Type 2 diabetes mellitus (T2DM) is a pressing global health issue defined by impaired glucose metabolism, insulin resistance, and β-cell dysfunction. Emerging research underscores the involvement of the gut microbiome in the development and progression of T2DM. A comprehensive online search was conducted across PUBMED, SCOPUS, EMBASE, Web of Science, and Google Scholar to identify all original research articles published in India and internationally over the past 5 years on the topic of gut dysbiosis and diabetes. A mini review was carried out based on their findings. Composed of trillions of microorganisms, the gut microbiota influences host metabolism, immunity, and inflammatory responses. Dysbiosis, or imbalance in microbial composition—particularly, an altered Firmicutes/Bacteroidetes ratio—has been linked to metabolic disorders, including T2DM. Studies show that individuals with T2DM exhibit decreased levels of beneficial, fibre-degrading bacteria and increased opportunistic pathogens and mucus-degrading microbes. Antidiabetic drugs such as metformin, acarbose, glucagon-like peptide (GLP)-1 receptor agonists, and dipeptidyl peptidase-4 inhibitors have been shown to modulate the gut microbiome, suggesting a bidirectional relationship between microbiota and therapeutic efficacy. Furthermore, pharmacomicrobiomics—a field examining microbiota-drug interactions—highlights how individual microbial profiles may predict drug response and side effects. Specific bacteria, such as Enterococcus faecalis, can even degrade GLP-1, reducing the efficacy of GLP-1-based treatments. Incorporating prebiotics and probiotics into treatment regimens has shown potential in restoring microbial balance, increasing short-chain fatty acid production, and enhancing glucose metabolism. These interventions may support gut barrier integrity, reduce inflammation, and improve insulin sensitivity. This review seeks to examine the intricate connection between gut microbiome and T2DM, insights into the disease mechanisms, and opens avenues for personalized and more effective therapeutic strategies. Targeting the microbiome may revolutionize diabetes management by enabling microbiota-informed treatment approaches to mitigate disease burden.
Sethumadhavan S, Jacob SM, Babu MN. Gut microbiota as a key player in type 2 diabetes: Current perspectives. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.267236
1. Xie D, Zhao X, Chen M. Prevention and treatment strategies for type 2 diabetes based on regulating intestinal flora. Biosci Trends. 2021;15(5):313–20. doi: https://doi.org/10.5582/bst.2021.01275
2. Facts and Figures. IDF-International diabetes federation. Available from: https://idf.org/about-diabetes/diabetes-facts-figures/
3. IDF-International diabetes federation - Diabetes Atlas. 11th ed. 2025. Available from: https://diabetesatlas.org/resources/idf-diabetes-atlas-2025/
4. Tang Y, Yan M, Fang Z, Jin S, Xu T. Effects of metformin, saxagliptin, and repaglinide on gut microbiota in high-fat diet/streptozocin-induced type 2 diabetic mice. BMJ Open Diabetes Res Care. 2024;12(3):e003837. doi: https://doi.org/10.1136/bmjdrc-2023-003837
5. Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, et al. Unraveling the role of the human gut microbiome in health and diseases. Microorganisms. 2024;12(11):2333. doi: https://doi.org/10.3390/microorganisms12112333
6. Zhang Y, Chen R, Zhang DD, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother. 2023;160:114295. doi: https://doi.org/10.1016/j.biopha.2023.114295
7. Massey W, Brown JM. The gut microbial endocrine organ in type 2 diabetes. Endocrinology. 2021;162(2):bqaa235. doi: https://doi.org/10.1210/endocr/bqaa235
8. Chen Y, Wang M. New Insights of anti-hyperglycemic agents and traditional Chinese medicine on gut microbiota in type 2 diabetes. Drug Des Devel Ther. 2021;15:4849–63. doi: https://doi.org/10.2147/DDDT.S334325
9. Bielka W, Przezak A, Pawlik A. The role of the gut microbiota in the pathogenesis of diabetes. Int J Mol Sci. 2022;23(1):480. doi: https://doi.org/10.3390/ijms23010480
