Microbial nanoparticles: biosynthesis and emerging roles in combating antimicrobial resistance

Alan Raj Angel Treasa Alex Venkatesh Kamath Volety Mallikarjuna Subrahmanyam   

Open Access   

Published:  Oct 08, 2025

DOI: 10.7324/JAPS.2026.244963
Abstract

Antimicrobial resistance (AMR) occurs when microorganisms adapt and grow in the presence of drugs that affect them. AMR poses an alarming threat to public health systems throughout the world. Due to factors including overcrowding, increased antibiotic usage and abuse, increased worldwide migration, selection pressure, and inadequate sewage disposal systems, antibiotic resistance has grown globally over the past few decades. Antibiotic resistance may be less of an issue now that nanotechnology has emerged. Antibiotics and nanoparticles can work together to combat infections. According to the studies, metallic nanoparticles of copper, zinc oxide, silver, gold, and other metals can work in concert with medicines to increase their antibacterial effectiveness in vitro, even against bacteria that are resistant to them. This enables the reversal of bacterial resistance by the use of certain combinations.


Keyword:     Nanoparticles antimicrobials synergism multi resistant


Citation:

Raj A, Alex AT, Kamath V, Subrahmanyam VM. Microbial nanoparticles: biosynthesis and emerging roles in combating antimicrobial resistance. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.244963

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Chokshi A, Sifri Z, Cennimo D, Horng H. Global contributors to antibiotic resistance. J Glob Infect Dis. 2019;11:36–42. doi: https://doi.org/10.4103/jgid.jgid_110_18

2. Arshad A. Bacterial synthesis and applications of nanoparticles. Nano Sci Nano Technol Indian J. 2017 [cited 2025 Jan 18];11. Available from: https://www.tsijournals.com/abstract/bacterial-synthesis-and-applications-of-nanoparticles-13485.html

3. Tulinski M, Jurczyk M. Nanomaterials synthesis methods [Internet]. In: Metrology and standardization of nanotechnology. Hoboken, NJ: John Wiley & Sons, Ltd; 2017, [cited 2025 Sept 19] pp 75–98. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527800308.ch4

4. Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, et al. Applications of green synthesized metal nanoparticles—a review. Biol Trace Elem Res. 2024;202:360–86. doi: https://doi.org/10.1007/s12011-023-03645-9

5. Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ. 2016;573:1089–102. doi: https://doi.org/10.1016/j.scitotenv.2016.08.120

6. Vithiya K, Kumar R, Sen S. Antimicrobial activity of biosynthesized silver oxide nanoparticles. J Pure Appl Microbiol. 2014;8:3263–8. doi: https://doi.org/10.1088/1361-6528/abe577

7. Mohd Yusof H, Abdul Rahman N, Mohamad R, Zaidan UH, Samsudin AA. Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Sci Rep. 2020;10:19996. doi: https://doi.org/10.1038/s41598-020-76402-w

8. Bukhari SI, Hamed MM, Al-Agamy MH, Gazwi HSS, Radwan HH, Youssif AM. Biosynthesis of copper oxide nanoparticles using Streptomyces MHM38 and its biological applications. J Nanomater. 2021;2021:6693302. doi: https://doi.org/10.1155/2021/6693302

9. Mohamed AA, Fouda A, Abdel-Rahman MA, Hassan SED, El-Gamal MS, Salem SS, et al. Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal Agric Biotechnol. 2019;19:101103. doi: https://doi.org/10.1016/j.bcab.2019.101103

10. Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, et al. Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express. 2013;3:32. doi: https://doi.org/10.1186/2191-0855-3-32

11. Mishra A, Tripathy SK, Yun SI. Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol. 2011;11:243–8. doi: https://doi.org/10.1166/jnn.2011.3265

12. Kaler A, Jain S, Banerjee UC. Green and rapid synthesis of anticancerous silver nanoparticles by Saccharomyces boulardii and insight into mechanism of nanoparticle synthesis. BioMed Res Int. 2013;2013:872940. doi: https://doi.org/10.1155/2013/872940

