause, cardiovascular, and cancer mortality: systematic review and dose-response meta-analysis of cohort studies. BMJ. 2021;375:n2213. doi: https://doi.org/10.1136/bmj.n2213

38. Soleimanbeigi M, Dousti F, Hassanzadeh F, Mirian M, Varshosaz J, Kasesaz Y, et al. Boron phenyl alanine targeted chitosan-PNIPAAm core-shell thermo-responsive nanoparticles: boosting drug delivery to glioblastoma in BNCT. Drug Dev Ind Pharm. 2021;47(10):1607–23. doi: https://doi.org/10.1080/03639045.2022.2032132

39. Hase A, Jung SE, aan het Rot M. Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol Biochem Behav. 2015;133:1–6. doi: https://doi.org/10.1016/j.pbb.2015.03.008

40. Balakumar S, Rajan S, Thirunalasundari T, Jeeva S. Antifungal activity of Aegle marmelos (L.) Correa (Rutaceae) leaf extract on dermatophytes. Asian Pac J Trop Biomed. 2011;1(4):309–12. doi: https://doi.org/10.1016/S2221-1691(11)60049-X

41. Mishra BB, Kishore N, Tiwari VK, Singh DD, Tripathi V. A novel antifungal anthraquinone from seeds of Aegle marmelos Correa (family Rutaceae). Fitoterapia. 2010;81(2):104–7. doi: https://doi.org/10.1016/j.fitote.2009.08.009

42. Tiwari M, Roy R, Tiwari V. Screening of herbal-based bioactive extract against carbapenem-resistant strain of Acinetobacter baumannii. Microb Drug Resist. 2016;22(5):364–71. doi: https://doi.org/10.1089/mdr.2015.0270

43. Ali SG, Haseen U, Jalal M, Khan RA, Alsalme A, Ahmad H, et al. Green synthesis of copper oxide nanoparticles from the leaves of Aegle marmelos and their antimicrobial activity and photocatalytic activities. Molecules. 2023;28(24):7499. doi: https://doi.org/10.3390/molecules28227499

44. Brijesh S, Daswani P, Tetali P, Antia N, Birdi T. Studies on the antidiarrhoeal activity of Aegle marmelos unripe fruit: validating its traditional usage. BMC Complement Altern Med. 2009;9:47. doi: https://doi.org/10.1186/1472-6882-9-47

45. Subiksha K, Jena A, Sarangi P, Mohanty S, Sahoo S, Mallick RR. Comparative evaluation of antibacterial efficacy of N-acetylcysteine, Aegle marmelos, and chitosan as intracanal medicaments against Enterococcus faecalis biofilm?an in vitro study. J Conserv Dent Endod. 2024;27(12):1246–50. doi: https://doi.org/10.4103/JCDE.JCDE_588_24

46. Jayasekara KG, Soysa P, Suresh TS, Goonasekara CL, Gunasekera KM. In vitro dengue virus inhibition by aqueous extracts of Aegle marmelos, Munronia pinnata and Psidium guajava. Altern Lab Anim. 2023;51(2):136–43. doi: https://doi.org/10.1177/02611929231158243

47. Gautam M, Ramanathan M. Ameliorative potential of flavonoids of Aegle marmelos in vincristine-induced neuropathic pain and associated excitotoxicity. Nutr Neurosci. 2021;24(4):296–306. doi: https://doi.org/10.1080/1028415X.2019.1627768

48. Pynam H, Dharmesh SM. Antioxidant and anti-inflammatory properties of marmelosin from Bael (Aegle marmelos L.); Inhibition of TNF-α mediated inflammatory/tumor markers. Biomed Pharmacother. 2018;106:98–108. doi: https://doi.org/10.1016/j.biopha.2018.06.053

49. Benni JM, Jayanthi MK, Suresha RN. Evaluation of the anti-inflammatory activity of Aegle marmelos (Bilwa) root. Indian J Pharmacol. 2011;43(4):393–7. doi: https://doi.org/10.4103/0253-7613.83108

50. Angajala G, Ramya R, Subashini R. In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel nanoparticles phytofabricated from aqueous leaf extracts of Aegle marmelos Correa. Acta Trop. 2014;135:19–26. doi: https://doi.org/10.1016/j.actatropica.2014.03.012

51. Sharma P, Garg A, Nidhi, Sharma V. Amelioration of ulcerative colitis in BALB/c mice by probiotic-fermented Aegle marmelos Juice. Int J Food Sci. 2025;2025:5288406. doi: https://doi.org/10.1155/ijfo/5288406

52. Rama P, Mariselvi P, Sundaram R, Muthu K. Eco-friendly green synthesis of silver nanoparticles from Aegle marmelos leaf extract and their antimicrobial, antioxidant, anticancer and photocatalytic degradation activity. Heliyon. 2023;9(6):e16277. doi: https://doi.org/10.1016/j.heliyon.2023.e16277

53. Akhouri V, Kumari M, Kumar A. Therapeutic effect of Aegle marmelos fruit extract against DMBA induced breast cancer in rats. Sci Rep. 2020;10(1):18016. doi: https://doi.org/10.1038/s41598-020-72935-2