10. Zeng Y, Wu Y, Zhang Q, Xiao X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio. 2024;15(1):e0203223. doi: https://doi.org/10.1128/mbio.02032-23
11. Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B, Castellano- Castillo D, Moreno-Indias I, Urda-Cardona A, et al. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: a case-control study. Diabetes Care. 2018;41(11):2385–95. doi: https://doi.org/10.2337/dc18-0253
12. Hu R, Yuan Y, Liu C, Zhou J, Ji L, Jiang G. New insights into the links between anti-diabetes drugs and gut microbiota. Endocr Connect. 2021;10(1):R36–42. doi: https://doi.org/10.1530/EC-20-0431
13. Myhrstad MCW, Tunsjø H, Charnock C, Telle-Hansen VH. Dietary fiber, gut microbiota, and metabolic regulation—current status in human randomized trials. Nutrients 2020;12(3): 859. doi: https://doi.org/10.3390/nu12030859
14. Doestzada M, Vila AV, Zhernakova A, Koonen DPY, Weersma RK, Touw DJ, et al. Pharmacomicrobiomics: a novel route towards personalized medicine? Protein Cell. 2018;9(5):432–45. doi: https://doi.org/10.1007/s13238-018-0547-2
15. Dzi?gielewska-G?siak S, Fatyga E, Pi?ot M, Wierzgo? A, Muc- Wierzgo? M. Are there differences in gut microbiome in patients with type 2 diabetes treated by metformin or metformin and insulin? Diabetes Metab Syndr Obes. 2022;15:3589–99. doi: https://doi.org/10.2147/DMSO.S377856
16. Nakajima H, Takewaki F, Hashimoto Y, Kajiyama S, Majima S, Okada H, et al. The effects of metformin on the gut microbiota of patients with type 2 diabetes: a two-center, quasi-experimental study. Life 2020;10(9):1–15. doi: https://doi.org/10.3390/life10090195
17. De La Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, et al. Metformin is associated with higher relative abundance of mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 2017;40(1):54–62. doi: https://doi.org/10.2337/dc16-1324
18. Proffitt C, Bidkhori G, Moyes D, Shoaie S. Disease, drugs and dysbiosis: Understanding microbial signatures in metabolic disease and medical interventions. Microorganisms 2020;8(9):1381. doi: https://doi.org/10.3390/microorganisms8091381
19. Baxter NT, Lesniak NA, Sinani H, Schloss PD, Koropatkin NM. The glucoamylase inhibitor acarbose has a diet-dependent and reversible effect on the murine gut microbiome. mSphere 2019;4(3):e00347- 19. doi: https://doi.org/10.1128/mSphere.00347-19
20. Cao TTB, Wu KC, Hsu JL, Chang CS, Chou C, Lin CY, et al. Effects of non-insulin anti-hyperglycemic agents on gut microbiota: a systematic review on human and animal studies. Front Endocrinol. 2020;11:573891. doi: https://doi.org/10.3389/fendo.2020.573891
21. Liao X, Song L, Zeng B, Liu B, Qiu Y, Qu H, et al. Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine 2019;44:665–74. doi: https://doi.org/10.1016/j.ebiom.2019.03.057
22. Lee DM, Battson ML, Jarrell DK, Hou S, Ecton KE, Weir TL, et al. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc Diabetol. 2018;17(1):62. doi: https://doi.org/10.1186/s12933-018-0708-x
23. Takewaki F, Nakajima H, Takewaki D, Hashimoto Y, Majima S, Okada H, et al. Habitual dietary intake affects the altered pattern of gut microbiome by acarbose in patients with type 2 diabetes. Nutrients. 2021;13(6):2107. doi: https://doi.org/10.3390/nu13062107
24. Tsai CY, Lu HC, Chou YH, Liu PY, Chen HY, et al. Gut microbial signatures for glycemic responses of GLP-1 receptor agonists in type 2 diabetic patients: a pilot study. Front Endocrinol. 2022;12:814770. doi: https://doi.org/10.3389/fendo.2021.814770
25. Aljumaah MR, Roach J, Hu Y, Gunstad J, Azcarate-Peril MA. Microbial dipeptidyl peptidases of the S9B family as host-microbe isozymes. Sci Adv. 2025;11(14):eads5721. doi: https://doi.org/10.1126/sciadv.ads5721
26. De Macedo JCC, Guadagnini D, Assalin HB, Oliveira ES, Magro DO, Alborghetti MR, et al. Vildagliptin modulates the microbiota and induces an immunometabolic profile compatible with neuroprotection in type 2 diabetes. Sci Rep. 2025;15(1):27932. doi: https://doi.org/10.1038/s41598-025-12990-9.
