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1. INTRODUCTION
In Latin America, traditional medicine constitutes 

an established and highly significant healthcare system. In 
Peru, medicinal plants play a fundamental role in therapeutic 
interventions [1]. Globally, approximately 422,000 plant species 
have been reported, with over 50,000 classified as medicinal; 
however, only a small fraction has been scientifically studied 
for therapeutic purposes [2]. Peru, characterized by its vast 
biodiversity and deep-rooted cultural tradition of medicinal 
plant use, is home to approximately 1,408 plant species utilized 
for medicinal purposes [3,4].

Today, it is crucial to identify and study new sources 
of bioactives with potential therapeutic activities, as well as to 
reveal their safe and effective use in order to establish the optimal 
consumption for positive outcomes [5]. Without scientific 
validation, traditional medicine would not persist, leading to the 
disappearance of traditional practices and, consequently, the loss 
of associated knowledge and culture [6]. Based on the sustainable 
use of biodiversity and the rational utilization of medicinal plants, 
phytotherapy can pave the way to improve the quality of life for 
the population and contribute to the economic and technological 
development of our country [7,8].

Polyphenolic compounds, including phenols, 
flavonoids, and anthocyanins, have been extensively studied 
in medicinal plants due to their diverse pharmacological 
properties, with antioxidant activity being the most prominent 
and well-researched [9]. It has been found that the majority of 
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ABSTRACT
Myrcianthes discolor, commonly known as ‟lanche,” is a native species of the Peruvian highlands that has been 
traditionally used for its medicinal properties, particularly its antioxidant potential in counteracting oxidative stress. 
However, there is limited information regarding the influence of solvent composition on the extraction efficiency of 
its bioactive compounds. This study investigated how different solvent systems affect the extraction yield of total 
phenolics and flavonoids, as well as their associated antioxidant activity. Leaf samples were collected in Santa Úrsula, 
Baños del Inca (Cajamarca, Peru) and extracted using six solvents (acetonitrile, water, and ethanol at 30%, 50%, 
70%, and 96%) under agitated and temperature-controlled conditions. The resulting extracts were analyzed for total 
phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl, 
2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid, and ferric reducing power assays. The highest concentrations 
of phenolic compounds and flavonoids were observed in the 30% and 96% ethanol extracts, reaching 59.31 mg 
GAE/g and 5.58 mg QCE/g of dry sample, respectively. A strong positive correlation was found between antioxidant 
activity and TPC, indicating that the extraction protocol effectively preserved antioxidant compounds. These results 
emphasize the importance of selecting the right solvent to maximize the recovery of bioactive metabolites from M. 
discolor, which supports its potential as a valuable natural source for antioxidant-rich formulations. 
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ethylbenzothiazoline-6-sulfonic acid (ABTS), Folin–Ciocalteu 
reagent (Sigma-Aldrich), 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), 
iron(III) chloride hexahydrate, sodium bicarbonate, aluminum 
chloride, sodium acetate, and hydrochloric acid (Merck) were 
used. Gallic acid (Merck), quercetin (Sigma-Aldrich), and 
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid 
(Trolox) (Sigma-Aldrich) were used as standards.

2.2. Botanical material
The species used was M. discolor (Kunth) McVaugh, 

which was collected in the village of Santa Úrsula, Baños 
del Inca district, Cajamarca province, Cajamarca region, at 
geographic coordinates of latitude: 7.154531, and longitude: 
−78.40375, in UTM format (Zone: 17S East: 320951.65 
meters, North: 790944.73 meters). A complete specimen was 
pressed and prepared according to the standard protocols of 
the Herbarium Truxillense and taxonomically identified with 
voucher number N° 65651.

2.3. Preparation and extraction
The M. discolor species acquired had its leaves 

selected as plant material, ensuring they were intact, free from 
inert material or decomposition. The plant material was dried in 
a Memmert oven at 40°C, followed by mechanical milling with 
an electric grinder to obtain fine particles. The pulverized M. 
discolor sample was extracted using six solvents: 96% ethanol, 
70% ethanol, 50% ethanol, 30% ethanol, water, and acetonitrile. 
A 5 g sample was used for each solvent, in a sample-to-solvent 
ratio of 1:20. The mixture was then placed on a heating plate 
with magnetic stirring (500 rpm) for 1 hour at a temperature 
of 100°C. The filtered extracts were stored at 6°C for further 
analysis [19].

