Optimizing the function of the existing β-cells is a potential strategy for managing hyperglycemia in diabetes. Musculo aponeurotic fibrosarcoma oncogene A (MAFA) is a β-cell-specific transcription factor crucial for binding to insulin enhancer elements to promote insulin secretion. Cytotoxic stress from chronic hyperglycemia diminishes the β-cell potential, which can be mitigated using natural antidiabetic agents. In this study, oxidative stress was induced in β-cells using streptozotocin in male Wistar rats to assess the antioxidant properties of aqueous root extract of Salacia oblonga (ARSO). Diabetic animals received oral doses of glibenclamide (2 mg/kg) and ARSO (200 mg/kg) for 8 weeks. Blood glucose levels, ultrastructural changes in β-cells, histopathological assessments, MAFA immunohistochemistry, transcription and translation processes, and antioxidant status within pancreatic tissues were evaluated. The group treated with ARSO exhibited a significant 54% reduction in hyperglycemia and demonstrated enhanced antioxidant status, indicating the antidiabetic and antioxidant properties of S. oblonga. Histopathological analysis confirmed the functional restoration of β-cells, as indicated by an increase in cellular organelles in the ARSO-treated group. Additionally, there was a 63% increase in MAFA-expressing cells, along with a 2.2-fold increase in MAFA gene expression and a 1.8-fold increase in protein expression in ARSO-treated diabetic animals compared with the control. These findings suggest that S. oblonga enhances the expression of β-cell-specific transcription factors and has potential as an effective therapeutic agent for diabetes management, warranting further investigations.
Anbumani SK, Subramanian M, Aristotle S, Kaliyaperumal P. Salacia oblonga aqueous root extract restores β-cell function in experimental diabetes via antioxidant effects and MAFA upregulation. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.264678
1. Oh YS. Mechanistic insights into pancreatic beta-cell mass regulation by glucose and free fatty acids. Anat Cell Biol. 2015;48(1):16–24. doi: https://doi.org/10.5115/acb.2015.48.1.16
2. Bele S, Wokasch AS, Gannon M. Epigenetic modulation of cell fate during pancreas development. Trends Dev Biol. 2023;16:1–27.
3. Zhu Y, Liu Q, Zhou Z, Ikeda Y. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem Cell Res Ther. 2017;8(1):240. doi: https://doi.org/10.1186/s13287-017-0694-z
4. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172(4):650–65. doi: https://doi.org/10.1016/j.cell.2018.01.029
5. Xiafukaiti G, Maimaiti S, Ogata K, Kuno A, Kudo T, Shawki HH, et al. MafB is important for pancreatic β-cell maintenance under a MafA-deficient condition. Mol Cell Biol. 2019;39:e00080–19. doi: https://doi.org/10.1128/mcb.00080-19
6. Iacovazzo D, Flanagan SE, Walker E, Quezado R, de Sousa Barros FA, Caswell R, et al. MAFA missense mutation causes familial insulinomatosis and diabetes mellitus. Proc Natl Acad Sci U S A. 2018;115(5):1027–32. doi: https://doi.org/10.1073/pnas.1712262115
7. Lankatillake C, Huynh T, Dias DA. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods. 2019;15:105 doi: https://doi.org/10.1186/s13007-019-0487-8
8. Gladis Raja Malar C, Chinnachamy C. In vitro studies on antioxidant activity of stem extract of Salacia oblonga from Karnataka regions, India. Der Pharm Lett. 2015;7(7):405–10.
9. Bhat BM, Raghuveer CV, D’Souza V, Ilanthodi S, Manjrekar PA. Delayed structure – function alterations in pancreas and liver of rodent diabetic model treated with Salacia oblonga. Res J Pharm Technol. 2023;16(2):879–84. doi: https://doi.org/10.52711/0974-360x.2023.00149
10. Stohs SJ, Ray S. Antidiabetic and anti-hyperlipidemic effects and safety of Salacia reticulata and related species. Phytother Res. 2015;29(7):986–95. doi: https://doi.org/10.1002/ptr.5382
11. Srikanth R, Thupurani MK, Harish BR, Surekha C. In vitro and in vivo antidiabetic effects of Salacia oblonga Wall. leaf and root extracts. Int J Adv Res. 2022;10(03):841–9. doi: https://doi.org/10.21474/IJAR01/14459
12. Kushwaha PS, Singh AK, Keshari AK, Maity S, Saha S. An updated review on the phytochemistry, pharmacology, and clinical trials of Salacia oblonga. Pharmacogn Rev. 2016;10(20):109–14. doi: https://doi.org/10.4103/0973-7847.194046
