Review Article | Additional and supplementary material, Jan 2019

Phytochemical interventions of medicinal plants in the management of diabetes and obesity: A recent therapeutic overview

D’Souza Keith Ketaki Apte Vivek S. Kumawat Ansh Chintamaneni Meena Chintamaneni Ujjawal Sharma Bunty Sharma Moyad Shahwan Ginpreet Kaur Damandeep Kaur Hardeep Singh Tuli   

Open Access   

Published:  Aug 01, 2025

DOI: 10.7324/JAPS.2025.217666
Abstract

Over the past four decades, the global surge in diabetes and obesity has given rise to the term “diabesity,” reflecting the strong connection between type 2 diabetes and obesity. This link is correlated with heightened risks of cardiovascular disease, hypertension, and stroke. In light of this escalating health crisis, medicinal plants and natural products, which have long been used in traditional medicine systems, have attracted growing interest for their potential to address diabetes and obesity. This review highlights scientific evidence from preclinical and clinical studies on the efficacy of medicinal plants in treating diabetes and obesity. It focuses on the phytoconstituent responsible for these benefits and supports their traditional therapeutic use while comparing with common therapeutic interventions. Additionally, the review delves into the mechanism of action through which these plants demonstrate their benefits and explores modern formulations that fuse traditional knowledge with current healthcare practices. As diabesity continues to rise globally, understanding the role of medicinal plants in managing this dual condition offers valuable insights into alternative and complementary approaches for comprehensive healthcare.


Keyword:     AMPK PPAR anti-inflammatory anti-oxidant insulin resistance


Citation:

Keith D, Apte K, Kumawat VS, Chintamaneni A, Chintamaneni M, Sharma U, Sharma B, Shahwan M, Kaur G, Kaur D, Tuli HS. Phytochemical interventions of medicinal plants in the management of diabetes and obesity: A recent therapeutic overview. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.217666

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart Disease and Stroke Statistics—2018 Update: a report from the American Heart Association | Circulation. 2018 [cited 2025 Mar 22];137(12):e67–492. Available from: https://www.ahajournals.org/doi/10.1161/cir.0000000000000558

2. Flora GD, Nayak MK. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des. 2019 [cited 2025 March 22];25(38):4063–84. Available from: https://pubmed.ncbi.nlm.nih.gov/31553287/

3. Luo Y, Liu J, Zeng J, Pan H. Global burden of cardiovascular diseases attributed to low physical activity: an analysis of 204 countries and territories between 1990 and 2019. Am J Prev Cardiol. 2024;17:100633. doi: https://doi.org/10.1016/j.ajpc.2024.100633

4. Rodgers JL, Jones J, Bolleddu SI, Vanthenapalli S, Rodgers LE, Shah K, et al. Cardiovascular risks associated with gender and aging. J Cardiovasc Dev Dis. 2019 [cited 2025 Mar 22];6(2):19. Available from: https://www.researchgate.net/publication/332730389_Cardiovascular_Risks_Associated_with_Gender_and_Aging

5. Sharifi-Rad J, Rodrigues CF, Sharopov F, Docea AO, Can Karaca A, Sharifi-Rad M, et al. Diet, lifestyle and cardiovascular diseases: linking pathophysiology to cardioprotective effects of natural bioactive compounds. Int J Environ Res Public Health. 2020 Mar 30;17(7):2326. doi: https://doi.org/10.3390/ijerph17072326

6. Hajar R. Genetics in cardiovascular disease, heart views off. J. Gulf Heart Assoc. 2020;21:55–6. doi: https://doi.org/10.4103/HEARTVIEWS.HEARTVIEWS_140_19

7. Bhatnagar A. Cardiovascular pathophysiology of environmental pollutants. American J Physiol Heart Circulatory Physiol. 2004 Feb [cited 2025 Mar 22];286(2):H479–85. Available from: https://journals.physiology.org/doi/full/10.1152/ajpheart.00817.2003

8. Tarride JE, Lim M, DesMeules M, Luo W, Burke N, O’Reilly D, et al. A review of the cost of cardiovascular disease. Can J Cardiol. 2009 Jun [cited 2025 Mar 22];25(6):e195–202. Available from: https://www.researchgate.net/publication/26301306_A_review_of_the_cost_of_cardiovascular_disease

9. Dunbar SB, Khavjou OA, Bakas T, Hunt G, Kirch RA, Leib AR, et al. Projected costs of informal caregiving for cardiovascular disease: 2015 to 2035: a policy statement from the American Heart Association. Circulation. 2018 May 8 [cited 2025 Mar 22];137(19):e558–77. Available from: https://www.ahajournals.org/doi/10.1161/CIR.0000000000000570

10. Gheorghe A, Griffiths U, Murphy A, Legido-Quigley H, Lamptey P, Perel P. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: a systematic review. BMC Public Health. 2018 Dec;18:1–1. Available from: https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-018-5806-x

11. Leon BM, Maddox TM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015 Oct 10;6(13):1246–58. doi: https://doi.org/10.4239/wjd.v6.i13.1246

12. Luengo-Fernandez R, Walli-Attaei M, Gray A, Torbica A, Maggioni AP, Huculeci R, et al. Economic burden of cardiovascular diseases in the European Union: a population-based cost study. Eur Heart J. 2023 Dec 1 [cited 2025 Mar 22];44(45):4752–67. Available from: https://academic.oup.com/eurheartj/article/44/45/4752/7251239

13. Kharroubi AT, Darwish HM. Diabetes mellitus: the epidemic of the century. World J Diabetes. 2015 Jun 25 [cited 2025 Mar 22];6(6):850. Available from: https://pubmed.ncbi.nlm.nih.gov/26131326/

