Myrcianthes discolor, commonly known as ?lanche,” is a native species of the Peruvian highlands that has been traditionally used for its medicinal properties, particularly its antioxidant potential in counteracting oxidative stress. However, there is limited information regarding the influence of solvent composition on the extraction efficiency of its bioactive compounds. This study investigated how different solvent systems affect the extraction yield of total phenolics and flavonoids, as well as their associated antioxidant activity. Leaf samples were collected in Santa Úrsula, Baños del Inca (Cajamarca, Peru) and extracted using six solvents (acetonitrile, water, and ethanol at 30%, 50%, 70%, and 96%) under agitated and temperature-controlled conditions. The resulting extracts were analyzed for total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl, 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid, and ferric reducing power assays. The highest concentrations of phenolic compounds and flavonoids were observed in the 30% and 96% ethanol extracts, reaching 59.31 mg GAE/g and 5.58 mg QCE/g of dry sample, respectively. A strong positive correlation was found between antioxidant activity and TPC, indicating that the extraction protocol effectively preserved antioxidant compounds. These results emphasize the importance of selecting the right solvent to maximize the recovery of bioactive metabolites from M. discolor, which supports its potential as a valuable natural source for antioxidant-rich formulations.
Valdiviezo-Campos JE, Cermeño CSN, Ruiz-Reyes SG. Agitation-assisted extraction of total phenolic and flavonoid compounds from lanche leaves [Myrcianthes discolor (Kunth) McVaugh]: Influence of solvent ratio and its impact on antioxidant activity. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.243158
1. Tácuna-Calderón A, Moncada–Mapelli E, Lens-Sardón L, Huaccho- Rojas J, Gamarra-Castillo F, Salazar-Granara A. Estrategias de la organización mundial de la salud en medicina tradicional y reconocimiento de sistemas de medicina tradicional. Rev Cuerpo Med HNAAA. 2020;13(1):101–2. doi: https://doi.org/10.35434/rcmhnaaa.2020.131.633
2. Astutik S, Pretzsch J, Ndzifon Kimengsi J.Asian medicinal plants’ production and utilization potentials: a review. Sustainability 2019;11(19):5483. doi: https://doi.org/10.3390/su11195483
3. Aguirre LG, Pereyra-Aguilar P, Silva-Arrieta-Ontaneda I, Alarcón- Urbina M, Medina-Salazar H. Consumo de plantas medicinales en usuarios del “Centro Integral del Adulto Mayor” de La Punta-Callao (Perú). Rev Fitoter. 2016;16(2):165–75.
4. Bermúdez del Sol A, Bravo SLR, Abreu NR, Kanga EF. Traditional use of medicinal plants by the population of the municipality of Santa Clara, Cuba. J Pharm Pharmacogn Res. 2018;6(1):374–85. doi: https://doi.org/10.56499/jppres18.395_6.5.374
5. Moncada–Mapelli E, Salazar-Granara A. Medicina tradicional y COVID-19, oportunidad para la revaloración de las plantas medicinales peruanas. Rev Cuerpo Med HNAAA. 2020;13(1):103– 4. doi: https://doi.org/10.35434/rcmhnaaa.2020.131.634
6. Bahmanzadegan JM, Mehdizadeha A, Tafazoli V. The conceptual incommensurability of inference between evidence-based and traditional medical paradigms. J Islam Iran Tradit Med. 2021;12(3):209–19.