13. Kulkarni RR, Shaiwale NS, Deobagkar DN, Deobagkar DD. Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity. Int J Nanomed. 2015;10:963–74. doi: https://doi.org/10.2147/ijn.s72888

14. Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog. 2018;116:221–6. doi: https://doi.org/10.1016/j.micpath.2018.01.038

15. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, et al. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 2009;44:939–43. doi: https://doi.org/10.1016/j.procbio.2009.04.009

16. Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol. 2015;99:4579–93. doi: https://doi.org/10.1007/s00253-015-6622-1

17. Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A. 1999;96:13611–4. doi: https://doi.org/10.1073/pnas.96.24.13611

18. Pugazhenthiran N, Anandan S, Kathiravan G, Udaya Prakash NK, Crawford S, Ashokkumar M. Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanoparticle Res. 2009;11:1811–5. doi: https://doi.org/10.1007/s11051-009-9621-2

19. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol. 2014;98:8083–97. doi: https://doi.org/10.1007/s00253-014-5953-7

20. El-Batal A, Al Tami M. Biosynthesis of gold nanoparticles using marine streptomyces cyaneus and their antimicrobial, antioxidant and antitumor (in vitro) activities. J Chem Pharm Res. 2015;7:1020–36.

21. Zonooz N, Salouti M, Shapouri R, Nasseryan J. Biosynthesis of gold nanoparticles by Streptomyces sp. ERI-3 supernatant and process optimization for enhanced production. J Clust Sci. 2012;23. doi: https://doi.org/10.1007/s10876-012-0439-1

22. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology. 2003;14:824. doi: https://doi.org/10.1088/0957-4484/14/7/323

23. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip. 2015;29:221–36. doi: https://doi.org/10.1080/13102818.2015.1008194

24. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces. 2011;83:42–8. doi: https://doi.org/10.1016/j.colsurfb.2010.10.035

25. Guilger-Casagrande M, de Lima R. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019;7:287. doi: https://doi.org/10.3389/fbioe.2019.00287

26. Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z, Sáfrán G, et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep. 2018;8:3943. doi: https://doi.org/10.1038/s41598-018-22112-3

27. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces. 2003;28:313–8. doi: https://doi.org/10.1016/S0927-7765(02)00174-1

28. Waghmare SR, Mulla MN, Marathe SR, Sonawane KD. Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech. 2015;5:33–8. doi: https://doi.org/10.1007/s13205-014-0196-y

29. Eugenio M, Müller N, Frasés S, Almeida-Paes R, Lima LMT, Lemgruber L, et al. Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Adv. 2016;6:9893–904. doi: https://doi.org/10.1039/C5RA22727E

30. Jalal M, Ansari MA, Alzohairy MA, Ali SG, Khan HM, Almatroudi A, et al. Biosynthesis of silver nanoparticles from oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials. 2018;8:586. doi: https://doi.org/10.3390/nano8080586

31. Ananthi V, Siva Prakash G, Mohan Rasu K, Gangadevi K, Boobalan T, Raja R, et al. Comparison of integrated sustainable biodiesel and antibacterial nano silver production by microalgal and yeast isolates. J Photochem Photobiol B. 2018;186:232–42. doi: https://doi.org/10.1016/j.jphotobiol.2018.07.021

32. Ashour S. Silver nanoparticles as antimicrobial agent from Kluyveromyces marxianus and Candida utilis. Int J Curr Microbiol Appl Sci. 2014;3:384–96.