13. Banerjee A, Singh S, Prasad SK, Kumar S, Banerjee O, Seal T, et al. Protective efficacy of Tinospora sinensis against streptozotocin induced pancreatic islet cell injuries of diabetic rats and its correlation to its phytochemical profiles. J Ethnopharmacol. 2020;248:112356. doi: https://doi.org/10.1016/j.jep.2019.112356
14. Mule VS, Naikwade NS. Antidiabetic effect of fruit and cork extracts of Ficus lacor Buch. Ham. In streptozotocin-induced diabetic rats. J Appl Pharm Sci. 2022;12(01):131–9. doi: https://doi.org/10.7324/JAPS.2021.120112
15. Deepak KGK, Challa S, Suhasin G, Nagesewara Rao Reddy N, Elansary HO, El-Ansary DO. Antidiabetic and antilipidemic activity of root extracts of Salacia oblonga against streptozotocin-induced diabetes in wistar rats. Processes. 2020;8:301. doi: https://doi.org/10.3390/pr8030301
16. K?l?ç Y, Geyikoglu F, Çolak S, Turkez H, Bak?r M, Hsseinigouzdagani M. Carvacrol modulates oxidative stress and decreases cell injury in pancreas of rats with acute pancreatitis. Cytotechnology. 2016;68(4):1243–56. doi: https://doi.org/10.1007/s10616-015-9885-6
17. Gok G, Neselioglu S, Ko HL, Erel O, López-Martínez MJ, Manteca X, et al. Evaluation of glutathione (GSH) system in porcine saliva: validation and application of colorimetric method. Antioxidants (Basel). 2024;13(10):1231. doi: https://doi.org/10.3390/antiox13101231
18. Nurdyansyah F, Widyastuti DA, Mandasari AA. The effect of stinky bean (Parkia speciosa) peel ethanolic extract to enhance superoxide dismutase (SOD) and reduce malondialdehyde (MDA) level of “jelantah” exposed rats. IOP Conf Ser Earth Environ Sci. 2023;1200(1):012049. doi: https://doi.org/10.1088/1755-1315/1200/1/012049
19. Hadwan MH. New method for assessment of serum catalase activity. Ind J Sci Technol. 2016;9(4):1–5. doi: https://doi.org/10.17485/ijst/2016/v9i4/80499
20. Subramanian M, Thotakura B, Chandra Sekaran SP, Jyothi AK, Sundaramurthi I. Naringin ameliorates streptozotocin-induced diabetes through forkhead box M1-mediated beta cell proliferation. Cells Tissues Organs. 2018;206(4-5):242–53. doi: https://doi.org/10.1159/000499480
21. Subramanian M, Thotakura B, Swathi, Ashok, Sundaramurthi I. Naringin (4′,5,7-Trihydroxyflavanone 7-Rhamnoglucoside) attenuates β-cell dysfunction in diabetic rats through upregulation of PDX-1. Cells Tissues Organs. 2018;206(3):133–43. doi: https://doi.org/10.1159/000496506
22. Huang Q, Liu Z, Yang Y, Yang Y, Huang T, Hong Y, et al. Selenium nanodots (SENDs) as antioxidants and antioxidant-prodrugs to rescue islet β cells in type 2 diabetes mellitus by restoring mitophagy and alleviating endoplasmic reticulum stress. Adv Sci (Weinh). 2023;10:e2300880. doi: https://doi.org/10.1002/advs.202300880
23. Cheng Y, Yao XM, Zhou SM, Sun Y, Meng XJ, Wang Y, et al. The m(6) A methyltransferase METTL3 ameliorates methylglyoxal-induced impairment of insulin secretion in pancreatic β cells by regulating MafA expression. Front Endocrinol (Lausanne). 2022;13:910868. doi: https://doi.org/10.3389/fendo.2022.910868.
24. Katkoori VR, Basson MD, Bond VC, Manne U, Bumpers HL. Nef-M1, a peptide antagonist of CXCR4, inhibits tumor angiogenesis and epithelial to mesenchymal transition in colon and breast cancers. Oncotarget. 2015;6(29):27763–77. doi: https://doi.org/10.18632/oncotarget.4615
25. Anbumani S, Shankaranarayanan A, Thomson J, Sadayan S, Subramanian M. Aqueous root extract of Salacia oblonga ameliorates experimental diabetes by upregulation of PDX1 expression and alpha-to-beta cell trans-differentiation. J Appl Pharm Sci. 2025;15(4):151– 61. doi: https://doi.org/10.7324/JAPS.2025.224032
26. Eguchi N, Vaziri ND, Dafoe DC, Ichii H. The role of oxidative stress in pancreatic β cell dysfunction in diabetes. Int J Mol Sci. 2021;22(4):1509. doi: https://doi.org/10.3390/ijms22041509
27. Gladis Raja Malar C, Chellaram C. Phytochemical screening, quantification of total phenols, total flavonoids and antimicrobial activity of stem extracts of Salacia oblonga. Ind J Sci Technol. 2018;11(23):1–8. doi: https://doi.org/10.17485/ijst/2018/v11i23/125632
28. Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: a mechanistic review. Biomed Pharmacother. 2019;111:947–57. doi: https://doi.org/10.1016/j.biopha.2018.12.127