7. Leite PM, Camargos LM, Castilho RO. Recent progess in phytotherapy: a Brazilian perspective. Eur J Integr Med. 202;41:101270. doi: https://doi.org/10.1016/j.eujim.2020.101270
8. Leonida AMG, Caballero AR. Aleaf: an android-based phytotherapy leaf recognition using custom vision machine learning. 2022 7th International Conference on Business and Industrial Research (ICBIR); Piscataway, NJ: IEEE; 2022. pp 488–93. doi: https://doi.org/10.1109/icbir54589.2022.9786509
9. Yan Y, Castellarin SD. Blueberry water loss is related to both cuticular wax composition and stem scar size. Postharvest Biol Technol. 2022;188:111907. doi: https://doi.org/10.1016/j.postharvbio.2022.111907
10. Jain C, Khatana S, Vijayvergia R. Bioactivity of secondary metabolites of various plants: a review. Int J Pharm Sci Res. 2019;10(2):494– 504. doi: https://doi.org/10.13040/IJPSR.0975-8232.10(2).494-04
11. Koop BL, da Silva MN, da Silva FD, dos Santos LKT, Santos SL, de Andrade JC, et al. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res Int. 2022;153:110929. doi: https://doi.org/10.1016/j.foodres.2021.110929
12. de Arruda NE, de Lima CL, da Silva CJ, de Lima VLAG, dos Santos AJ.In vitro anticancer properties of anthocyanins: a systematic review. Biochim Biophys Acta Rev Cancer 2022;1877(4):188748. doi: https://doi.org/10.1016/j.bbcan.2022.188748
13. Lamdan H, Garcia-Lazaro RS, Lorenzo N, Caligiuri LG, Alonso DF, Farina HG. Anti-proliferative effects of a blueberry extract on a panel of tumor cell lines of different origin. Exp Oncol. 2023;42(2):101–8. doi: https://doi.org/10.32471/exp-oncology.2312-8852.vol-42- no-2.14766
14. Paniagua-Zambrana NY, Bussmann RW. Myrcianthes discolor (Kunth) McVaugh Myrcianthes fragrans (Kunth) McVaugh Myrcianthes hallii (O. Berg.) McVaugh Myrtaceae. In: Paniagua- Zambrana N, Bussmann R, editors. Ethnobotany of mountain regions. Cham, Switzerland: Springer International Publishing; 2020. pp. 1–4.
15. Bussmann RW, Ashley G, Sharon D, Chait G, Diaz D, Pourmand K, et al. Proving that traditional knowledge works: the antibacterial activity of northern Peruvian medicinal plants. Ethnobot Res App. 2011;9:67–96.
16. Alva EJM. Etnobotánica y características morfológicas de la vegetación leñosa en un remanente de bosque de la microcuenca río grande, La Encañada-Cajamarca. Cajamarca, Peru: Universidad Nacional de Cajamarca; 2017. Available from: http://hdl.handle.net/20.500.14074/1694
17. Vera IC. Importancia cultural de la flora silvestre utilizada por los pobladores del caserío de Cabrero en la microcuenca Quebrada Honda (Cajabamba, Cajamarca, Perú). Lima, Peru: Universidad Nacional Mayor de San Marcos; 2018. Available from: https://hdl.handle.net/20.500.12672/10051
18. Romero D, Cartuche L, Valarezo E, Cumbicus N, Morocho V. Chemical profiling, anticholinesterase, antioxidant, and antibacterial potential of the essential oil from Myrcianthes discolor (Kunth) McVaugh, an aromatic tree from southern Ecuador. Antibiotics 2023;12(4):677. doi: https://doi.org/10.3390/antibiotics12040677
19. Florian VNE, Sisniegas CGM, Valdiviezo-Campos JE. Effect of different extraction solvents on the total phenolic content and antioxidant activity of Brassica oleracea var. italica. Pharmacogn J.2025;17(1):58–62. doi: https://doi.org/10.5530/pj.2025.17.7
20. Al Hashemi MY, Al Maktoumi H, Akhtar MdJ, Khan SA. Antioxidant activity and in silico anticholinesterase studies of major phenolic constituents of three commercial olive oils: a comparative study. Pharmacol Res - Nat Prod. 2024;2:100012. doi: https://doi.org/10.1016/j.prenap.2023.100012