54. Agrawal A, Jahan S, Soyal D, Goyal E, Goyal PK. Amelioration of chemical-induced skin carcinogenesis by Aegle marmelos, an Indian medicinal plant, fruit extract. Integr Cancer Ther. 2012;11(3):257–66. doi: https://doi.org/10.1177/1534735411417127

55. Dey M, Rao S, Pl R, Blaisie Rajula P, Gayathri K, Kodali MVRM. Evaluation of the effect of Aegle marmelos (Bael leaf) extract on human fibroblast viability: an in vitro study. Cureus. 2024;16(10):e72466. doi: https://doi.org/10.7759/cureus.72466

56. Gautam MK, Purohit V, Agarwal M, Singh A, Goel RK. In vivo healing potential of Aegle marmelos in excision, incision, and dead space wound models. ScientificWorldJournal. 2014;2014:740107. doi: https://doi.org/10.1155/2014/740107

57. Azmi L, Shukla I, Goutam A, Allauddin, Rao CV, Jawaid T, et al. In vitro wound healing activity of 1-hydroxy-5,7-dimethoxy-2-naphthalene-carboxaldehyde (HDNC) and other isolates of Aegle marmelos L.: enhances keratinocytes motility via Wnt/β-catenin and RAS-ERK pathways. Saudi Pharm J. 2019;27(4):532–9. doi: https://doi.org/https://doi.org/10.1016/j.jsps.2019.01.017

58. Sharma A, Singh T, Pathak D, Virmani T, Kumar G, Alhalmi A. Antidepressive-like effect of Aegle marmelos leaf extract in chronic unpredictable mild stress-induced depression-like behaviour in rats. Biomed Res Int. 2022;2022:6479953. doi: https://doi.org/10.1155/2022/6479953

59. Ahmad W, Amir M, Ahmad A, Ali A, Ali A, Wahab S, et al. Aegle marmelos leaf extract phytochemical analysis, cytotoxicity, in vitro antioxidant and antidiabetic activities. Plants. 2021;10(12):2573. doi: https://doi.org/10.3390/plants10122573

60. Tiwari R, Mishra S, Danaboina G, Pratap Singh Jadaun G, Kalaivani M, Kalaiselvan V, et al. Comprehensive chemo-profiling of coumarins enriched extract derived from Aegle marmelos (L.) Correa fruit pulp, as an anti-diabetic and anti-inflammatory agent. Saudi Pharm J. 2023;31(9):101708. doi: https://doi.org/10.1016/j.jsps.2023.101708

61. Ibrahim M, Parveen B, Zahiruddin S, Gautam G, Parveen R, Khan MA, et al. Analysis of polyphenols in Aegle marmelos leaf and ameliorative efficacy against diabetic mice through restoration of antioxidant and anti-inflammatory status. J Food Biochem. 2022;46(4):e13852. doi: https://doi.org/10.1111/jfbc.13852

62. Sankeshi V, Kumar PA, Naik RR, Sridhar G, Kumar MP, Gopal VV, et al. Inhibition of aldose reductase by Aegle marmelos and its protective role in diabetic cataract. J Ethnopharmacol. 2013;149(1):215–21. doi: https://doi.org/10.1016/j.jep.2013.06.025

63. Raja SB, Murali MR, Roopa K, Devaraj SN. Imperatorin a furocoumarin inhibits periplasmic Cu-Zn SOD of Shigella dysenteriae their by modulates its resistance towards phagocytosis during host pathogen interaction. Biomed Pharmacother. 2011;65(8):560–8. doi: https://doi.org/10.1016/j.biopha.2010.10.010

64. Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6(10):92. doi: https://doi.org/10.3390/foods6100092

65. Subapriya R, Nagini S. Medicinal properties of neem leaves: a review. Curr Med Chem Anticancer Agents. 2005;5(2):149–6. doi: https://doi.org/10.2174/1568011053174828

66. Bhattacharya SK, Muruganandam AV. Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacol Biochem Behav. 2003;75(3):547–55. doi: https://doi.org/10.1016/s0091-3057(03)00110-2

67. Singh AK, Patel PK, Choudhary K, Joshi J, Yadav D, Jin JO. Quercetin and coumarin inhibit dipeptidyl peptidase-IV and exhibits antioxidant properties: in silico, in vitro, ex vivo. Biomolecules. 2020;10(2):207. doi: https://doi.org/10.3390/biom10020207

68. Sharma P, Joshi T, Mathpal S, Chandra S, Tamta S. In silico identification of antidiabetic target for phytochemicals of A. marmelos and mechanistic insights by molecular dynamics simulations. J Biomol Struct Dyn. 2022;40(21):10543–60. doi: https://doi.org/10.1080/07391102.2021.1944910

69. Joseph B, Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac J Trop Dis. 2013;3(2):93–102. doi: https://doi.org/10.1016/S2222-1808(13)60052-3

