Genistein, a bioactive isoflavone, offers therapeutic potential but is hindered by poor water solubility, limiting its oral bioavailability. This study aimed to enhance genistein’s solubility by developing solid dispersion (SD) and formulating them into tablets. The SDs were prepared using the solvent evaporation method with polyethylene glycol 4000, poloxamer 407, and crospovidone (XPVP) as carriers. A Box-Behnken design optimized the formulation, yielding a significant increase in solubility to 181.12 μg/ml, closely matching the predicted value. Characterization studies, including differential scanning calorimetry, attenuated total reflectance-Fourier transform infrared spectroscopy, and powder X-ray diffraction, confirmed the conversion of genistein from a crystalline to an amorphous state without interaction with carriers, contributing to improved solubility and dissolution profile. The optimized genistein-SD was further developed into tablets, demonstrating effective drug release. Genistein-SD tablets containing XPVP showed faster disintegration and higher genistein release than those with sodium starch glycolate. Stability testing under long-term and accelerated storage conditions confirmed the retention of genistein content (≥96.61%) over 3 months in both the optimized genistein-SD and genistein-SD tablets. These tablets offer a promising genistein oral delivery approach, supporting further pharmaceutical development.
Phanapithakkun S, Yusakul G, Sitthisak C, Plyduang T. Development of tablet formulations containing genistein solid dispersion optimized using Box-Behnken design for enhanced solubility. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.168906
1. Jaiswal N, Akhtar J, Singh SP, Ahsan F. An overview on genistein and its various formulations. Drug Res. 2018;69:305–13. doi: https://doi.org/10.1055/a-0797-3657
2. Goh Y, Jalil J, Lam D, Husain K, Premakumar C. Genistein: a review on its anti-inflammatory properties. Front Pharmacol. 2022;13:820969. doi: https://doi.org/10.3389/fphar.2022.820969
3. Yoon GA, Park S. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutr Res Pract. 2014;8:618–24. doi: https://doi.org/10.4162/nrp.2014.8.6.618
4. Chen X, Wu Y, Gu J, Liang P, Shen M, Xi J, et al. Anti-invasive effect and pharmacological mechanism of genistein against colorectal cancer. BioFactors. 2020;46:620–8. doi: https://doi.org/10.1002/biof.1627
5. Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, et al. Genistein: an integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid Med Cell Longev. 2021;2021(1):3268136. doi: https://doi.org/10.1155/2021/3268136
6. Qiu C, Zhang Y, Fan Y, Li S, Gao J, He X, et al. Solid dispersions of genistein via solvent rotary evaporation for improving solubility, bioavailability, and amelioration effect in HFD-induced obesity mice. Pharmaceutics. 2024;16:306. doi: https://doi.org/10.3390/pharmaceutics16030306
7. Kwon SH, Kang MJ, Huh JS, Ha KW, Lee JR, Lee SK, et al. Comparison of oral bioavailability of genistein and genistin in rats. Int J Pharm. 2007;337(1):148–54. doi: https://doi.org/10.1016/j.ijpharm.2006.12.046
8. Meteoglu I, Erdemir A. Genistein and temozolomide-loaded polymeric nanoparticles: a synergistic approach for improved anti-tumor efficacy against glioblastoma. Process Biochem. 2021;110:9–18. doi: https://doi.org/10.1016/j.procbio.2021.07.015
9. Zhang X, Huang Y, Zhu H, Liu Z, Zhang L, Li Z, et al. Genistein microparticles prepared by antisolvent recrystallization with low-speed homogenization process. Food Chemistry. 2022;408:135250. doi: https://doi.org/10.1016/j.foodchem.2022.135250
10. Cheng Q, Qin W, Yu Y, Li G, Wu J, Zhuo L. Preparation and characterization of PEG-PLA genistein micelles using a modified emulsion-evaporation method. J Nanomat. 2020;2020:1–15. doi: https://doi.org/10.1155/2020/3278098
11. Vu Q, Fang CW, Suhail M, Wu PC. Enhancement of the topical bioavailability and skin whitening effect of genistein by using microemulsions as drug delivery carriers. Pharmaceuticals. 2021;14:1233. doi: https://doi.org/10.3390/ph14121233