21. Valdiviezo-Campos JE, Olascuaga-Castillo KA, Ruiz-Reyes SG. Ethnobotany, total phenolic and flavonoid content in the species Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson. J Appl Pharm Sci. 2024;14(7):82–9. doi: https://doi.org/10.7324/japs.2024.172838
22. Sari KRP, Ikawati Z, Danarti R, Hertiani T. Micro-titer plate assay for measurement of total phenolic and total flavonoid contents in medicinal plant extracts. Arab J Chem. 2023;16(9):105003. doi: https://doi.org/10.1016/j.arabjc.2023.105003
23. Costea L, Chi?escu CL, Boscencu R, Ghica M, Lupuliasa D, Mihai DP, et al. The polyphenolic profile and antioxidant activity of five vegetal extracts with hepatoprotective potential. Plants 2022;11(13):1680. doi: https://doi.org/10.3390/plants11131680
24. Bibi N, Shah MH, Khan N, Al-Hashimi A, Elshikh MS, Iqbal A, et al. Variations in total phenolic, total flavonoid contents, and free radicals’ scavenging potential of onion varieties planted under diverse environmental conditions. Plants 2022;11(7):950. doi: https://doi.org/10.3390/plants11070950
25. Olascuaga-Castillo K, Castillo-Medina O, Villacorta-Zavaleta M, Altamirano-Sarmiento D, Cáceres-Andonaire E, Valdiviezo-Campos JE, Blanco-Olano C. Muehlenbeckia volcanica (Benth.) Endl.: contenido fenólico y actividad antioxidante de un fruto andino peruano. Interciencia 49(3):187–91.
26. Rumpf J, Burger R, Schulze M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int J Biol Macromol. 2023;233:123470. doi: https://doi.org/10.1016/j.ijbiomac.2023.123470
27. Belew AA, Gebre SH. Comparative assessment of phenolic and flavonoid contents and antioxidant activities in methanol extracts of spices from Jigjiga market, Ethiopia. Pharmacol Res - Nat Prod. 2025;6:100168. doi: https://doi.org/10.1016/j.prenap.2025.100168
28. The jamovi project. jamovi. (Version 2.6) [Computer Software]. 2024. Available from https://www.jamovi.org.
29. Lalremruati M, Lalmuansangi C, Siama Z. Free radical scavenging activity and antioxidative potential of various solvent extracts of Mussaenda macrophylla Wall: an in vitro and ex vivo study. J Appl Pharm Sci. 2019;9(12):94–102. doi: https://doi.org/10.7324/JAPS.2019.91213
30. El Oihabi M, Soultana M, El Fellah I, Fakih Lanjri H, Ben Allal L, Ammari M, et al. Optimized extraction of phenolic compounds and antioxidant activity from cannabis co-products via a combination of solvent-ultrasound-assisted extraction, response surface methodology, and sensitivity analysis. Case Stud Chem Environ Eng. 2024;10:100906. doi: https://doi.org/10.1016/j.cscee.2024.100906
31. Purba RAP, Paengkoum P. Bioanalytical HPLC method of Piper betle L. for quantifying phenolic compound, watersoluble vitamin, and essential oil in five different solvent extracts. J Appl Pharm Sci. 2019;9(05):33–9. doi: https://doi.org/10.7324/JAPS.2019.90504
32. Bombana VB, do Nascimento LH, Rigo D, Fischer B, Colet R, Paroul N, et al. Extraction by maceration, ultrasound, and pressurized liquid methods for the recovery of anthocyanins present in the peel of guabiju (Myrcianthes pungens). Sustain Chem Pharm. 2023;36:101264. doi: https://doi.org/10.1016/j.scp.2023.101264
33. Ursu MGS, Milea ?tefania A, P?cularu-Burada B, Dumitra?cu L, Râpeanu G, Stanciu S, et al. Optimizing of the extraction conditions for anthocyanin’s from purple corn flour (Zea mays L): evidences on selected properties of optimized extract. Food Chem X. 2023;17:100521. doi: https://doi.org/10.1016/j.fochx.2022.100521