33. Subramanian M, Alikunhi N, Kandasamy K. In vitro synthesis of silver nanoparticles by marine yeasts from coastal mangrove sediment. J Comput Theor Nanosci. 2010;3:428–33. doi: http://dx.doi.org/10.1166/asl.2010.1168

34. Cunha FA, Cunha M da CSO, da Frota SM, Mallmann EJJ, Freire TM, Costa LS, et al. Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities. World J Microbiol Biotechnol. 2018;34:127. doi: https://doi.org/10.1007/s11274-018-2514-8

35. Sowbarnika R, Anhuradha S, Preetha B. Enhanced antimicrobial effect of yeast mediated silver nanoparticles synthesized from baker’s yeast. Int J Nanosci Nanotechnol. 2018;14:33–42.

36. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 2002;14:95. doi: https://doi.org/10.1088/0957-4484/14/1/321

37. Sanaeimehr Z, Javadi I, Namvar F. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol. 2018;9:3. doi: https://doi.org/10.1186/s12645-018-0037-5

38. Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial nano-factories: synthesis and biomedical applications. Front Chem. 2021;9:626834. doi: https://doi.org/10.3389/fchem.2021.626834

39. Busi S, Rajkumari J. Chapter 15 - Microbially synthesized nanoparticles as next generation antimicrobials: scope and applications [Internet]. In: Grumezescu AM, editor. Nanoparticles in pharmacotherapy. New York, NY: William Andrew Publishing; 2019 [cited 2025 Sept 19] pp 485–524. Available from: https://www.sciencedirect.com/science/article/pii/B9780128165041000089

40. Bazylinski DA, Frankel RB. Magnetosome formation in prokaryotes. Nat Rev Microbiol. 2004;2:217–30. doi: https://doi.org/10.1038/nrmicro842

41. Bazylinski DA, Lefèvre CT, Schüler D. Magnetotactic bacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: prokaryotic physiology and biochemistry. Berlin, Heidelberg: Springer; 2013, pp 453–94. [cited 2025 Jan 21]. Available from: https://doi.org/10.1007/978-3-642-30141-4_74

42. Khan AA, Khan S, Khan S, Rentschler S, Laufer S, Deigner HP. Biosynthesis of iron oxide magnetic nanoparticles using clinically isolated Pseudomonas aeruginosa. Sci Rep. 2021;11:20503. doi: https://doi.org/10.1038/s41598-021-99814-8

43. Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Front Microbiol. 2018;9:2066. doi: https://doi.org/10.3389/fmicb.2018.02066

44. Agreles MAA, Cavalcanti IDL, Cavalcanti IMF. Synergism between metallic nanoparticles and antibiotics. Appl Microbiol Biotechnol. 2022;106:3973–84. doi: https://doi.org/10.1007/s00253-022-12001-1

45. Lee NY, Ko WC, Hsueh PR. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. 2019 [cited 2025 Jan 21];10:1153. Available from: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2019.01153/full

46. Lopez-Carrizales M, Velasco KI, Castillo C, Flores A, Magaña M, Martinez-Castanon GA, et al. In vitro synergism of silver nanoparticles with antibiotics as an alternative treatment in multiresistant uropathogens. Antibiotics. 2018;7:50. doi: https://doi.org/10.3390/antibiotics7020050

47. Vazquez-Muñoz R, Meza-Villezcas A, Fournier PGJ, Soria-Castro E, Juarez-Moreno K, Gallego-Hernández AL, et al. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One. 2019;14:e0224904. doi: https://doi.org/10.1371/journal.pone.0224904

48. Sanyasi S, Majhi RK, Kumar S, Mishra M, Ghosh A, Suar M, et al. Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep. 2016;6:24929. doi: https://doi.org/10.1038/srep24929

49. Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed. 2012;2:953–9. doi: https://doi.org/10.1016/s2221-1691(13)60006-4

50. Goli?ska P, Wypij M, Rathod D, Tikar S, Dahm H, Rai M. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. J Basic Microbiol. 2016;56:541–56. doi: https://doi.org/10.1002/jobm.201500516