12. Wang Z, Li Q, An Q, Gong L, Yang S, Zhang B, et al. Optimized solubility and bioavailability of genistein based on cocrystal engineering. Nat Prod Bioprospect. 2023;13:30. doi: https://doi.org/10.1007/s13659-023-00397-w
13. Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):18–25. doi: https://doi.org/10.1016/j.apsb.2013.11.001
14. Tambe S, Jain D, Meruva S, Rongala G, Juluri A, Nihalani G, et al. Recent advances in amorphous solid dispersions: preformulation, formulation strategies, technological advancements and characterization. Pharmaceutics. 2022;14:2203. doi: https://doi.org/10.3390/pharmaceutics14102203
15. Malkawi R, Malkawi W, Al-Mahmoud Y, Tawalbeh J. Current trends on solid dispersions: past, present, and future. Adv Pharmacol Pharm Sci. 2022;2022:1–17. doi: https://doi.org/10.1155/2022/5916013
16. Phuong T, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11:132. doi: https://doi.org/10.3390/pharmaceutics11030132
17. Bhujbal S, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, et al. Pharmaceutical amorphous solid dispersion: a review of manufacturing strategies. Acta Pharm Sin B. 2021;11:2505–36. doi: https://doi.org/10.1016/j.apsb.2021.05.014
18. Yao X, Qi C, Sun C, Huo F, Jiang X. Poly(ethylene glycol) alternatives in biomedical applications. Nano Today. 2023;48:101738. doi: https://doi.org/10.1016/j.nantod.2022.101738
19. Alshehri S, Imam SS, Altamimi MA, Hussain A, Shakeel F, Elzayat E, et al. Enhanced dissolution of luteolin by solid dispersion prepared by different methods: physicochemical characterization and antioxidant activity. ACS Omega. 2020;5(12):6461–71. doi: https://doi.org/10.1021/acsomega.9b04075
20. Fazil M, Ansari SH, Ali J. Development and evaluation of solid dispersion of spironolactone using fusion method. Int J Pharm Investig. 2016;6(1):63. doi: https://doi.org/10.4103/2230-973X.176490
21. Yusuf H, Meidy Nurintan Savitri O, Primaharinastiti R, Agus Syamsur Rijal M. A lyophilized surfactant-based rutin formulation with improved physical characteristics and dissolution for oral delivery. Saudi Pharm J. 2023;31(6):1077–83. doi: https://doi.org/10.1016/j.jsps.2023.03.018
22. Hurley D, Potter CB, Walker GM, Higginbotham CL. Investigation of ethylene oxide-co-propylene oxide for dissolution enhancement of hot-melt extruded solid dispersions. J Pharm Sci. 2018;107(5):1372–82. doi: https://doi.org/10.1016/j.xphs.2018.01.016
23. Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: the role of polymeric carriers. Asian J Pharm Sci. 2023;18:100834. doi: https://doi.org/10.1016/j.ajps.2023.100834
24. Sermkeaw N, Plyduang T. Development of delayed-release matrix tablets comprising solid dispersion of mefenamic acid. Trends Sci. 2023;20(6):6078. doi: https://doi.org/10.48048/tis.2023.6078
25. Tran P, Nguyen TN, Park JS. Co-carrier-based solid dispersion of celecoxib improves dissolution rate and oral bioavailability in rats. J Drug Deliv Sci Tech. 2023;79:104073. doi: https://doi.org/10.1016/j.jddst.2022.104073
26. Patel K, Patel J, Shah S. Development of delayed release oral formulation comprising esomeprazole spray dried dispersion utilizing design of experiment as an optimization strategy. AAPS PharmSciTech. 2023;24(7):186. doi: https://doi.org/10.1208/s12249-023-02642-4
27. Mohapatra D, Kumar D, Shreya S, Pandey V, Dubey P, Agrawal A, et al. Quality by design-based development and optimization of fourth-generation ternary solid dispersion of standardized Piper longum extract for melanoma therapy. Drug Deliv Transl Res. 2023;13:3094–131. doi: https://doi.org/10.1007/s13346-023-01375-y
28. Fayyaz Shahandashty B, Fallah N, Shamsi M, Nasernejad B, Afkhamipour M. Evaluation of enhanced chemical coagulation method for a case study on colloidal liquid particle in wastewater treatment: statistical optimization analysis and implementation of machine learning. J Environ Manage. 2024;370:122345. doi: https://doi.org/10.1016/j.jenvman.2024.122345