2.4. Total phenols content
This was carried out using the Folin–Ciocalteu 

method with some modifications. In 10 ml volumetric flasks, 
0.1 ml of extract was mixed with 2 ml of Folin–Ciocalteu 
reagent (1:10), 4.4 ml of a 7.5% sodium bicarbonate solution, 
and distilled water (to a final volume of 10 ml). A blank was 
prepared by omitting the sample. Total phenolic content 
(TPC) was estimated using an external standard calibration 
curve of gallic acid (1.26–10.08 μg/ml). After incubating 
the mixture for 60 minutes in the dark, the absorbance was 
measured at 765 nm using a UV-visible spectrophotometer 
(Peak Instruments C7000V). Each measurement was 
performed in triplicate. The total phenol concentration was 
expressed as gallic acid equivalents per gram of dry sample 
(mg GAE/g DS) [20,21].

2.5. Total flavonoid content
The total flavonoid content (TFC) was measured 

using the aluminum chloride colorimetric method with some 
modifications. In 10 ml volumetric flasks, 0.2 ml of extract was 
diluted with 1.5 ml of distilled water, and 0.4 ml of 10% (w/v) 
aluminum chloride, 0.4 ml of 1 M sodium acetate, and distilled 
water (to a final volume of 10 ml) were added to the mixture. 
TFC was estimated using an external standard calibration curve 
of quercetin (1–16 μg/ml). After incubating the mixture for 
30 minutes in the dark, the absorbance was measured at 430 

diseases are linked to oxidative stress and the accumulation 
of free radicals. These compounds have shown efficacy in 
neutralizing free radicals and halting cellular oxidative stress 
[10,11]. In recent years, interest has grown due to the crucial 
role of medicinal plants in addressing chronic diseases by 
counteracting oxidative stress [12,13].

Myrcianthes discolor (Kunth) McVaugh, commonly 
known as “lanche,” “mirto,” or “uñico,” is a shrub that belongs 
to the Myrtaceae family. It can reach up to 3 m in height, with 
brown-grayish stems and branches; the leaves are simple, 
entire, opposite, coriaceous, and aromatic. The flowers are 
simple cymes ranging from pink to red, and the fruit is smooth, 
blue–black, and an ovoid drupe [14–16].

The entire fresh plant is used, with the leaves 
commonly consumed as an infusion, while the fruits are edible, 
sweet-tasting, and consumed fresh [14,16]. The consumption of 
the leaves as an infusion after meals aids digestion due to their 
high concentration of phenolic compounds, flavonoids, essential 
oils, and tannins, which may help alleviate stomach discomfort 
by reducing the effects of fermented foods. Additionally, the 
bark is boiled and consumed to treat kidney conditions and 
inflammation [16,17].

Essential oils, such as E-caryophyllene, bicycloger-
macrene, β-elemen, α-cubebene, δ-cadinene, α-humulene, and 
limonene, have been identified in M. discolor; however, a com-
plete chemical profile of this species has yet to be reported [18].

Traditionally, M. discolor is used as an energizing 
food, memory enhancer, and for treating colds, inflammation, 
rheumatic pain, as well as for stomach and menstrual regulation 
[14–16]. Furthermore, studies have highlighted pharmacological 
and biological properties such as antibacterial, antioxidant, and 
anticholinesterase activities [18]. Given the limited information 
on this plant species, further research will expand scientific 
knowledge, and by thoroughly establishing these characteristics, 
it will be possible to formulate effective, safe, and high-quality 
phytopharmaceuticals as a natural therapeutic alternative. The 
aim is to validate traditional usage by incorporating it as a 
promising functional food with medicinal potential.