14. WHO. Diabetes. Geneva, Switzerland: WHO; 2025 [cited 2025 Mar 22]. Available from: https://www.who.int/health- topics/diabetes#tab=tab_1

15. Bommer C, Sagalova V, Heesemann E, Manne-Goehler J, Atun R, Bärnighausen T, et al. Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care. 2018 May;41(5):963–70. doi: https://doi.org/10.2337/dc17-1962

16. Alanazi NH, Alsharif MM, Rasool G, Alruwaili ABH, Alrowaili AMZ, Aldaghmi AS, et al. Prevalence of diabetes and its relation with age and sex in Turaif city, northern Saudi Arabia in 2016-2017. Electron Physician. 2017 Sep 25;9(9):5294–7. doi: https://doi.org/10.19082/5294

17. Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: a review. Int J Health Sci (Qassim). 2017 Apr-Jun;11(2):65–71.

18. Dean L, McEntyre J. The genetic landscape of diabetes. Bethesda, MD: National Center for Biotechnology Information (US); 2004.

19. Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol. 2008 Mar;9(3):193–205. doi: https://doi.org/10.1038/nrm2327

20. Halban PA, Polonsky KS, Bowden DW, Hawkins MA, Ling C, Mather KJ, et al. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care. 2014 Jun;37(6):1751–8. doi: https://doi.org/10.2337/dc14-0396

21. Frayling TM. Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Genet. 2007;8(9):657–62. doi: https://doi.org/10.1038/nrg2178

22. Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, Del Cañizo-Gómez FJ. Update on the treatment of type 2 diabetes mellitus. World J Diabetes. 2016 Sep 15;7(17):354–95. doi: https://doi.org/10.4239/wjd.v7.i17.354

23. Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals: does the clock for coronary heart disease start ticking before the onset of clinical diabetes?. Jama. 1990 Jun 6;263(21):2893–8.doi: https://doi.org/10.1001/jama.1990.03440210043030

24. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol. 2019 Apr;14(1):50–9. doi: https://doi.org/10.15420/ecr.2018.33.1

25. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010 Oct 29 [cited 2025 Mar 22];107(9):1058–70.Available from: https://www.ahajournals.org/doi/10.1161/circresaha.110.223545

26. Pan D, Xu L, Guo M. The role of protein kinase C in diabetic microvascular complications. Front Endocrinol (Lausanne). 2022 Aug 17 [cited 2025 Mar 22];13:973058. Available from: https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2022.973058/full

27. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014 Feb;18(1):1–14. doi: https://doi.org/10.4196/kjpp.2014.18.1.1

28. WHO. Obesity. Geneva, Switzerland: WHO; 2025 [cited 2025 Mar 22] Available from: https://www.who.int/health-topics/obesity

29. NFHS. NFHS-4 (2014-2015). New Delhi, India: Ministry of Health & Family Welfare, Government of India; 2025 [cited 2025 Mar 22]. Available from: https://www.nfhsiips.in/nfhsuser/nfhs4.php

30. NFHS. NFHS-4 (2014-2015). New Delhi, India: Ministry of Health & Family Welfare, Government of India; 2025 [cited 2025 Mar 22]. Available from: https://www.nfhsiips.in/nfhsuser/nfhs5.php

31. Oranika US, Adeola OL, Egbuchua TO, Okobi OE, Alrowaili DG, Kajero A, et al. The role of childhood obesity in early-onset type 2 diabetes mellitus: a scoping review. Cureus. 2023 Oct 31;15(10):e48037. doi: https://doi.org/10.7759/cureus.48037

32. Ersoy C, Imamoglu S, Tuncel E, Erturk E, Ercan I. Comparison of the factors that influence obesity prevalence in three district municipalities of the same city with different socioeconomical status: a survey analysis in an urban Turkish population. Prev Med. 2005 Feb;40(2):181–8. doi: https://doi.org/10.1016/j.ypmed.2004.05.018

33. Singh RK, Kumar P, Mahalingam K. Molecular genetics of human obesity: a comprehensive review. C R Biol. 2017 Feb;340(2):87–108. doi: https://doi.org/10.1016/j.crvi.2016.11.007

34. Latorre J, Lluch A, Ortega FJ, Gavaldà-Navarro A, Comas F, Morón-Ros S, et al. Adipose tissue knockdown of lysozyme reduces local inflammation and improves adipogenesis in high-fat diet-fed mice. Pharmacol Res. 2021 Apr;166:105486. doi: https://doi.org/10.1016/j.phrs.2021.105486

35. Park HK, Ahima RS. Endocrine disorders associated with obesity. Best Pract Res Clin Obstet Gynaecol. 2023;90:102394. doi: https://doi.org/10.1016/j.bpobgyn.2023.102394

36. Ritchie SA, Connell JM. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. 2007 May;17(4):319–26. doi: https://doi.org/10.1016/j.numecd.2006.07.005

37. Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, Sandoval-Rodriguez A, García-Bañuelos J, Santos A, et al. The role of NRF2 in obesity-associated cardiovascular risk Factors. Antioxidants (Basel). 2022 Jan 26;11(2):235. doi: https://doi.org/10.3390/antiox11020235

38. Din-Dzietham R, Liu Y, Bielo MV, Shamsa F. High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation. 2007 Sep 25;116(13):1488–96. doi: https://doi.org/10.1161/CIRCULATIONAHA.106.683243

39. Prashar D. Current treatment strategies for obesity including Indian scenario. Asian J Pharm 2016;10(3):3. doi: https://doi.org/10.22377/ajp.v10i03.774