27. Yang Q, Deng L, Feng C, Wen J.Comparing the effects of empagliflozin and liraglutide on lipid metabolism and intestinal microflora in diabetic mice. PeerJ.2024;12:e17055. doi: https://doi.org/10.7717/peerj.17055
28. Mindrescu NM, Guja C, Jinga V, Ispas S, Curici A, Danciulescu Miulescu RE, et al. SGLT-2 inhibitors and metabolic outcomes: a primary data study exploring the microbiota-diabetes connection. Metabolites 2025;15(6):411. doi: https://doi.org/10.3390/metabo15060411
29. Elbere I, Silamikelis I, Dindune II, Kalnina I, Briviba M, Zaharenko L, et al. Baseline gut microbiome composition predicts metformin therapy short-term efficacy in newly diagnosed type 2 diabetes patients. PLoS One. 2020;15(10):e0241338. doi: https://doi.org/10.1371/journal.pone.0241338
30. Bryrup T, Thomsen CW, Kern T, Allin KH, Brandslund I, Jørgensen NR, et al. Metformin-induced changes of the gut microbiota in healthy young men: Results of a non-blinded, one-armed intervention study. Diabetologia 2019;62(6):1024–35. doi: https://doi.org/10.1007/s00125-019-4848-7
31. Rosell-Díaz M, Fernández-Real JM. Metformin, cognitive function, and changes in the gut microbiome. Endocr Rev. 2024;45(2):210–26. doi: https://doi.org/10.1210/endrev/bnad029
32. Ejtahed HS, Tito RY, Siadat SD, Hasani-Ranjbar S, Hoseini-Tavassol Z, Rymenans L, et al. Metformin induces weight loss associated with gut microbiota alteration in non-diabetic obese women: a randomized double-blind clinical trial. Eur J Endocrinol. 2019;180:165–76.
33. Ying X, Rongjiong Z, Kahaer M, Chunhui J, Wulasihan M. Therapeutic efficacy of liraglutide versus metformin in modulating the gut microbiota for treating type 2 diabetes mellitus complicated with nonalcoholic fatty liver disease. Front Microbiol. 2023;14:1088187. doi: https://doi.org/10.3389/fmicb.2023.1088187
34. Smits MM, Fluitman KS, Herrema H, Davids M, Kramer MHH, Groen AK, et al. Liraglutide and sitagliptin have no effect on intestinal microbiota composition: a 12-week randomized placebo-controlled trial in adults with type 2 diabetes. Diabetes Metab. 2021;47(5):101223. doi: https://doi.org/10.1016/j.diabet.2021.101223
35. Rizza S, Pietrucci D, Longo S, Menghini R, Teofani A, Piciucchi G, et al. Impact of insulin degludec/liraglutide fixed combination on the gut microbiomes of elderly patients with type 2 diabetes: results from A subanalysis of A small non-randomised single arm study. Aging Dis. 2023;14(2):319–24. doi: https://doi.org/10.14336/AD.2023.0118
36. Van Bommel EJM, Herrema H, Davids M, Kramer MHH, Nieuwdorp M, van Raalte DH. Effects of 12-week treatment with dapagliflozin and gliclazide on faecal microbiome: results of a double-blind randomized trial in patients with type 2 diabetes. Diabetes Metab. 2020;46(2):164–8. doi: https://doi.org/10.1016/j.diabet.2019.11.005
37. Tsai CY, Lu HC, Chou YH, Liu PY, Chen HY, Huang MC, et al. Gut microbial signatures for glycemic responses of GLP-1 receptor agonists in type 2 diabetic patients: a pilot study. Front Endocrinol. 2022;12:814770. doi: https://doi.org/10.3389/fendo.2021.814770
38. Grasset E, Puel A, Charpentier J, Collet X, Christensen JE, Tercé F, et al. A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism. Cell Metab. 2017;26(1):278. doi: https://doi.org/10.1016/j.cmet.2017.06.003
39. LeValley SL, Tomaro-Duchesneau C, Britton RA. Degradation of the incretin hormone glucagon-like peptide-1 (GLP-1) by Enterococcus faecalis metalloprotease GelE. mSphere 2020;5(1):e00585-19. doi: https://doi.org/10.1128/mSphere.00585-19