34. Zandoná GP, Bagatini L, Woloszyn N, de Souza Cardoso J, Hoffmann JF, Moroni LS, et al. Extraction and characterization of phytochemical compounds from araçazeiro (Psidium cattleianum) leaf: Putative antioxidant and antimicrobial properties. Food Res Int. 2020;137:109573. doi: https://doi.org/10.1016/j.foodres.2020.109573
35. Arya OP, Bhatt ID, Mohanty K. Effect of different extraction solvents on bioactive phenolics and antioxidant potential of Illicium griffithii fruit. J Appl Res Med Aromat Plants 2024;40:100547. doi: https://doi.org/10.1016/j.jarmap.2024.100547
36. Linhares SN, Maziero FH, Murillo-Franco SL, Oliviera BM, Vicente ML, da Silva DV, et al. Investigating the influence of solvents and extraction methods on the efficacy of phenolic compound recovery from spent coffee grounds. Sep Purif Technol. 2025;362:131793. doi: https://doi.org/10.1016/j.seppur.2025.131793
37. Solomakou N, Loukri A, Tsafrakidou P, Michaelidou AM, Mourtzinos I, Goula AM. Recovery of phenolic compounds from spent coffee grounds through optimized extraction processes. Sustain Chem Pharm. 2022;25:100592. doi: https://doi.org/10.1016/j.scp.2021.100592
38. Martínez-Ramos T, Benedito-Fort J, Watson NJ, Ruiz-López II, Che-Galicia G, Corona-Jiménez E. Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.). Food Bioprod Process 2020;122:41–54. doi: https://doi.org/10.1016/j.fbp.2020.03.011
39. Seraglio SKT, Schulz M, Nehring P, Della Betta F, Valese AC, Daguer H, et al. Nutritional and bioactive potential of Myrtaceae fruits during ripening. Food Chem. 2018;239:649–56. doi: https://doi.org/10.1016/j.foodchem.2017.06.118
40. Peixoto Araujo NM, Berni P, Zandoná LR, Toledo NMV de, Silva PPM da, Toledo AA de, et al. Potential of Brazilian berries in developing innovative, healthy, and sustainable food products. Sustain Food Technol. 2024;2(3):506–30. doi: https://doi.org/10.1039/d3fb00130j
41. Schulz M, Seraglio SKT, Brugnerotto P, Gonzaga LV, Costa ACO, Fett R. Composition and potential health effects of dark-colored underutilized Brazilian fruits – a review. Food Res Int. 2020;137:109744. doi: https://doi.org/10.1016/j.foodres.2020.109744
42. Andrade JMM, Aboy AL, Apel MA, Raseira MCB, Pereira JFM, Henriques AT. Phenolic composition in different genotypes of guabiju fruits (Myrcianthes pungens) and their potential as antioxidant and antichemotactic agents. J Food Sci. 2011;76(8):C1181–7. doi: https://doi.org/10.1111/j.1750-3841.2011.02375.x
43. Spinelli LV, Anzanello MJ, Areze da Silva SR, Carboni MC, Freo SJ, Aparecida SSM, et al. Uncovering the phenolic diversity of Guabiju fruit: LC-MS/MS-based targeted metabolomics approach. Food Res Int. 2023;173:113236. doi: https://doi.org/10.1016/j.foodres.2023.113236
44. Dalmagro M, Donadel G, Moraes Pinc M, Becker Viana AP, Klein EJ, da Silva EA, et al. Exploring antioxidant and α-glucosidase inhibition in Eugenia L. extracts: a comprehensive phytochemical study. Nat Prod Res. 2024;38:1–7. doi: https://doi.org/10.1080/14786419.2024. 2352868
45. Paludo M, Colombo R, Teixeira J, Hermosín?Gutiérrez I, Ballus C, Godoy H. Optimizing the extraction of anthocyanins from the skin and phenolic compounds from the seed of jabuticaba fruits (Myrciaria jabuticaba (Vell.) O. Berg) with ternary mixture experimental designs. J Braz Chem Soc. 2019;30(7):1506–14. doi: https://doi.org/10.21577/0103-5053.20190047
