Journal of Applied Pharmaceutical Science

Available online at: <u>https://japsonline.com</u>

Anti-cancer activity and brine shrimp lethality assay of the extracts and isolated compounds from *Garcinia schomburgkiana* Pierre

Chanchai Sukkum1, Chakkree Lekklar², Krisana Chongsri³, Sataporn Deeying², Chantragan Srisomsap⁴, Nakin Surapanich⁵, Pronrumpa Kanjanasingh1, Sakchai Hongthong⁵*

¹Division of Occupational Health and Safety, Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao, Thailand.

²Division of Agricultural Technology, Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao, Thailand.

³Department of Applied Physics, Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao, Thailand.

⁴Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand.

⁵Division of Chemistry, Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao, Thailand.

doi: https://doi.org/10.7324/JAPS.2025.209800

SUPPLEMENTARY MATERIAL

Content	Page
Table S1. The cytotoxicity and brine shrimp lethality activity of the methanol extract	S2
from various parts of Garcinia schomburgkiana Pierre	
Figure S1. ¹ H NMR spectrum of 10- O -methylmacluraxanthone (3) in CDCl ₃	S2
Figure S2. ¹³ C NMR spectrum of 10- O -methylmacluraxanthone (3) in CDCl ₃	S 3
Figure S3. DEPT-135 spectrum of 10- O -methylmacluraxanthone (3) in CDCl ₃	S 3
Figure S4. DEPT-90 spectrum of 10 - O -methylmacluraxanthone (3) in CDCl ₃	S 4
Figure S5. COSY spectrum of 10- O -methylmacluraxanthone (3) in CDCl ₃	S 4
Figure S6. HSQC spectrum of 10- O -methylmacluraxanthone (3) in CDCl ₃	S5
Figure S7. HMBC spectrum of 10 - O -methylmacluraxanthone (3) in CDCl ₃	S 5
Figure S8. NOESY spectrum of 10- O -methylmacluraxanthone (3) in CDCl ₃	S 6
Figure S9. ¹ H NMR spectrum of 10- O -methylmacluraxanthone (3) in CD ₃ COCD ₃	S 6
Figure S10. ¹³ C NMR spectrum of 10- <i>O</i> -methylmacluraxanthone (3) in CD ₃ COCD ₃	S 7
Figure S11. HR-ESI-MS spectrum of 10-O-methylmacluraxanthone (3)	S 7

Extract Cytotoxic (Cell lines; ED₅₀ (µg/mL))^a BSLA (LC₅₀; μ g/mL)) THP-1^a A549^a HepG2^a Vero^a Fruits >200 >200 >200 >200 618.56 >1000 Leaves >200 >200 >200 >200 >200 >200 >200 >200 >1000 Twigs Ellipticine 0.48 0.54 0.53 0.51 _ K2Cr2O7 21.01

Table S1. The cytotoxicity and brine shrimp lethality activity of the methanol extract from various parts of *Garcinia schomburgkiana* Pierre

^aTHP-1, human monocytic leukemia; A549, human lung carcinoma; HepG2, human hepatocellular carcinoma; Vero, normal African green monkey kidney. Ellipticine and $K_2Cr_2O_7$ were used as a positive control for cytotoxicity and brine shrimp lethality assays.

Figure S2. ¹³C NMR spectrum of 10-*O*-methylmacluraxanthone (3) in CDCl₃

Figure S3. DEPT-135 spectrum of 10-O-methylmacluraxanthone (3) in CDCl₃

Figure S4. DEPT-90 spectrum of 10-O-methylmacluraxanthone (3) in CDCl₃

Figure S5. COSY spectrum of 10-O-methylmacluraxanthone (3) in CDCl₃

Figure S6. HSQC spectrum of 10-O-methylmacluraxanthone (3) in CDCl₃

Figure S7. HMBC spectrum of 10-O-methylmacluraxanthone (3) in CDCl₃

Figure S8. NOESY spectrum of 10-O-methylmacluraxanthone (3) in CDCl₃

Figure S9. ¹H NMR spectrum of 10-*O*-methylmacluraxanthone (3) in CD₃COCD₃

Figure S10. ¹³C NMR spectrum of 10-*O*-methylmacluraxanthone (3) in CD₃COCD₃

Figure S11. HR-ESI-MS spectrum of 10-O-methylmacluraxanthone (3)