40. O’Neill HM. AMPK and exercise: glucose uptake and insulin sensitivity. Diabetes Metab J. 2013 Feb [cited 2025 Mar 22];37(1):1–21. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3579147/

41. Galic S, Loh K, Murray-Segal L, Steinberg GR, Andrews ZB, Kemp BE. AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. Elife. 2018 Feb 13;7:e32656. Available from: https://pubmed.ncbi.nlm.nih.gov/29433631/

42. Kim SJ, Tang T, Abbott M, Viscarra JA, Wang Y, Sul HS. AMPK phosphorylates desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue. Mol Cell Biol. 2016 Jun 29 [cited 2025 Mar 22];36(14):1961–76. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4936063/

43. Chiarelli F, Di Marzio D. Peroxisome proliferator-activated receptor-gamma agonists and diabetes: current evidence and future perspectives. Vasc Health Risk Manag. 2008;4(2):297–304. doi: https://doi.org/10.2147/VHRM.S993

44. Stienstra R, Duval C, Müller M, Kersten S. PPARs, obesity, and inflammation. PPAR Res. 2007;2007:95974. doi: https://doi.org/10.1155/2007/95974

45. Aumeeruddy MZ, Mahomoodally MF. Traditional herbal medicines used in obesity management: a systematic review of ethnomedicinal surveys. J Herbal Med. 2021 Aug 1;28:100435. doi: https://doi.org/10.1016/j.hermed.2021.100435

46. Rizvi SI, Mishra N. Traditional Indian medicines used for the management of diabetes mellitus. J Diabetes Res. 2013;2013(1):712092. doi: https://doi.org/10.1155/2013/712092

47. Saad B, Zaid H, Shanak S, Kadan S, Saad B, Zaid H, et al. Prevention and treatment of obesity-related diseases by diet and medicinal plants. In: Anti-diabetes and Anti-obesity medicinal plants and phytochemicals. Cham, Switzerland: Springer; 2017. doi: https://doi.org/10.1007/978-3-319-54102-0_4

48. Bhusnure OG, Shinde MC, Vijayendra SSM, Gholve SB, Giram PS, Birajdar MJ. Phytopharmaceuticals: an emerging platform for innovation and development of new drugs from botanicals. J Drug Deliv Ther. 2019;9(3). doi: https://doi.org/10.22270/jddt.v9i3-s.2940

49. Nath RA, Kityania SI, Nath DE, Talkudar AD, Sarma GA. An extensive review on medicinal plants in the special context of economic importance. Asian J Pharm Clin Res. 2023 [cited 2025 Mar 22];16(2):6–11. Available from: https://www.researchgate.net/publication/368565227_AN_EXTENSIVE_REVIEW_ON_MEDICINAL_PLANTS_IN_THE_SPECIAL_CONTEXT_OF_ECONOMIC_IMPORTANCE

50. Gayathry KS, John JA. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. Food Prod Process Nutr. 2022;4:10. doi: https://doi.org/10.1186/s43014-022-00089-x

51. Liu J, Lei Y, Guo M, Wang L. Research progress on the hypoglycemic effects and mechanisms of action of Momordica charantia polysaccharide. J Food Biochem. 2023;2023(1):8867155. Available from: https://onlinelibrary.wiley.com/doi/10.1155/2023/8867155

52. Wang HY, Kan WC, Cheng TJ, Yu SH, Chang LH, Chuu JJ. Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice. Food Chem Toxicol. 2014 Jul;69:347–56. doi: https://doi.org/10.1016/j.fct.2014.04.008

53. Ahmad Z, Zamhuri KF, Yaacob A, Siong CH, Selvarajah M, Ismail A, et al. In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules. 2012 Aug 10;17(8):9631–40. doi: https://doi.org/10.3390/molecules17089631

54. Lo HY, Ho TY, Li CC, Chen JC, Liu JJ, Hsiang CY. A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway. J Agric Food Chem. 2014 Sep 10;62(36):8952–61. doi: https://doi.org/10.1021/jf5002099

55. Blum A, Loerz C, Martin HJ, Staab-Weijnitz CA, Maser E. Momordica charantia extract, a herbal remedy for type 2 diabetes, contains a specific 11β-hydroxysteroid dehydrogenase type 1 inhibitor. J Steroid Biochem Mol Biol. 2012 Jan;128(1-2):51–5. doi: https://doi.org/10.1016/j.jsbmb.2011.09.003

56. Wu S, Huang C, Chen YR, Huang HC, Huang WC, Lai YH. Momordica charantia leaf extract reduces hepatic lipid accumulation and diet-induced dyslipidemia in zebrafish through lipogenesis and beta-oxidation. J Funct Foods. 2021 Dec 1;87:104857. doi: https://doi.org/10.1016/j.jff.2021.104857

57. Franckhauser S, Bosch F. Transgenic animal models and the metabolic syndrome. In the metabolic syndrome at the beginning of the XXI Century: a genetic and molecular approach. Elsevier; 2005. 67–82 pp. doi: https://doi.org/10.1016/B978-84-8174-892-5.50004-8

58. Mahmoud MF, El Ashry FE, El Maraghy NN, Fahmy A. Studies on the antidiabetic activities of Momordica charantia fruit juice in streptozotocin-induced diabetic rats. Pharm Biol. 2017 Dec;55(1):758–65. doi: https://doi.org/10.1080/13880209.2016.1275026

59. Elekofehinti OO. Momordica charantia nanoparticles potentiate insulin release and modulate antioxidant gene expression in pancreas of diabetic rats. Egypt J Med Hum Genet. 2022 Mar 14;23(1):63. doi: https://doi.org/10.1186/s43042-022-00282-0