29. ACCSQ, PPWG. ASEAN guideline on stability study of drug product. Jakarta, Indonesia: ASEAN Secretariat; 2005.
30. Emam M, Taha N, Emara L. A novel combination of Soluplus® and Poloxamer for Meloxicam solid dispersions via hot melt extrusion for rapid onset of action—part 1: dissolution and stability studies. J Appl Pharm Sci. 2020;11:141–50. doi: https://doi.org/10.7324/JAPS.2021.110218
31. Suhail M, Chiu IH, Lin IL, Tsai MJ, Wu PC. A novel approach of polyethylene glycol-4000 hydrogels as controlled drug carriers. Micro. 2023;3:578–90. doi: https://doi.org/10.3390/micro3020039
32. Garbiec E, Rosiak N, Zalewski P, Tajber L, Cielecka-Piontek J. Genistein co-amorphous systems with amino acids: an investigation into enhanced solubility and biological activity. Pharmaceutics. 2023;15(12):2653. doi: https://doi.org/10.3390/pharmaceutics15122653
33. Xiao Y, Ho CT, Chen Y, Wang Y, Wei Z, Dong M, et al. Synthesis, characterization, and evaluation of genistein-loaded zein/carboxymethyl chitosan nanoparticles with improved water dispersibility, enhanced antioxidant activity, and controlled release property. Foods. 2020;9(11):1604. doi: https://doi.org/10.3390/foods9111604
34. Li X, Liu X, Song J, Wang C, Li J, Liu L, et al. Drug–drug cocrystallization simultaneously improves pharmaceutical properties of genistein and ligustrazine. Cryst Growth Des. 2021;21(6):3461–8. doi: https://doi.org/10.1021/acs.cgd.1c00229
35. Amaral V, Souza J, Alves T, Batain F, Crescencio K, Komatsu D, et al. Chemical processing and physical-chemical and mechanical characterizations of poly (L-co-D, L lactic acid)/polyethylene glycol mixtures for application as a biomedical device. Adv Mater Lett. 2024;15:1–9. doi: https://doi.org/10.5185/amlett.2024.031755
36. Lu X, Huang H, Zhang X, Lin P, Huang J, Sheng X, et al. Novel light-driven and electro-driven polyethylene glycol/two-dimensional MXene form-stable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage. Compos B Eng. 2019;177:107372. doi: https://doi.org/10.1016/j.compositesb.2019.107372
37. Slámová M, Školáková T, Školáková A, Patera J, Zamostny P. Preparation of solid dispersions with respect to the dissolution rate of active substance. J Drug Deliv Sci Technol. 2020;56:101518. doi: https://doi.org/10.1016/j.jddst.2020.101518
38. Liu P, Zhou JY, Chang JH, Liu XG, Xue HF, Wang RX, et al. Soluplus-mediated diosgenin amorphous solid dispersion with high solubility and high stability: development, characterization and oral bioavailability. Drug Des Devel Ther. 2020;14:2959–75. doi: https://doi.org/10.2147/DDDT.S253405
39. Samanthula K, Gna L, Reddy J, Hoque N, Sen S, Bairi A, et al. Design, development and influence of super disintegrants on solid dispersion based taste masking orodispersible tablets of racecadotril. Eur Chem Bull. 2023;12:12474–500. doi: https://doi.org/10.48047/ecb/2023.12.10.880
40. Iffat W, Shoaib MH, Yousuf RI, Qazi F, Mahmood ZA, Muhammad IN, et al. Use of Eudragit RS PO, HPMC K100M, ethyl cellulose, and their combination for controlling nicorandil release from the Bilayer tablets with atorvastatin as an immediate-release layer. J Pharm Innov. 2022;17(2):429–48. doi: https://doi.org/10.1007/s12247-020-09513-6
41. Zhao J, Koo O, Pan D, Wu YM, Morkhade D, Rana S, et al. The impact of disintegrant type, surfactant, and API properties on the processability and performance of roller compacted formulations of acetaminophen and aspirin. AAPS J. 2017;19:1387–95. doi: https://doi.org/10.1208/s12248-017-0104-6
Year
Month