Anti-cancer activity and brine shrimp lethality assay of the extracts and isolated compounds from Garcinia schomburgkiana Pierre

Chanchai Sukkum Chakkree Lekklar Krisana Chongsri Sataporn Deeying Chantragan Srisomsap Nakin Surapanich Pronrumpa Kanjanasingh Sakchai Hongthong   

Open Access   

Published:  Dec 24, 2024

DOI: 10.7324/JAPS.2025.209800
Abstract

The present study aimed to assess the anti-cancer and brine shrimp lethality activities of the various extracts and the isolated compounds from Garcinia schomburgkiana Pierre. Guided by bioassay fractionation, the bioactive fruit extract was chromatographed leading to the isolation of three xanthones, norathyriol (1), macluraxanthone (2), and 10-O-methylmacluraxanthone (3). The isolated compounds were characterized and confirmed the chemical structure using spectroscopic information. Among these, 10-O-methylmacluraxanthone was discovered for the first time in this plant and its complete spectroscopic data was given. Compounds, macluraxanthone, and 10-O-methylmacluraxanthone, demonstrated potent cytotoxicity against all cancerous cell lines (THP-1, A549, and HepG2) and Vero cell line with ED50 ranging from 2.25 ± 0.14 to 5.26 ± 0.13 μM. Norathyriol exhibited moderate toxicity in brine shrimp lethality assay with LC50 153.39 μM.


Keyword:     Garcinia schomburgkiana norathyriol macluraxanthone xanthone cytotoxicity


Citation:

Sukkum C, Lekklar C, Chongsri K, Deeying S, Srisomsap C, Surapanich N, Kanjanasingh P, Hongthong S. Anti-cancer activity and brine shrimp lethality assay of the extracts and isolated compounds from Garcinia schomburgkiana Pierre. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.209800

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Alzehr A, Hulme C, Spencer A, Morgan-Trimmer S. The economic impact of cancer diagnosis to individuals and their families: a systematic review. Support Care Cancer. 2022;30(8):6385–404. doi: https://doi.org/10.1007/s00520-022-06913-x

2. Muralidharan S, Gore M, Katkuri S. Cancer care and economic burden–a narrative review. J Family Med Prim Care. 2023;12(12):3042–7. doi: https://doi.org/10.4103/jfmpc.jfmpc_1037_23

3. Divyalakshmi MV, Thoppil JE. Cytotoxicity and antioxidant activity evaluation of endemic variety of the Western Ghats Garcinia gummi-gutta var. papilla and Garcinia xanthochymus. Proc Natl Acad Sci India Sect B Biol Sci. 2024;13:1–13. doi: https://doi.org/10.1007/s40011-023-01536-6

4. Lee CH, Ying TH, Chiou HL, Hsieh SC, Wen SH, Chou RH, et al. Alpha-mangostin induces apoptosis through activation of reactive oxygen species and ASK1/p38 signaling pathway in cervical cancer cells. Oncotarget. 2017;8(29):47425. doi: https://doi.org/10.18632/oncotarget.17659

5. Liu Y, Chen Y, Lin L, Li H. Gambogic acid as a cndidate for cancer therapy: a review. Int J Nanomedicine. 2020;22:10385–99. doi: https://doi.org/10.2147/IJN.S277645

6. Mungmee C, Sitthigool S, Suttisri R, Buakeaw A. Xanthones and biphenyls from Garcinia schomburgkiana wood and their cytotoxicity. Thai J Pharm Sci. 2012;36:6–9. doi: https://doi.org/10.56808/3027-7922.2085

7. Lien Do TM, Duong TH, Nguyen VK, Phuwapraisirisan P, Doungwichitrkul T, Niamnont N, et al. Schomburgkixanthone, a novel bixanthone from the twigs of Garcinia schomburgkiana. Nat Prod Res. 2021;35(21):3613–8. doi: https://doi.org/10.1080/14786419.2020.1716351

8. Kaennakam S, Mudsing K, Rassamee K, Siripong P, Tip-Pyang S. Two new xanthones and cytotoxicity from the bark of Garcinia schomburgkiana. J Nat Med. 2019;73:257–61. doi: https://doi.org/10.1007/s11418-018-1240-8