60. Liu J, Liu Y, Sun J, Guo Y, Lei Y, Guo M, et al. Protective effects and mechanisms of Momordica charantia polysaccharide on early-stage diabetic retinopathy in type 1 diabetes. Biomed Pharmacother. 2023 Dec;168:115726. doi: https://doi.org/10.1016/j.biopha.2023.115726

61. Bai J, Zhu Y, Dong Y. Modulation of gut microbiota and gut-generated metabolites by bitter melon results in improvement in the metabolic status in high fat diet-induced obese rats. J Funct Foods. 2018 Feb 1;41:127–34. doi: https://doi.org/10.1016/j.jff.2017.12.050

62. Liao PY, Lo HY, Liu IC, Lo LC, Hsiang CY, Ho TY. A gastro-resistant peptide from Momordica charantia improves diabetic nephropathy in db/db mice via its novel reno-protective and anti-inflammatory activities. Food Funct. 2022 Feb 21;13(4):1822–33. doi: https://doi.org/10.1039/D1FO02788C

63. Hsu PK, Pan FFC, Hsieh CS. mcIRBP-19 of Bitter melon peptide effectively regulates diabetes mellitus (DM) patients’ blood sugar levels. Nutrients. 2020 Apr 28;12(5):1252. doi: https://doi.org/10.3390/nu12051252

64. Inayat U Rahman, Khan RU, Khalil Ur Rahman, Bashir M. Lower hypoglycemic but higher antiatherogenic effects of bitter melon than glibenclamide in type 2 diabetic patients. Nutr J. 2015 Jan 26;14:13. doi: https://doi.org/10.1186/1475-2891-14-13

65. Tongia A, Tongia SK, Dave M. Phytochemical determination and extraction of Momordica charantia fruit and its hypoglycemic potentiation of oral hypoglycemic drugs in diabetes mellitus (NIDDM). Indian J Physiol Pharmacol. 2004 Apr;48(2):241–4.

66. Kinoshita H, Ogata Y. Effect of bitter melon extracts on lipid levels in Japanese subjects: a randomized controlled study. Evid Based Complement Alternat Med. 2018 Nov 8 [cited 2025 Mar 12];2018:4915784. Available from: https://pubmed.ncbi.nlm.nih.gov/30532795/

67. França EL, Ribeiro EB, Scherer EF, Cantarini DG, Pessôa RS, França FL, et al. Effects of Momordica charantia L. on the blood rheological properties in diabetic patients. Biomed Res Int. 2014;2014:840379. [cited 2025 Mar 12]. Available from: https://pubmed.ncbi.nlm.nih.gov/24672797/

68. Chatuphonprasert W, Lao-Ong T, Jarukamjorn K. Improvement of superoxide dismutase and catalase in streptozotocin-nicotinamide-induced type 2-diabetes in mice by berberine and glibenclamide. Pharm Biol. 2013;524:419-27. Available from: https://www.tandfonline.com/doi/abs/10.3109/13880209.2013.839714

69. Zhu L, Han J, Yuan R, Xue L, Pang W. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol Res. 2018 Mar 31;51(1):9. doi: https://doi.org/10.1186/s40659-018-0157-8

70. Zhai J, Li Z, Zhang H, Ma L, Ma Z, Zhang Y, et al. Berberine protects against diabetic retinopathy by inhibiting cell apoptosis via deactivation of the NF?κB signaling pathway. Mol Med Rep. 2020 Nov;22(5):4227–35. doi: https://doi.org/10.3892/mmr.2020.11505

71. Wang M, Xu R, Liu X, Zhang L, Qiu S, Lu Y, et al. A co-crystal berberine-ibuprofen improves obesity by inhibiting the protein kinases TBK1 and IKK?. Commun Biol. 2022 Aug 12;5(1):807. doi: https://doi.org/10.1038/s42003-022-03776-0

72. Chen P, Li Y, Xiao L. Berberine ameliorates nonalcoholic fatty liver disease by decreasing the liver lipid content via reversing the abnormal expression of MTTP and LDLR. Exp Ther Med. 2021 Oct;22(4):1109. doi: https://doi.org/10.3892/etm.2021.10543

73. Zhao JV, Yeung WF, Chan YH, Vackova D, Leung JYY, Ip DKM, et al. Effect of berberine on cardiovascular disease risk factors: a mechanistic randomized controlled trial. Nutrients. 2021 Jul 26;13(8):2550. doi: https://doi.org/10.3390/nu13082550

74. Kong WJ, Wei J, Zuo ZY, Wang YM, Song DQ, You XF, et al. Combination of simvastatin with berberine improves the lipid-lowering efficacy. Metabolism. 2008 Aug;57(8):1029–37. doi: https://doi.org/10.1016/j.metabol.2008.01.037 75. Yan HM, Xia MF, Wang Y, Chang XX, Yao XZ, Rao SX, et al. Efficacy of berberine in patients with non-alcoholic fatty liver disease. PLoS One. 2015 Aug 7;10(8):e0134172. doi: https://doi.org/10.1371/journal.pone.0134172

76. Yu WC, Chen YL, Hwang PA, Chen TH, Chou TC. Fucoidan ameliorates pancreatic β-cell death and impaired insulin synthesis in streptozotocin-treated β cells and mice via a Sirt-1-dependent manner. Mol Nutr Food Res. 2017 Oct;61(10). doi: https://doi.org/10.1002/mnfr.201700136