The growing interest in native plants as sources of 
bioactive compounds has revealed a scarce characterization 
of extraction conditions. In the case of M. discolor, we 
investigate how solvent polarity affects extraction efficiency 
and antioxidant activity. This research aims to systematically 
evaluate the effect of different solvent systems on the extraction 
of phenolic and flavonoid compounds, as well as on their 
antioxidant capacity, by establishing correlations between 
phytochemical contents and antioxidant activity. The aim is to 
contribute to the understanding of the potential of this species 
for nutraceutical or pharmaceutical applications.

This research aims to determine the influence of 
solvent ratio and its impact on antioxidant activity in the 
agitation-assisted extraction of total phenolic and flavonoid 
compounds from M. discolor leaves.

2. MATERIALS AND METHODS

2.1. Reagents and solvents
Ethanol 96° GL (CKF® ), distilled water (Dropaksa®), 

2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-3-
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nm using a UV-visible spectrophotometer (Peak Instruments 
C7000V). Each measurement was performed in triplicate. 
The total flavonoid concentration was expressed as quercetin 
equivalents per gram of dry sample [22,23].

2.6. Antioxidant activity

2.6.1. 2,2-diphenyl-1-picrylhydrazyl
The free radical scavenging activity was measured 

using the DPPH method with some modifications. The stock 
solution was prepared at 0.1 mM in 96°GL ethanol. In 10 ml 
volumetric flasks, 300 µl of the extract was mixed with the 
0.1 mM DPPH solution, gently shaken, and incubated for 30 
minutes in the dark. Trolox was used as the standard for the 
calibration curve at concentrations ranging from 3 to 30 μM/ml. 
Finally, the absorbance was measured using a Peak Instruments 
C7000V spectrophotometer at 517 nm, with each measurement 
performed in triplicate. The results were expressed as Trolox 
equivalents (mg/100 g dry sample) [24,25].

2.6.2. 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid
The free radical scavenging activity was measured 

using the ABTS method with some modifications. The stock 
solution was prepared by mixing equal volumes of ABTS 
(7 mM) and K2S2O8 (2.45 mM) and then incubated in the 
dark for 16 hours, followed by dilution with 50% ethanol. 
In 10 ml volumetric flasks, 300 µl of the extract was mixed 
with the ABTS solution, gently shaken, and incubated for 30 
minutes in the dark. Trolox was used as the standard for the 
calibration curve at concentrations ranging from 3 to 20 μM/
ml. Absorbance was then measured using a Peak Instruments 
C7000V spectrophotometer at 734 nm, with each measurement 
performed in triplicate. The results were expressed as Trolox 
equivalents (mg/100 g dry sample) [19,23].

2.6.3. Ferric reducing power
The antioxidant ferric reducing power (FRAP) was 

measured with some modifications. The FRAP reagent was 
freshly prepared before each measurement by mixing acetate 
buffer (300 mM), TPTZ [10 mM in HCl (40 mM)], and FeCl3 
(20 mM) in a ratio of 10:1:1 (v/v/v), and incubated at 37°C for 
10 minutes before use. In 10 ml volumetric flasks, 300 µl of 
the extract was mixed with the FRAP solution, gently shaken, 

and incubated at 37°C for 30 minutes in the dark. Trolox was 
used as the standard for the calibration curve at concentrations 
ranging from 5 to 30 μM/ml. Absorbance was then measured 
using a Peak Instruments C7000V spectrophotometer at 593 
nm, with each measurement performed in triplicate. The results 
were expressed as Trolox equivalents (mg/100 g dry sample) 
[26,27].

2.7. Statistical analysis
The TPC, TFC, and antioxidant activity (using 

different assays) were determined in three replicates. The 
results, presented as mean ± SD, were subjected to analysis 
of variance (followed by Tukey’s test). The differences were 
considered statistically significant at p < 0.05. Principal 
component analysis (PCA) was conducted to correlate the TPC, 
TFC, DPPH, ABTS, and FRAP results using Jamovi v.17.05 
software [28].