9. Meechai I, Phupong W, Chunglok W, Meepowpan P. Antioxidant properties and phytochemical contents of Garcinia schomburgkiana Pierre. J Appl Pharm Sci. 2016;6(6):102–7. doi: https://doi.org/10.7324/JAPS.2016.60618

10. Sukandar ER, Kaennakam S, Wongsuwan S, Chatwichien J, Krobthong S, Yingchutrakul Y, et al. Schomburginones A?J, geranylated benzophenones from the leaves of Garcinia schomburgkiana and their cytotoxic and anti-inflammatory activities. Phytochemistry. 2023;211:113701. doi: https://doi.org/10.1016/j.phytochem.2023.113701

11. Sukandar ER, Siripong P, Khumkratok S, Tip-Pyang S. New depsidones and xanthone from the roots of Garcinia schomburgkiana. Fitoterapia. 2016;111:73?7. doi: https://doi.org/10.1016/j.fitote.2016.04.012

12. Tanagornmeatar K, Chaotham C, Sritularak B, Likhitwitayawuid K, Chanvorachote P. Cytotoxic and anti-metastatic activities of phenolic compounds from Dendrobium ellipsophyllum. Anticancer Res. 2014;34(11):6573?9.

13. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med. 1982;45(05):31?4.

14. Meechai IM, Phupong WO, Chunglok W, Meepowpan P. Anti-radical activities of xanthones and flavonoids from Garcinia schomburgkiana. Int J Pharm Sci. 2016;8(9):235?8.

15. Silva-Castro LF, Derbré S, Le Ray AM, Richomme P, García-Sosa K, Peña-Rodriguez LM. Using 13C-NMR dereplication to aid in the identification of xanthones present in the stem bark extract of Calophyllum brasiliense. Phytochem Anal. 2021;32(6):1102?9. doi: https://doi.org/10.1002/pca.3051

16. Gunasekera SP, Selliah S, Sultanbawa MU. Chemical investigation of ceylonese plants. Part XV. Extractives of Kayea stylosa Thw. (Guttiferae). J Chem Soc Perkin Trans. 1975(16):1539?44. doi: https://doi.org/10.1039/P19750001539

17. Natrsanga P, Jongaramruong J, Rassamee K, Siripong P, Tip-Pyang S. Two new xanthones from the roots of Cratoxylum cochinchinense and their cytotoxicity. J Nat Med. 2020;74:467?73.

18. Moshi MJ, Innocent E, Magadula JJ, Otieno DF, Weisheit A, Mbabazi PK, et al. Brine shrimp toxicity of some plants used as traditional medicines in Kagera Region, north western Tanzania. Tanzan J Health Res. 2010;12(1):63–7. doi: https://doi.org/10.4314/thrb.v12i1.56287

19. Solis PN, Wright CW, Anderson MM, Gupta MP, Phillipson JD. A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med. 1993;59(03):250–2.

20. Thi Thu HN, Minh QP, Van CP, Van TN, Van KP, Thanh TN, et al. The SN. Cytotoxic and α-glucosidase inhibitory xanthones from Garcinia mckeaniana leaves and molecular docking study. Chem Biodivesity. 2021;18(11):e2100396.

21. Takeda T, Tsubaki M, Kino T, Yamagishi M, Iida M, Itoh T, et al. Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase. Chem Biol Interact. 2016;251:26–33. doi: https://doi.org/10.1016/j.cbi.2016.03.018

22. Li J, Malakhova M, Mottamal M, Reddy K, Kurinov I, Carper A, et al. Norathyriol suppresses skin cancers induced by solar ultraviolet radiation by targeting ERK kinases. Cancer Res. 2012;72(1):260–70.