46. Rienth M, Vigneron N, Darriet P, Sweetman C, Burbidge C, Bonghi C, et al. Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario–a review. Front Plant Sci. 2021;12:643258. doi: https://doi.org/10.3389/fpls.2021.643258
47. Hosseinzadeh L, Mirzaei S, Hajialyani M, Ahmadi F, Emami SA, Mojarrab M. The protective effect of different extracts of aerial parts of Artemisia ciniformis against H2O2-induced oxidative stress and apoptosis in PC12 pheochromocytoma cells. J Appl Pharm Sci. 2019;9(4):16–23. doi: https://doi.org/10.7324/JAPS.2019.90403
48. Halim MA, Kanan KA, Nahar T, Rahman MJ, Ahmed KS, Hossain H, et al. Metabolic profiling of phenolics of the extracts from the various parts of blackberry plant (Syzygium cumini L.) and their antioxidant activities. LWT. 2022;167:113813. doi: https://doi.org/10.1016/j.lwt.2022.113813
49. Antonelo FA, Rodrigues MS, Cruz LC, Pagnoncelli MG, Cunha MAA da, Bonatto SJR, et al. Bioactive compounds derived from Brazilian Myrtaceae species: chemical composition and antioxidant, antimicrobial and cytotoxic activities. Biocatal Agric Biotechnol. 2023;48:102629. doi: https://doi.org/10.1016/j.bcab.2023.102629
50. Lamas CA, Lenquiste SA, Baseggio AM, Cuquetto-Leite L, Kido LA, Aguiar AC, et al. Jaboticaba extract prevents prediabetes and liver steatosis in high-fat-fed aging mice. J Funct Foods. 2018;47:434–46. doi: https://doi.org/10.1016/j.jff.2018.06.005
51. Betta FD, Nehring P, Seraglio SKT, Schulz M, Valese AC, Daguer H, et al. Phenolic compounds determined by LC-MS/MS and in vitro antioxidant capacity of Brazilian fruits in two edible ripening stages. Plant Foods Hum Nutr. 2018;73(4):302–7. Doi: https://doi.org/10.1007/s11130-018-0690-1
52. Pacheco AFC, de Souza LB, Paiva PHC, Lelis CA, Vieira ENR, Tribst AAL, et al. Impact of ultrasound on pumpkin seed protein concentrate hydrolysis: effects on alcalase, protein, and assisted reaction. Appl Food Res. 2023;3(1):100281. doi: https://doi.org/10.1016/j.afres.2023.100281
53. Jerônimo LB, da Costa JS, Pinto LC, Montenegro RC, Setzer WN, Mourão RHV, et al. Antioxidant and cytotoxic activities of Myrtaceae essential oils rich in terpenoids from Brazil. Nat Prod Commun. 2021;16(2):1–13. doi: https://doi.org/10.1177/1934578x21996156
54. Sharopov FS, Wink M, Setzer WN. Radical scavenging and antioxidant activities of essential oil components – an experimental and computational investigation. Nat Prod Commun. 2015;10(1). doi: https://doi.org/10.1177/1934578x1501000135
55. Machado PG, Londero DS, Farias CAA, Pudenzi MA, Barcia MT, Ballus CA. Guabijú (Myrcianthes pungens): a comprehensive evaluation of anthocyanins and free, esterified, glycosylated, and insoluble phenolic compounds in its peel, pulp, and seeds. Food Chem. 2024;432:137296:1–13. doi: https://doi.org/10.1016/j.foodchem.2023.137296
56. Astyka R, Zaitun HPA, Sumaiyah S, Juwita NA, Lubis MF. Optimization of microwave-assisted extraction of total flavonoid content from red betel leaf (Piper crocatum Ruiz and Pav) and its correlation with antioxidant and antibacterial activities using response surface methodology. J Appl Pharm Sci. 2024;14(8):150–9. doi: https://doi.org/10.7324/japs.2024.170411
57. Yuliana N, Nurainy F, Sari GW, Sumardi, Widiastuti EL. Total microbe, physicochemical property, and antioxidative activity during fermentation of cocoa honey into kombucha functional drink. Appl Food Res. 2023;3(1):100297. doi: https://doi.org/10.1016/j.afres.2023.100297
Year
Month