51. Al-Dbass AM, Daihan SA, Al-Nasser AA, Al-Suhaibani LS, Almusallam J, Alnwisser BI, et al. Biogenic silver nanoparticles from two varieties of Agaricus bisporus and their antibacterial activity. Mol Basel Switz. 2022;27:7656. doi: https://www.mdpi.com/1420-3049/27/21/7656#

52. Priyadarshini S, Gopinath V, Meera Priyadharsshini N, MubarakAli D, Velusamy P. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf B Biointerfaces. 2013;102:232–7. doi: https://doi.org/10.1016/j.colsurfb.2012.08.018

53. Mathesh A, Mohanprasanth A, Saravanan M. Synthesis and characterization of Spirulina-mediated titanium dioxide nanoparticles: antimicrobial activity against multidrug-resistant bacteria. Nano-Struct Nano-Objects 2024;39:101225. doi: https://doi.org/10.1016/j.nanoso.2024.101225

54. Haji SH, Ganjo AR, Faraj TA, Fatah MH, Smail SB. The enhanced antibacterial and antibiofilm properties of titanium dioxide nanoparticles biosynthesized by multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol. 2024;24:379. doi: https://doi.org/10.1186/s12866-024-03530-y

55. Ameen F. Optimization of the synthesis of fungus-mediated bi-metallic Ag-Cu nanoparticles. Appl Sci. 2022;12:1384. doi: https://www.mdpi.com/2076-3417/12/3/1384#

56. Zainab S, Hamid S, Sahar S, Ali N. Fluconazole and biogenic silver nanoparticles-based nano-fungicidal system for highly efficient elimination of multi-drug resistant Candida biofilms. Mater Chem Phys. 2022;276:125451. doi: https://doi.org/10.1016/j.matchemphys.2021.125451

57. Fatima F, Wahid I. Eco-friendly synthesis of silver and copper nanoparticles by Shizophyllum commune fungus and its biomedical applications. Int J Environ Sci Technol. 2022;19:7915–26. doi: https://doi.org/10.1007/s13762-021-03517-6

58. Kamat S, Kumari M. Emergence of microbial resistance against nanoparticles: mechanisms and strategies. Front Microbiol. 2023 [cited 2025 Jun 10];14:1102615. Available from: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1102615/full

59. Brandelli A. The interaction of nanostructured antimicrobials with biological systems: cellular uptake, trafficking and potential toxicity. Food Sci Hum Wellness. 2020;9:8–20. doi: https://doi.org/10.1016/j.fshw.2019.12.003

60. You C, Han C, Wang X, Zheng Y, Li Q, Hu X, et al. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep. 2012;39:9193–201. doi: https://doi.org/10.1007/s11033-012-1792-8

61. Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci. 2020;8:4653–64. doi: https://doi.org/10.1039/d0bm00558d

62. Rodríguez-Gómez FD, Monferrer D, Penon O, Rivera-Gil P. Regulatory pathways and guidelines for nanotechnology-enabled health products: a comparative review of EU and US frameworks. Front Med. 2025 [cited 2025 Jun 10];12:1544393. Available from: https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1544393/full

63. Corrie L, Gulati M, Vishwas S, Khursheed R, Kaur J, Dua K, et al. Chapter 11—Regulatory aspect of nanomedicines and nanobiosystems development [Internet]. In: Mishra V, Hussain CM, Mishra Y, editors. Intelligent nanobiosystems in medicine and healthcare, Volume 1. New York, NY: Academic Press; 2025 [cited 2025 Sept 19]. pp 303–27. Available from: https://www.sciencedirect.com/science/article/pii/B9780323902526000116

64. Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20:257–69. doi: https://doi.org/10.1038/s41579-021-00649-x

65. Ozdal M, Gurkok S. Recent advances in nanoparticles as antibacterial agent. ADMET DMPK. 2022;10:115–29. doi: https://doi.org/10.5599/admet.1172

Article Metrics
6 Views 0 Downloads 6 Total

Year

Month

Related Search

By author names