3. RESULTS AND DISCUSSION
The results of this study show that the type of solvent 

used has a significant influence on the extraction of phenolic and 
flavonoid compounds, as well as on the antioxidant capacity of 
M. discolor leaf extracts (Table 1).

Several studies have reported differences in 
polyphenol and flavonoid content depending on the polarity 
and composition of the extracting solvent. Lalremruati et al. 
[29] found methanol to be the most efficient solvent, while El 
Oihabi et al. [30] reported that acetone yielded the highest TPC 
and TFC values. Purba and Paengkoum [31] also found that 
ethanol was effective in extracting phytoconstituents from plant 
matrices.

Specifically with regard to ethanol, it has been 
described that higher concentrations enhance flavonoid 
extraction [32,33]. However, moderate ethanol-water mixtures 
may improve the solubility of both hydrophilic and moderately 
lipophilic compounds. For example, a study using a pressurized 
liquid extraction system with a 1:1 water:ethanol ratio revealed 
a greater variety of extracted compounds [34]. Similarly, TPC, 
TFC, and antioxidant activities have been reported to increase 
when ethanol concentrations range from 60% to 100% [35]. In 
contrast, Linhares et al. [36] found that a mixture of ethanol 
and water in a ratio of 2:8 (v/v) performed best overall in the 
extraction of bioactives. This supports the idea that adding 

Table 1. TPC, TFC, and antioxidant activity by different methods for the leaf extract of M. discolor extracted by agitation using 
different solvents.

Dissolvents TPC1* TFC2* DPPH assay3* ABTS assay3* FRAP assay3*

Acetonitrile 18.99 ± 0.0d 3.33 ± 0.02e 0.18 ± 0.02e 0.25 ± 0.01f 0.14 ± 0.02f

Water 48.63 ± 0.0b 3.67 ± 0.02d 0.49 ± 0.06c 0.65 ± 0.17d 0.55 ± 0.03d

30% ethanolic  58.79 ± 0.07a 3.96 ± 0.02d 0.71 ± 0.21a 0.74 ± 0.24b 0.82 ± 0.21a

50% ethanolic 59.31 ± 0.01a 4.30 ± 0.02c 0.68 ± 0.16a 0.77 ± 0.27a 0.74 ± 0.09b

70% ethanolic 54.53 ± 0.03a 4.83 ± 0.03b 0.58 ± 0.10b 0.71 ± 0.23c 0.69 ± 0.07c

96% ethanolic 35.40 ± 0.01c 5.58 ± 0.02a 0.34 ± 0.01d 0.46 ± 0.05e 0.43 ± 0.07e

*X ± DE (n = 3), 1mg of gallic acid equivalent (GAE) g−1, 2mg of quercetin equivalent (QCE) g−1, 3mg of Trolox equivalent (TE) g−1. 
Statistical analysis: ANOVA followed by Tukey’s test. Different letters within the same column indicate statistically significant differences 
among treatments according to Tukey’s test (p < 0.05).
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water to organic solvents creates a more polar medium that 
enhances the desorption of polyphenols from the plant matrix 
[37]. Furthermore, the solubility of phenolic compounds in 
alcohols such as methanol and ethanol is increased due to their 
lack of sugar moieties and relatively low molecular weight.

As shown in Table 1, the substantial variation in 
the concentration of bioactive compounds between different 
solvents is strongly linked to the chemical nature and polarity 
of the extraction solvent. Polar-protic alcoholic solvents such 
as ethanol and methanol facilitate the solubilization of low-
molecular-weight phenolic compounds, including glycosylated 
and aglycone forms, due to their ability to act as hydrogen bond 
donors [38].

Regarding total phenol content (Fig. 1A), values of 
59.31, 58.79, and 54.53 mg gallic acid equivalents per gram 
of dry material (mg GAE/g DM) were obtained for the 50%, 
30%, and 70% ethanolic extracts, respectively; the 50% ethanol 
extract was the most effective. These results are consistent with 
the idea that hydroalcoholic mixtures optimize the extraction of 
medium-polarity polyphenols.