77. Zhang Y, Xu W, Huang X, Zhao Y, Ren Q, Hong Z, et al. Fucoxanthin ameliorates hyperglycemia, hyperlipidemia and insulin resistance in diabetic mice partially through IRS-1/PI3K/Akt and AMPK pathways. J Funct Foods. 2018 Sep 1;48:515–24. doi: https://doi.org/10.1016/j.jff.2018.07.048

78. Sun X, Zhao H, Liu Z, Sun X, Zhang D, Wang S, et al. Modulation of gut microbiota by fucoxanthin during alleviation of obesity in high-fat diet-fed mice. J Agric Food Chem. 2020 May 6;68(18):5118–28. doi: https://doi.org/10.1021/acs.jafc.0c01467

79. Gheda S, Hamouda RA, Naby MA, Mohamed TM, Al-Shaikh TM, Khamis A. Potent effect of phlorotannins derived from Sargassum linifolium as antioxidant and antidiabetic in a streptozotocin-induced diabetic rats model. Appl Sci. 2023;13(8):4711. doi: https://doi.org/10.3390/app13084711

80. Lee YS, Shin KH, Kim BK, Lee S Anti-diabetic activities of fucosterol from Pelvetia siliquosa, Arch Pharm Res. 2004;27(11):1120–2, Nov. 2004, doi: https://doi.org/10.1007/BF02975115

81. Aoe S, Yamanaka C, Ohtoshi H, Nakamura F, Fujiwara S. Effects of daily kelp (Laminaria japonica) intake on body composition, serum lipid levels, and thyroid hormone levels in healthy Japanese adults: a randomized, double-blind study, Mar Drugs 2021;19(7):352. doi: https://doi.org/10.3390/md19070352

82. Baldrick FR, Kevin M, Maria I, Chris S, Tanya M, Kate M, et al. Impact of a (poly)phenol-rich extract from the brown algae Ascophyllum nodosum on DNA damage and antioxidant activity in an overweight or obese population: a randomized controlled trial. Am J Clin Nutr. 2018;108(4):688–700. doi: https://doi.org/10.1093/ajcn/nqy147

83. López-Ramos A, González-Ortiz M, Martínez-Abundis E, Pérez-Rubio KG. Effect of fucoxanthin on metabolic syndrome, insulin sensitivity, and insulin secretion. J Med Food 2023;26(7):521–527. doi: https://doi.org/10.1089/jmf.2022.0103

84. Shih PH, Shiue SJ, Chen CN, Cheng SW, Lin HY, Wu LW, et al. Fucoidan and fucoxanthin attenuate hepatic steatosis and inflammation of NAFLD through modulation of leptin/adiponectin axis, Mar Drugs 2021;19(3):148. doi: https://doi.org/10.3390/md19030148

85. Abidov M, Ramazanov Z, Seifulla R, Grachev S. The effects of Xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab. 2010;12(1):72–81. doi: https://doi.org/10.1111/j.1463-1326.2009.01132.x

86. Al Jamal A. Effects of Nigella sativa and metformin on HbA1C, glucose tolerance and lipid profile of diabetic rats. J Chem Pharm Sci. 2024;12(1):6-9. doi: https://doi.org/10.30558/jchps.20191201002

87. Ayaz H, Kaya S, Seker U, Nergiz Y. Comparison of the anti-diabetic and nephroprotective activities of vitamin E, metformin, and Nigella sativa oil on kidney in experimental diabetic rats. Iran J Basic Med Sci. 2023;26(4):395–399. doi: https://doi.org/10.22038/IJBMS.2023.68051.14876

88. Esmail M, Anwar S, Kandeil M, El-Zanaty AM, Abdel-Gabbar M. Effect of Nigella sativa, atorvastatin, or L-Carnitine on high fat diet-induced obesity in adult male Albino rats. Biomed Pharmacother. 2021;141:111818. doi: https://doi.org/10.1016/j.biopha.2021.111818

89. Ramineedu K, Sankaran KR, Mallepogu V, Rendedula DP, Gunturu R, Gandham S, et al. Thymoquinone mitigates obesity and diabetic parameters through regulation of major adipokines, key lipid metabolizing enzymes and AMPK/p-AMPK in diet-induced obese rats. 3 Biotech. 2024;14(1):16. doi: https://doi.org/10.1007/s13205-023-03847-x

90. Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes. Chem Biol Interact. 2018;295:119–132. doi: https://doi.org/10.1016/j.cbi.2018.02.006

91. Mostafa TM, Hegazy SK, Elnaidany SS, Shehabeldin WA, Sawan ES. Nigella sativa as a promising intervention for metabolic and inflammatory disorders in obese prediabetic subjects: a comparative study of Nigella sativa versus both lifestyle modification and metformin. J Diabetes Complications 2021;35(7):107947. doi: https://doi.org/10.1016/j.jdiacomp.2021.107947

92. Ansari ZM, Nasiruddin M, Khan RA, Haque SF. Protective role of Nigella sativa in diabetic nephropathy: a randomized clinical trial. Saudi J Kidney Dis Transplant Off Publ Saudi Cent Organ Transplant Saudi Arab. 2017;28(1):9–14. doi: https://doi.org/10.4103/1319-2442.198093

93. Khodaie SA, Nikkhah H, Namiranian N, Abotorabi M, Askari M, Khalilzadeh SH, et al. Topical Nigella sativa L. product: a new candidate for the management of diabetic peripheral neuropathy. Inflammopharmacology. 2024;32(1):551–9. doi: https://doi.org/10.1007/s10787-023-01338-2