40. Bica IC, Pietro?el VA, Salmen T, Diaconu CT, Fierbinteanu Braticevici C, Stoica RA, et al. The effects of cardioprotective antidiabetic therapy on microbiota in patients with type 2 diabetes mellitus—a systematic review. Int J Mol Sci. 2023;24(8):7184. doi: https://doi.org/10.3390/ijms24087184
41. Vitetta L, Gorgani NN, Vitetta G, Henson JD. Prebiotics progress shifts in the intestinal microbiome that benefits patients with type 2 diabetes mellitus. Biomolecules 2023;13(9):1307. doi: https://doi.org/10.3390/biom13091307
42. Liu H, Wang J, He T, Becker S, Zhang G, Li D, et al. Butyrate: a double-edged sword for health? Adv Nutr. 2018;9:(1):21–9. doi: https://doi.org/10.1093/advances/nmx009
43. Li HY, Zhou DD, Gan RY, Huang SY, Zhao CN, Shang A, et al. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: a narrative review. Nutrients 2021;13(9):3211. doi: https://doi.org/10.3390/nu13093211
44. Koopen A, Witjes J, Wortelboer K, Majait S, Prodan A, Levin E, et al. Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomized double-blind placebo-controlled crossover study. Gut 2022;71(8):1577–87. doi: https://doi.org/10.1136/gutjnl-2020-323297.
45. Seegers JFML, Gül IS, Hofkens S, Brosel S, Schreib G, Brenke J, et al. Toxicological safety evaluation of live Anaerobutyricum soehngenii strain CH106. J Appl Toxicol. 2022;42(2): 244–57. doi: https://doi.org/10.1002/jat.4207
46. Simon MC, Strassburger K, Nowotny B, Kolb H, Nowotny P, Burkart V, et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in Glucose-Tolerant humans: a proof of concept. Diabetes Care 2015;38(10):1827–34. doi: https://doi.org/10.2337/dc14-2690
47. Wang Y, Chen J, Ni Y, Liu Y, Gao X, Tse MA, et al. Exercise-changed gut mycobiome as a potential contributor to metabolic benefits in diabetes prevention: an integrative multi-omics study. Gut Microbes. 2024;16(1):2416928. doi: https://doi.org/10.1080/19490976.2024.2 416928
48. Torquati L, Gajanand T, Cox ER, Willis CRG, Zaugg J, Keating SE, et al. Effects of exercise intensity on gut microbiome composition and function in people with type 2 diabetes. Eur J Sport Sci. 2023;23(4):530-541. doi: https://doi.org/10.1080/17461391.2022.20 35436
49. Arias-Marroquín AT, Del Razo-Olvera FM, Castañeda-Bernal ZM, et al. Personalized versus non-personalized nutritional recommendations/interventions for type 2 diabetes mellitus remission: a narrative review. Diabetes Ther. 2024;15:749–61. doi: https://doi.org/10.1007/s13300-024-01545-2
50. Lawal OP, Adekunle JF, Abiodun AV, Orobator ET, Agbo OS, Ugonna UK, et al. Modulating gut microbiota for precision medicine in diabetes: a paradigm shift in personalized treatment strategies. Asian J Res Rep Endocrinol. 2025;8(1):94–109. doi: https://doi.org/10.9734/ajrre/2025/v8i1110
51. Ding D, Yong H, You N, Lu W, Yang X, Ye X, et al, Prospective study reveals host microbial determinants of clinical response to fecal microbiota transplant therapy in type 2 diabetes patients, front cell infect. Microbiol 2022;12:820367.
52. Wang H, Li S, Zhang L, Zhang N. The role of fecal microbiota transplantation in type 2 diabetes mellitus treatment. Front Endocrinol. 2025;16:1555601. doi: https://doi.org/10.3389/fendo.2025.1555601
53. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–6.e7. doi: https://doi.org/10.1053/j.gastro.2012.06.031
54. Qin L, Fan B, Zhou Y, Zheng J, Diao R, Wang F, et al. Targeted gut microbiome therapy: Applications and prospects of probiotics, fecal microbiota transplantation and natural products in the management of type 2 diabetes. Pharmacol Res. 2025;213:107625. doi: https://doi.org/10.1016/j.phrs.2025.107625
Year
Month