In contrast, studies on M. pungens fruits revealed 
significantly higher TPC values. Seraglio et al. [39] reported 
values of 2,061.35 ± 51.26 and 1,739.28 ± 8.12 mg GAE/100 g 
for immature and mature fruits, respectively. In a comprehensive 
review, Peixoto et al. [40] reported a wide range of 28.41–59.34 
mg GAE/g dry weight in Myrtaceae fruits. Similarly, Schulz et 

Figure 1. (A) Total phenols content and (B) total flavonoid content in M. discolor extracts obtained by agitation 
using different solvents. DS = dry sample; GAE = gallic acid equivalent; QCE = quercetin equivalent. 
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al. [41] found values between 1,739 and 4,613 mg GAE/100 
g dry drug. These higher values are likely related to the use of 
different plant organs (fruits vs. leaves), extraction techniques, 
and environmental factors affecting phytochemical profiles.

Regarding TFC (see Fig. 1B), the values obtained for 
the 96%, 70%, and 50% ethanol extracts were 5.58 mg, 4.83 
mg, and 4.30 mg quercetin equivalents per gram of dry material 
(mg QE/g DM), respectively. The superior performance of the 
96% ethanol extract may be attributed to its effectiveness in 
extracting less polar flavonoid aglycones. By comparison, 
Andrade et al. [42] reported TFC values between 79.8 and 154 
mg/100 g dry weight in Myrcianthes pungens fruit. Bombana 
et al. [32] also found very high concentrations in ethanolic 
M. pungens extracts obtained by ultrasound (10,544.04 and 
1,621.78 mg QE/100 g). Spinelli et al. [43] further supported 
these findings, analyzing M. pungens fruit by LC-MS/MS and 
obtaining values of 6230 μg GAE/g and 91.61 mg QE/100 g.

Similarly, other Myrtaceae species exhibited diverse 
values. For instance, Eugenia myrcianthes exhibited values of 
102.87 ± 1.80 μg GAE/g and 8.83 ± 0.08 μg QE/g in its extract 
[44], whereas the fruits of Myrciaria cauliflora and Myrciaria 
jaboticaba showed values of 1,443–3,160 mg and up to 6,000 
mg GAE/100 g dry weight, respectively [41].

It is evident that agitation and moderate heating 
facilitate the release of secondary metabolites by disrupting 
plant cell walls, thereby enhancing compound diffusion into the 
solvent. Environmental factors such as temperature, rainfall, 
soil composition, plant maturity stage, and collection location 

can also contribute to phytochemical variability [45,46]. 
Additionally, the plant part used and the specific extraction 
methodology can markedly impact final yields [47,48].

Figure 2 shows the antioxidant activity of extracts 
prepared using different solvents. The extracts prepared 
using 30% and 50% ethanol exhibited the highest antioxidant 
capacities. Notably, the extract prepared with 30% ethanol 
yielded 0.82 mM TE (FRAP) and 0.71 mM TE (DPPH) per 
gram of dry material, whereas the extract prepared with 50% 
ethanol reached 0.77 mM TE in the ABTS assay. These values 
support the observation that intermediate ethanol concentrations 
favor the extraction of hydrophilic antioxidants.

Romero et al. [18] reported markedly higher 
antioxidant capacities for M. discolor essential oil (144.93 and 
3,599.6 μM TE for ABTS and DPPH, respectively). Antonelo 
et al. [49] evaluated three Myrtaceae species (M. gigantea, M. 
oblongata, and M. tenella), reporting values of 26.00–139.51 
μM TE/g for DPPH and 29.35–88.08 μM TE/g for ABTS. 
However, other studies have reported even higher values, for 
example, in the peel of the fruit of M. cauliflora (6,834.5 ± 
77.9 μM TE, ABTS; 316.2 ± 211.03 μM TE, FRAP) [50] and 
in the leaves of E. myrcianthes (1,052.32 ± 3.61 μM TE, DPPH; 
6,132.94 ± 429.07 μM TE, ABTS) [44].