23. Teh SS, Ee GC, Mah SH, Lim YM, Ahmad Z. Cytotoxicity and structure-activity relationships of xanthone derivatives from Mesua beccariana, Mesua ferrea and Mesua congestiflora towards nine human cancer cell lines. Molecules. 2013;18(2):1985–94. doi: https://doi.org/10.3390/molecules18021985

24. Loisel S, Le Ster K, Meyer M, Berthou C, Youinou P, Kolb JP, et al. Therapeutic activity of two xanthones in a xenograft murine model of human chronic lymphocytic leukemia. J Hematol Oncol. 2010;3:1–3. doi: https://doi.org/10.1186/1756-8722-3-49

25. Lee S, Min B, Kho Y. Brine shrimp lethality of the compounds from Phryma leptostachya L. Arch Pharm Res. 2002;25:652–4. doi: https://doi.org/10.1007/BF02976939

26. Luo X, He W, Yin H, Li Q, Liu Q, Huang Y, et al. Two new coumarins from Micromelum falcatum with cytotoxicity and brine shrimp larvae toxicity. Molecules. 2012 Jun 6;17(6):6944–52. doi: https://doi.org/10.3390/molecules17066944

27. Pedraza-Chaverri J, Cárdenas-Rodríguez N, Orozco-Ibarra M, Pérez-Rojas JM. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol. 2008;46(10):3227?39. doi: https://doi.org/10.1016/j.fct.2008.07.024

28. Boonnak N, Chantrapromma S, Tewtrakul S, Sudsai T. Inhibition of nitric oxide production in lipopolysaccharide-activated RAW264.7 macrophages by isolated xanthones from the roots of Cratoxylum formosum ssp. pruniflorum. Arch Pharm Res. 2014;37:1329?35. doi: https://doi.org/10.1007/s12272-014-0338-0

29. Chukaew A, Saithong S, Chusri S, Limsuwan S, Watanapokasin R, Voravuthikunchai SP, et al. Cytotoxic xanthones from the roots of Mesua ferrea L. Phytochemistry. 2019; 157:64?70. doi: https://doi.org/10.1016/j.phytochem.2018.10.008

30. Reutrakul V, Anantachoke N, Pohmakotr M, Jaipetch T, Sophasan S, Yoosook C, et al. Cytotoxic and anti-HIV-1 caged xanthones from the resin and fruits of Garcinia hanburyi. Planta Med. 2007;73(01):33?40. doi: https://doi.org/10.1055/s-2006-951748

31. Castanheiro RA, Silva A, Campos NA, Nascimento MS, Pinto MM. Antitumor activity of some prenylated xanthones. Pharmaceuticals. 2009; 2(2):33?43. doi: https://doi.org/10.3390/ph2020033

32. Perchellet EM, Ward MM, Skaltsounis AL, Kostakis IK, Pouli N, Marakos P, et al. Antiproliferative and proapoptotic activities of pyranoxanthenones, pyranothioxanthenones and their pyrazole-fused derivatives in HL-60 cells. Anticancer Res. 2006;26(4B):2791?804.

33. Kolokythas G, Daniilides K, Pouli N, Marakos P, Pratsinis H, Kletsas D. Design, synthesis, and cytotoxic activity evaluation of new linear pyranoxanthone aminoderivatives. J Heterocycl Chem. 2011;48(4):927?35.

34. Lewis JR, Reary JB. The synthesis of pyranoxanthenones containing a dimethylchromen system. J Chem Soc C. 1970;12:1662?4. doi: https://doi.org/10.1039/J39700001662

35. Lakornwong W, Kanokmedhakul K, Masranoi J, Tontapha S, Yahuafai J, Laphookhieo S, et al. Cytotoxic and antibacterial xanthones from the roots of Maclura cochinchinensis. Nat Prod Res. 2022;36(23):6021?30. doi: https://doi.org/10.1080/14786419.2022.2062351

36. Pailee P, Kuhakarn C, Sangsuwan C, Hongthong S, Piyachaturawat P, Suksen K, et al. Anti-HIV and cytotoxic biphenyls, benzophenones and xanthones from stems, leaves and twigs of Garcinia speciosa. Phytochemistry. 2018;147:68?79. doi: https://doi.org/10.1016/j.phytochem.2017.12.013

Article Metrics
78 Views 67 Downloads 145 Total

Year

Month

Related Search

By author names