29. Mihailovic M, Dinic S, Arambasic Jovanovic J, Uskokovic A, Grdovic N, Vidakovic M. The influence of plant extracts and phytoconstituents on antioxidant enzymes activity and gene expression in the prevention and treatment of impaired glucose homeostasis and diabetes complications. Antioxidants (Basel). 2021;10(3):1–25. doi: https://doi.org/10.3390/antiox10030480
30. Gladis Raja Malar C, Chellaram C. Antihyperglycemic activity antioxidant enzymes and histopathological studies of Salacia oblonga in streptozotocin nicotinamide induced type 2 diabetic rats. Indian J Pharm Sci. 2023;85(2):376–87. doi: https://doi.org/10.36468/pharmaceutical-sciences.1103
31. Liang J, Chirikjian M, Pajvani UB, Bartolomé A. MafA regulation in β-cells: from transcriptional to post-translational mechanisms. Biomolecules. 2022;12(4):535. doi: https://doi.org/10.3390/biom12040535
32. Pillai SS, Mini S. Attenuation of high glucose induced apoptotic and inflammatory signaling pathways in RIN-m5F pancreatic β cell lines by Hibiscus rosa sinensis L. petals and its phytoconstituents. J Ethnopharmacol. 2018;227:8–17. doi: https://doi.org/10.1016/j.jep.2018.08.022
33. Dordevic M, Grdovic N, Mihailovic M, Arambasic Jovanovic J, Uskokovic A, Rajic J, et al. Centaurium erythraea extract improves survival and functionality of pancreatic beta-cells in diabetes through multiple routes of action. J Ethnopharmacol. 2019;242:112043. doi: https://doi.org/10.1016/j.jep.2019.112043
34. Yin XL, Xu BQ, Zhang YQ. Gynura divaricata rich in 3, 5-/4, 5-dicaffeoylquinic acid and chlorogenic acid reduces islet cell apoptosis and improves pancreatic function in type 2 diabetic mice. Nutr Metab (Lond). 2018;15:73. doi: https://doi.org/10.1186/s12986-018-0310-y
35. Yin XL, Liu HY, Zhang YQ. Mulberry branch bark powder significantly improves hyperglycemia and regulates insulin secretion in type II diabetic mice. Food Nutr Res. 2017;61:1368847. doi: https://doi.org/10.1080/16546628.2017.1368847
36. Kannan P, Raghunathan M, Mohan T, Palanivelu S, Periandavan K. Gymnemic acid ameliorates pancreatic β-cell dysfunction by modulating Pdx1 expression: a possible strategy for β-cell regeneration. Tissue Eng Regen Med. 2022;19(3):603–16. doi: https://doi.org/10.1007/s13770-022-00435-7
37. Ganic E, Singh T, Luan C, Fadista J, Johansson JK, Cyphert HA, et al. MafA-controlled nicotinic receptor expression is essential for insulin secretion and is impaired in patients with type 2 diabetes. Cell Rep. 2016;14(8):1991–2002. doi: https://doi.org/10.1016/j.celrep.2016.02.002
38. Cao MM, Lu X, Liu GD, Su Y, Li YB, Zhou J.Resveratrol attenuates type 2 diabetes mellitus by mediating mitochondrial biogenesis and lipid metabolism via Sirtuin type 1. Exp Ther Med. 2018;15(1):576–84. doi: https://doi.org/10.3892/etm.2017.5400
39. Mahadevan J, Parazzoli S, Oseid E, Hertzel AV, Bernlohr DA, Vallerie SN, et al. Ebselen treatment prevents islet apoptosis, maintains intranuclear Pdx-1 and MafA levels, and preserves β-cell mass and function in ZDF rats. Diabetes. 2013;62(10):3582–8. doi: https://doi.org/10.2337/db13-0357
40. Ding Y, Shi X, Shuai X, Xu Y, Liu Y, Liang X, et al. Luteolin prevents uric acid-induced pancreatic β-cell dysfunction. J Biomed Res. 2014;28(4):292–8. doi: https://doi.org/10.7555/jbr.28.20130170
41. Soleimani-Dodran M, Alipanah-Moghadam R, Jeddi F, Babaei M, Salimnejad R, Bahreini E. Effect of hydroalcoholic seed extract of Nigella sativa on hepatic and pancreatic factors of Nrf2 and FGF21 in the regulation of insulin transcription factors of MafA and PDX-1 in streptozotocin-treated diabetic rats. Nutr Metab (Lond). 2022;19:64. doi: https://doi.org/10.1186/s12986-022-00699-9
42. Hasani M, Abbasi-Oshaghi E, Khomari F, Kiani B, Mirzaei F, Alipourfard I, et al. Enhanced insulin secretion through upregulation of transcription factors by hydroalcoholic extract of Securigera securidaca seeds in diabetic animal model. Endocrinol Diabetes Metab. 2024;7:e515. doi: https://doi.org/10.1002/edm2.515
43. Kurian GA, Manjusha V, Nair SS, Varghese T, Padikkala J.Short-term effect of G-400, polyherbal formulation in the management of hyperglycemia and hyperlipidemia conditions in patients with type 2 diabetes mellitus. Nutrition. 2014;30(10):1158–64. doi: https://doi.org/10.1016/j.nut.2014.02.026
Year
Month