70. Hemakumar C, Ravindranath BS, Ravishankar GA, Ramirez DC, Kiran SV. Marmesin and marmelosin interact with the heparan sulfatase-2 active site: potential mechanism for phytochemicals from Bael fruit extract as antitumor therapeutics. Oxid Med Cell Longev. 2023;2023:9982194. doi: https://doi.org/10.1155/2023/9982194

71. Aodah AH, Balaha MF, Jawaid T, Khan MM, Ansari MJ, Alam A. Aegle marvels (L.) Correa leaf essential oil and its phytoconstituents as an anticancer and anti-Streptococcus mutans agent. Antibiotics. 2023;12(5):835. doi: https://doi.org/10.3390/antibiotics12050835

72. Singh AP, Singh L, Singh P, Bhatti R. Biological evaluation of Aegle marmelos fruit extract and isolated aegeline in alleviating pain-depression dyad: in silico analysis of aegeline on MAO-A and iNOS. ACS Omega. 2021;6(3):2034-2044. doi: https://doi.org/10.1021/acsomega.0c04739

73. Sankirtha H, Thirumani L, Alex A, Neha B, Vimal S, Madar IH. Systematic evaluation of Aegle marmelos-derived compounds: potential therapeutic agents against inflammation and oxidative stress. Cureus. 2024;16(4):e57499. doi: https://doi.org/10.7759/cureus.57499

74. Bastin A, Teimouri M, Faramarz S, Shabani M, Doustimotlagh AH, Sadeghi A. In vitro and molecular docking analysis of quercetin as an anti-inflammatory and antioxidant. Curr Pharm Des. 2023;29(11):883–91. doi: https://doi.org/10.2174/1381612829666230330084043

75. Arsianti A, Nur Azizah N, Erlina L. Molecular docking, ADMET profiling of gallic acid and its derivatives (N-alkyl gallamide) as apoptosis agent of breast cancer MCF-7 Cells. F1000Res. 2024;11:1453. doi: https://doi.org/10.12688/f1000research.127347.2

76. Pandey P, Khan F, Farhan M, Jafri A. Elucidation of rutin’s role in inducing caspase-dependent apoptosis via HPV-E6 and E7 down-regulation in cervical cancer HeLa cells. Biosci Rep. 2021;41(6):BSR20210670. doi: https://doi.org/10.1042/BSR20210670

77. Nivetha R, Bhuvaragavan S, Muthu Kumar T, Ramanathan K, Janarthanan S. Inhibition of multiple SARS-CoV-2 proteins by an antiviral biomolecule, seselin from Aegle marmelos deciphered using molecular docking analysis. J Biomol Struct Dyn. 2022;40(21):11070–81. doi: https://doi.org/10.1080/07391102.2021.1955009

78. Yuan C, Wang MH, Wang F, Chen PY, Ke XG, Yu B, et al. Network pharmacology and molecular docking reveal the mechanism of Scopoletin against non-small cell lung cancer. Life Sci. 2021;270:119105. doi: https://doi.org/10.1016/j.lfs.2021.119105

79. Awdhesh Kumar Mishra R, Kodiveri Muthukaliannan G. In-silico and in-vitro study of novel antimicrobial peptide AM1 from Aegle marmelos against drug-resistant Staphylococcus aureus. Sci Rep. 2024;14(1):25822. doi: https://doi.org/10.1038/s41598-024-76553-0

80. Boreak N, Jaferi NEM, Bashery M, Otudi HS, Almuqbil AS, Hisham A, et al. Harnessing the antimicrobial potential of Aegle marmelos against Mfa1 fimbriae in Porphyromonas gingivalis: a new strategy for endodontic therapy. Cell Mol Biol. 2025;71(1):96–101. doi: https://doi.org/10.14715/cmb/2025.70.1.10

81. Yugandhar P, Rao KM, Sengupta K. A novel herbal composition containing extracts of Boswellia serrata gum resin and Aegle marmelos fruit alleviates symptoms of asthma in a placebo controlled double-blind clinical study. Phytother Res. 2018;32(1):140–50. doi: https://doi.org/10.1002/PTR.5963

82. Karmase A, Birari R, Bhutani KK. Evaluation of anti-obesity effect of Aegle marmelos leaves. Phytomedicine. 2013;20(10):805–12. doi: https://doi.org/10.1016/J.PHYMED.2013.03.014

83. Mohammad MY, Yaheya M, Ismail M. Clinical evaluation of antidiabetic activity of Trigonella seeds and Aegle marmelos leaves. World Appl Sci J. 2009;7(10):1231–4.

84. Singh U, Kochhar A. Efficacy of supplementation of bael (Aegle marmelos L.) and nutrition counselling on food and nutrient intake of the non-insulin dependent diabetics FOOD. Science. 2013;4:55–9.

85. Kiran CA, Azam M, Malik A, Fatima K, Jafri SA, Muhammad R. Aegle marmelos leaf extract is an effective herbal remedy in reducing hyperglycemic condition: a pre-clinical study. J Cell Mol Res. 2016;8(1):39–45. doi: https://doi.org/10.22067/JCMR.V8I1.56204

Article Metrics
17 Views 6 Downloads 23 Total

Year

Month

Related Search

By author names