Bombana et al. [32] found an ABTS scavenging 
capacity of 337.35 μM TE/g DS and FRAP values ranging 
from 28.4 to 42.6 μmol TE/g DW in M. pungens [51]. This 
data suggests that, although M. discolor exhibits moderate 

Figure 2. Antioxidant activity in M. discolor extracts obtained by agitation using different solvents. DS = dry sample; mM TE = millimolar Trolox 
equivalent.
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antioxidant capacity, its efficacy is notable given the simplicity 
of the extraction method and solvent range used.

Of the methods applied (ABTS, DPPH, and FRAP), 
the highest antioxidant values were observed in the FRAP 
and ABTS assays. Pacheco et al. [52] suggested that these 
differences could be due to the physicochemical nature of 
each assay and the solubility of the active constituents. The 
antioxidant mechanism is primarily driven by hydrogen atom 
transfer (HAT), single electron transfer (SET), or mixed-mode 
processes [53,54]. High values in SET-based assays (such as 
the FRAP assay) suggest that electron donation is dominant, 
whereas lower responses in HAT assays may imply limited 

proton-donating capacity or suboptimal solvent extraction 
[49].

The results of this study highlight the promising 
antioxidant potential of M. discolor and support its inclusion in 
nutraceuticals as a means of mitigating oxidative stress-related 
pathologies. Furthermore, Romero et al. [18] emphasized the 
role of sesquiterpenes in M. discolor essential oil in inhibiting 
acetylcholinesterase, thereby enhancing its pharmacological 
relevance.

Nevertheless, data on M. discolor remain scarce, 
indicating the need for further research into its chemical 
profile and biological activities. A better understanding could 

Figure 3. Correlation and PCA of TPC, TFC, and antioxidant activity by different methods in M. discolor 
extracts obtained by agitation using different solvents.
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lead to applications in the food, pharmaceutical, and cosmetic 
industries.

Figure 3A shows the correlations and PCA of TPC, 
TFC, and antioxidant activity. Strong correlations were 
observed between TPC and the antioxidant assays: ABTS (R² = 
0.998), FRAP (R² = 0.987), and DPPH (R² = 0.985). Similarly, 
FRAP showed a strong correlation with both DPPH (R² = 0.987) 
and ABTS (R² = 0.975) (Fig. 3B). However, no significant 
correlation was found with TFC, suggesting that phenolic 
compounds, rather than flavonoids, are the main contributors to 
antioxidant capacity.

PCA revealed that TPC and the antioxidant assays 
formed a principal cluster, while TFC was less associated (Fig 
3C). The first two components explained 79.77% and 19.45% 
of the variance, respectively, totaling 99.22%. This aligns with 
prior studies on M. pungens, in which phenolic compounds were 
identified as the main contributors to antioxidant function [55], 
and with evidence from other Myrtaceae species, which link 
TPC more strongly than TFC to radical-scavenging potential 
[26,56,57].

This study is one of the few experimental assessments 
of M. discolor. However, it is limited by the absence of 
metabolite identification through advanced chromatographic 
or spectrometric methods. The solvent range was restricted to 
polar systems, which may have excluded bioactive lipophilic 
constituents. Future research should, therefore, incorporate 
broader solvent systems (e.g., acetone and ethyl acetate), in-
depth metabolomic profiling (e.g., LC-MS and GC-MS), and 
bioactivity-guided fractionation, in order to better understand 
the full therapeutic potential of this species and promote its use 
in health-related applications.

4. CONCLUSION
The highest TPC was obtained with a 50% ethanol 

solvent, while the highest TFC was achieved with a 96% ethanol 
solvent. The extracts demonstrated excellent antioxidant 
activity, particularly in the 30% and 50% ethanolic extracts. 
Strong positive correlations (R² > 0.95) were found between the 
FRAP, ABTS, and DPPH assays and TPC, whereas TFC showed 
no correlation. However, the lack of correlation between TFC 
and these methods does not imply that TFC is unsuitable for 
measurement in M. discolor extracts. It is recommended to 
continue research on this species, as there is limited information 
available, which could enhance the potential for therapeutic 
applications.
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