94. Razmpoosh E, Safi S, Mazaheri M, Khalesi S, Nazari M, Mirmiran P, et al. A crossover randomized controlled trial examining the effects of black seed (Nigella sativa) supplementation on IL-1β, IL-6 and leptin, and insulin parameters in overweight and obese women. BMC Complement Med Ther. 2024;24(1):22. doi: https://doi.org/10.1186/s12906-023-04226-y

95. Razmpoosh E, Safi S, Nadjarzadeh A, Fallahzadeh H, Abdollahi N, Mazaheri M, et al. The effect of Nigella sativa supplementation on cardiovascular risk factors in obese and overweight women: a crossover, double-blind, placebo-controlled randomized clinical trial. Eur J Nutr. 2021;60(4):1863–74. doi: https://doi.org/10.1007/s00394-020-02374-2

96. Mokhber-Dezfuli N, Saeidnia S, Gohari AR, Kurepaz-Mahmoodabadi M. Phytochemistry and pharmacology of berberis species. Pharmacogn Rev. 2014 Jan;8(15):8–15. doi: https://doi.org/10.4103/0973-7847.125517

97. ?ensu E, Kasapo?lu KN, Gültekin-Özgüven M, Demircan E, Arslaner A, Özçelik B. Orange, red and purple barberries: Effect of in-vitro digestion on antioxidants and ACE inhibitors. Lwt. 2021 Apr 1;140:110820. doi: https://doi.org/10.1016/j.lwt.2020.110820

98. Hannan J, Ojo O, Rokeya L, Khaleque J, Akhter M, Flatt P, et al. Actions underlying antidiabetic effects of Ocimum sanctum leaf extracts in animal models of type 1 and type 2 diabetes. 2015;5:1–12. doi: https://doi.org/10.9734/EJMP/2015/11840

99. Suanarunsawat T, Songsak T. Anti-hyperglycaemic and anti-dyslipidaemic effect of dietary supplement of white Ocimum Sanctum Linnean before and after STZ-induced diabetes mellitus. Int J Diabetes Metab. 2005 Jan;13(1):18–23.doi: https://doi.org/10.1159/000497569

100. Murthy S, Gautam MK, Goel S, Purohit V, Sharma H, Goel RK. Evaluation of in vivo wound healing activity of Bacopa monniera on different wound model in rats. Biomed Res Int. 2013;2013:972028. doi: https://doi.org/10.1155/2013/972028

101. Ramzan TA, Aslam BI, Muhammad FA, Faisal MN, Hussain AS. Influence of Ocimum sanctum (L.) extract on the activity of gliclazide in alloxaninduced diabetes in rats. Rev Chim. 2020;71(10):101–10. doi: https://doi.org/10.37358/RC.20.11.8379

102. Yildiz SE, Bakir B, Asker H, Sari EK. The effects of the Basil (Ocimum sanctum) Treatment on the tumor necrosis factor-α and Interleukin 1β release in the kidney tissue of the diabetic rats.Kafkas Univ Vet Fak Derg. 2021;27(3):315–22. doi: https://doi.org/10.9775/kvfd.2021.25359

103. Jin Y, Liu S, Ma Q, Xiao D, Chen L. Berberine enhances the AMPK activation and autophagy and mitigates high glucose- induced apoptosis of mouse podocytes. Eur J Pharmacol. 2017 Jan 5;794:106–14. doi: https://doi.org/10.1016/j.ejphar.2016.11.037

104. Zhao J, Wang Z, Karrar E, Xu D, Sun X. Inhibition mechanism of berberine on α-amylase and α-glucosidase in vitro. Starch-Stärke. 2022 Mar;74(3-4):2100231. doi: https://doi.org/10.1002/star.202100231

105. Xia X, Yan J, Shen Y, Tang K, Yin J, Zhang Y, et al. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS One. 2011 Feb 3;6(2):e16556. doi: https://doi.org/10.1371/journal.pone.0016556

106. Ilyas Z, Perna S, Al-Thawadi S, Alalwan TA, Riva A, Petrangolini G, et al. The effect of Berberine on weight loss in order to prevent obesity: a systematic review. Biomed Pharmacother. 2020 Jul;127:110137. doi: https://doi.org/10.1016/j.biopha.2020.110137

107. Ekeuku SO, Pang KL, Chin KY. Palmatine as an agent against metabolic syndrome and its related complications: a review. Drug Des Devel Ther. 2020 Nov 17;14:4963–74. doi: https://doi.org/10.2147/DDDT.S280520

108. He H, Deng J, Yang M, An L, Ye X, Li X. Jatrorrhizine from Rhizoma Coptidis exerts an anti-obesity effect in db/db mice. J Ethnopharmacol. 2022 Nov 15;298:115529. doi: https://doi.org/10.1016/j.jep.2022.115529

109. Wang YX, Zheng YM. Ionic mechanism responsible for prolongation of cardiac action-potential duration by berberine. J Cardiovasc Pharmacol. 1997 Aug;30(2):214–22. doi: https://doi.org/10.1097/00005344-199708000-00010

110. Wang LH, Yu CH, Fu Y, Li Q, Sun YQ. Berberine elicits anti-arrhythmic effects via IK1/Kir2.1 in the rat type 2 diabetic myocardial infarction model. Phytother Res. 2011 Jan;25(1):33–7. doi: https://doi.org/10.1002/ptr.3097

111. Marin-Neto JA, Maciel BC, Secches AL, Gallo Júnior L. Cardiovascular effects of berberine in patients with severe congestive heart failure. Clin Cardiol. 1988 Apr;11(4):253–60. doi: https://doi.org/10.1002/clc.4960110411

112. Somasundaram G, Manimekalai K, Salwe KJ, Pandiamunian J. Evaluation of the antidiabetic effect of Ocimum sanctum in type 2 diabetic patients. Int J life Sci Pharma Res. 2012 Jul;5:75–81.

113. Satapathy S, Das N, Bandyopadhyay D, Mahapatra SC, Sahu DS, Meda M. Effect of Tulsi (Ocimum sanctum Linn.) supplementation on metabolic parameters and liver enzymes in young overweight and obese subjects. Indian J Clin Biochem. 2017 Jul;32:357–63. doi: https://doi.org/10.1007/s12291-016-0615-4

114. Dineshkumar B, Analava M, Manjunatha M. Antidiabetic and hypolipidaemic effects of few common plants extract in type 2 diabetic patients at Bengal. Int J Diabetes Metab. 2010 Feb;18(2):59–65.doi: https://doi.org/10.1159/000497694

115. Kochhar A, Sharma N, Sachdeva R. Effect of supplementation of Tulsi (Ocimum sanctum) and Neem (Azadirachta indica) leaf powder on diabetic symptoms, anthropometric parameters and blood pressure of non insulin dependent male diabetics. Studies on Ethno-Medicine. 2009 Jan 1;3(1):5–9.

116. Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism. 2008 May;57(5):712–7. doi: https://doi.org/10.1016/j.metabol.2008.01.013

117. Zhang H, Wei J, Xue R, Wu JD, Zhao W, Wang ZZ, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism. 2010 Feb;59(2):285–92. doi: https://doi.org/10.1016/j.metabol.2009.07.029

118. Al-Ani IM, Santosa RI, Yankuzo MH, Saxena AK, Alazzawi KS. The antidiabetic activity of curry leaves “Murraya Koenigii” on the glucose levels, kidneys, and islets of Langerhans of rats with Streptozotocin induced diabetes. Makara J Health Res. 2017 Aug 18;21(2):4. doi: https://doi.org/10.7454/msk.v21i2.7393

119. Arulselvan P, Senthilkumar GP, Sathish Kumar D, Subramanian S. Anti-diabetic effect of Murraya koenigii leaves on streptozotocin induced diabetic rats. Die Pharmazie-An Int J Pharm Sci. 2006 Oct 1;61(10):874–7.

120. Kesari AN, Gupta RK, Watal G. Hypoglycemic effects of Murraya koenigii on normal and alloxan-diabetic rabbits. J Ethnopharmacol. 2005 Feb 28;97(2):247–51. doi: https://doi.org/10.1016/j.jep.2004.11.006

121. Mitra A, Mahadevappa M. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigii (rutaceae) leaves. Int J Phytomed. 2010;2:22–30.

122. Bhupatiraju L, Bethala K, Goh KW, Dhaliwal JS, Siang TC, Menon S, et al. Influence of Murraya koenigii extract on diabetes induced rat brain aging. J Med Life. 2023 Feb;16(2):307. doi: https://doi.org/10.25122/jml-2022-0151

123. Liu Y, Xu Z, Huang H, Xue Y, Zhang D, Zhang Y, et al. Fucoidan ameliorates glucose metabolism by the improvement of intestinal barrier and inflammatory damage in type 2 diabetic rats. Int J Biol Macromol. 2022 Mar 15;201:616–29. doi: https://doi.org/10.1016/j.ijbiomac.2022.01.102

124. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun. 2005 Jul 1;332(2):392–7. doi: https://doi.org/10.1016/j.bbrc.2005.05.002

125. Mohibbullah M, Haque MN, Sohag AAM, Hossain MT, Zahan MS, Uddin MJ, et al. A systematic review on marine algae-derived fucoxanthin: an update of pharmacological insights. Mar Drugs. 2022 Apr 22;20(5):279. doi: https://doi.org/10.3390/md20050279

126. Gisbert M, Franco D, Sineiro J, Moreira R. Antioxidant and antidiabetic properties of phlorotannins from Ascophyllum nodosum seaweed extracts. Molecules. 2023 Jun 23;28(13):4937. doi: https://doi.org/10.3390/molecules28134937

127. Kim AT, Park Y. Trifuhalol A, a phlorotannin from the brown algae Agarum cribrosum, reduces adipogenesis of human primary adipocytes through Wnt/β-catenin and AMPK-dependent pathways. Curr Res Food Sci. 2023 Nov 22;7:100646. doi: https://doi.org/10.1016/j.crfs.2023.100646

128. Hannan MA, Sohag AAM, Dash R, Haque MN, Mohibbullah M, Oktaviani DF, et al. Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine. 2020 Apr;69:153201. doi: https://doi.org/10.1016/j.phymed.2020.153201

129. Farooq M, Ul Ain I, Aysha Iftikhar Z. Investigating the therapeutic potential of aqueous extraction of curry plant (Murraya koenigi) leaves supplementation for the regulation of blood glucose level in type 2 diabetes mellitus in female human subjects. Pak J Pharm Sci. 2023 Mar 1;36(2):601–5.

130. Jadhav KV, Dhudum B. Effectivness of curry leaves powder on blood sugar level among diabetic patients. SCOPUS IJPHRD CITATION SCORE. 2019 Jul;10(7):388. doi: https://doi.org/10.5958/0976-5506.2019.01597.3

131. Gaikwad V. Effectiveness of curry leaves on blood sugar level among diabetic clients. Group. 2018;2(O1):O2.

132. Jung HA, Jung HJ, Jeong HY, Kwon HJ, Kim MS, Choi JS. Anti-adipogenic activity of the edible brown alga Ecklonia stolonifera and its constituent fucosterol in 3T3-L1 adipocytes. Arch Pharm Res. 2014 Jun;37(6):713–20. doi: https://doi.org/10.1007/s12272-013-0237-9

133. Jung HA, Bhakta HK, Min BS, Choi JS. Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B. Arch Pharm Res. 2016 Oct;39(10):1454-1464. doi: https://doi.org/10.1007/s12272-016-0819-4

134. Hussain S, Rukhsar A, Iqbal M, ul Ain Q, Fiaz J, Akhtar N, et al. Phytochemical profile, nutritional and medicinal value of Nigella sativa. Biocatal Agric Biotechnol. 2024;60:103324. doi: https://doi.org/10.1016/j.bcab.2024.103324

135. Abdelrazek HM, Kilany OE, Muhammad MA, Tag HM, Abdelazim AM. Black seed tymoquinone improved insulin secretion, hepatic glycogen storage, and oxidative stress in streptozotocin-induced diabetic male wistar rats. Oxid Med Cell Longev. 2018;2018:8104165. doi: https://doi.org/10.1155/2018/8104165

136. Darakhshan S, Pour AB, Colagar AH, Sisakhtnezhad S. Thymoquinone and its therapeutic potentials. Pharmacol Res. 2015;95–96:138–158. doi: https://doi.org/10.1016/j.phrs.2015.03.011

137. Shahbodi M, Emami SA, Javadi B, Tayarani-Najaran Z. Effects of thymoquinone on adipocyte differentiation in human adipose-derived stem cells. Cell Biochem Biophys. 2022;80(4):771–779. doi: https://doi.org/10.1007/s12013-022-01095-z

138. Enomoto S, Asano R, Iwahori Y, Narui T, Okada Y, Singab AN, et al. Hematological studies on black cumin oil from the seeds of Nigella sativa L. Biol Pharm Bull. 2001;24(3):307–310. doi: https://doi.org/10.1248/bpb.24.307

139. Choi SM, Lee HS, Lim SH, Choi G, Choi CI. Hederagenin from hedera helix promotes fat browning in 3T3-L1 adipocytes, Plants 2024;13(19):2789. doi: https://doi.org/10.3390/plants13192789

140. Tulukcu E. A comparative study on fatty acid composition of black cumin obtained from different regions of Turkey, Iran and Syria. Afr J Agric Res. 2011;6(4):892–5. Feb. 2011, doi: https://doi.org/10.5897/AJAR10.286

141. Bayram S?, K?z?ltan G. The role of omega-3 polyunsaturated fatty acids in diabetes mellitus management: a narrative review. Curr Nutr Rep. 2024;13(3):527–551. doi: https://doi.org/10.1007/s13668-024-00561-9

142. Samanth M. The chemical constituents of Ocimum sanctum and its pharmacological applications: a review. In: Min HS, editor. Recent developments in chemistry and biochemistry research. Tarkeshwar, India: BP International; 2025. Vol. 11, pp. 119–52. doi: https://doi.org/10.9734/bpi/rdcbr/v11/4371

143. Pradhan D, Biswasroy P, Haldar J, Cheruvanachari P, Dubey D, Rai VK, et al. A comprehensive review on phytochemistry, molecular pharmacology, clinical and translational outfit of Ocimum sanctum L. South Afr J Bot. 2022;150:342–60. doi: https://doi.org/10.1016/j.sajb.2022.07.037

144. Raza Ishaq A, A S El-Nashar H, M Al-Qaaneh A, Asfandyar, Bashir A, Younis T. Younis, Orientin: a natural glycoside with versatile pharmacological activities. Nat Prod Res. 2025 Jan 5:1–23. doi: https://doi.org/10.1080/14786419.2024.2436119

145. Jadaramkunti UC. Hypoglycemic activity of lyophilized tulsi leaf powder and its protective role association with the antioxidant and antidyslipidemic properties in alloxan-induced diabetic rats. World J Pharm Res.

146. Malapermal V, Botha I, Krishna SBN, Mbatha JN. Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi J Biol Sci. 2017 Sep;24(6):1294–305. doi: https://doi.org/10.1016/j.sjbs.2015.06.026

147. Vats V, Grover JK, Rathi SS. Evaluation of anti-hyperglycemic and hypoglycemic effect of Trigonella foenum-graecum Linn, Ocimum sanctum Linn and Pterocarpus marsupium Linn in normal and alloxanized diabetic rats. J Ethnopharmacol. 2002 Jan;79(1):95–100. doi: https://doi.org/10.1016/S0378-8741(01)00374-9

148. Kharat P, Kurane S. Ocimum Sanctum Linn Extract As An Adjuvant Therapy For Effective Glycaemic Control In Type II Diabetes Mellitus. J Pharm Negat Results[Internet]. 2022;13(8):412–7. doi: https://doi.org/10.47750/pnr.2022.13.S08.055

149. Panossian A. Challenges in phytotherapy research. Frontiers in pharmacology. 2023 May 31;14:1199516.doi: https://doi.org/10.3389/fphar.2023.1199516

150. Wang H, Chen Y, Wang L, Liu Q, Yang S, Wang C. Advancing herbal medicine: enhancing product quality and safety through robust quality control practices. Front Pharmacol. 2023 Sep 25;14:1265178. doi: https://doi.org/10.3389/fphar.2023.1265178

151. Rodríguez Villanueva J, Martín Esteban J, Rodríguez Villanueva L. Pharmacological activities of phytomedicines: a challenge horizon for rational knowledge. Challenges. 2018 Mar 23;9(1):15. doi: https://doi.org/10.3390/challe9010015

Article Metrics
8 Views 0 Downloads 8 Total

Year

Month

Related Search

By author names