Precise dosing of antibiotics in the neonatal population is a challenge due to insufficient pharmacokinetic data in neonates. The lack of suitable analytical methods is a roadblock to achieving this goal. The aim of the present study is to develop simultaneous LC-MS/MS methods for nine antibiotics from the neonatal plasma and dried blood spot samples and to compare them for their sensitivity, selectivity, accuracy, and other related validation parameters. The chromatographic separation was obtained using Acclaim120 C18 (150 × 4.6 mm, 3 μ) column on an LTQXL linear ion trap LC-MS/MS with a gradient program. The method was fully validated as per the ICHM10 guideline. The method has successfully passed all the validation criteria including the matrix effect, carry over, dilution integrity, and has shown reproducible recovery on extraction from plasma. The results of the stability studies were satisfactory, and the method was successfully applied for the analysis of clinical samples. In contrast to the plasma method, the DBS method failed to show linearity and is not suggestive for analysis of the selected antibiotics.
Chaudhari BB, Lewis LE, Mallayasamy S, Gupta A, Saha M, Kunkalienkar S, Moorkoth S. A comparative evaluation of the plasma and DBS-based LC-MS/MS methods for the simultaneous analysis of nine antibiotics for application to pharmacokinetic evaluations and precision dosing in neonates. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.214611
1. Grissinger M. The five rights. Pharm Ther. 2010 Oct;35(10):542. | |
2. Smeulers M, Verweij L, Maaskant JM, de Boer M, Krediet CTP, Nieveen van Dijkum EJM, et al. Quality indicators for safe medication preparation and administration: a systematic review. PLoS One 2015 Apr 17;10(4):e0122695. https://doi.org/10.1371/journal.pone.0122695 | |
3. Costa HT, Costa TX, Martins RR, Oliveira AG. Use of off-label and unlicensed medicines in neonatal intensive care. PLoS One 2018 Sep 25;13(9):e0204427. https://doi.org/10.1371/journal.pone.0204427 | |
4. Galande AD, Khurana NA, Mutalik S. Pediatric dosage forms-challenges and recent developments: a critical review. J Appl Pharm Sci. 2020;155-66. https://doi.org/10.7324/JAPS.2020.10718 | |
5. O’Hara K, Wright IMR, Schneider JJ, Jones AL, Martin JH. Pharmacokinetics in neonatal prescribing: evidence base, paradigms and the future. Br J Clin Pharmacol. 2015 Dec;80(6):1281-8. https://doi.org/10.1111/bcp.12741 | |
6. O’Hara K, Martin JH, Schneider JJ. Barriers and challenges in performing pharmacokinetic studies to inform dosing in the neonatal population. Pharm J Pharm Educ Pract. 2020 Feb 5;8(1):16. https://doi.org/10.3390/pharmacy8010016 | |
7. Chen N, Aleksa K, Woodland C, Rieder M, Koren G. Ontogeny of drug elimination by the human kidney. Pediatr Nephrol Berl Ger. 2006 Feb;21(2):160-8. https://doi.org/10.1007/s00467-005-2105-4 | |
8. Cheung KWK, van Groen BD, Spaans E, van Borselen MD, de Bruijn ACJM, Simons-Oosterhuis Y, et al. A comprehensive analysis of ontogeny of renal drug transporters: mRNA analyses, quantitative proteomics, and localization. Clin Pharmacol Ther. 2019;106(5):1083-92. https://doi.org/10.1002/cpt.1516 | |
9. van Groen BD, Nicolaï J, Kuik AC, Van Cruchten S, van Peer E, Smits A, et al. Ontogeny of hepatic transporters and drug-metabolizing enzymes in humans and in nonclinical species. Pharmacol Rev. 2021 Apr;73(2):597-678. https://doi.org/10.1124/pharmrev.120.000071 | |
10. Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. [Internet]. [cited 2023 Aug 16]. | |
11. Barker CIS, Standing JF, Kelly LE, Hanly Faught L, Needham AC, Rieder MJ, et al. Pharmacokinetic studies in children: recommendations for practice and research. Arch Dis Child. 2018 Jul;103(7):695-702. https://doi.org/10.1136/archdischild-2017-314506 | |
12. Bansal N, Momin S, Bansal R, Gurram Venkata SKR, Ruser L, Yusuf K. Pharmacokinetics of drugs: newborn perspective. Pediatr Med. 2023 Jan;0:0-0. https://doi.org/10.21037/pm-22-11 | |
13. Parker SL, Abdul-Aziz MH, Roberts JA. The role of antibiotic pharmacokinetic studies performed post-licensing. Int J Antimicrob Agents. 2020 Dec 1;56(6):106165. https://doi.org/10.1016/j.ijantimicag.2020.106165 | |
14. Kang JS, Lee MH. Overview of therapeutic drug monitoring. Korean J Intern Med. 2009 Mar;24(1):1-10. https://doi.org/10.3904/kjim.2009.24.1.1 | |
15. Hayashi Y, Roberts JA, Paterson DL, Lipman J. Pharmacokinetic evaluation of piperacillin-tazobactam. Expert Opin Drug Metab Toxicol. 2010;6(8):1017-31. https://doi.org/10.1517/17425255.2010.506187 | |
16. Wolf MF, Simon A. The use of piperacillin-tazobactam in neonatal and paediatric patients. Expert Opin Drug Metab Toxicol. 2009;5(1):57-69. https://doi.org/10.1517/17425250802614688 | |
17. Sdrgel F, Kinzig M. The chemistry, pharmacokinetics and tissue distribution of piperatillin/tazobactam. J Antimicrob Chemother. 1993;31(Suppl.A):39-60. https://doi.org/10.1093/jac/31.suppl_A.39 | |
18. Toyonaga Y, Ishihara T, Tezuka T, Nakamura H. Pharmacokinetic and clinical evaluation of tazobactam/piperacillin in the pediatric field. Jpn J Antibiot. 1998;51(5):325-45. | |
19. Boscia JA, Korzeniowski OM, Snepar R, Kobasa WD, Levison ME, Kaye D. Cefoperazone pharmacokinetics in normal subjects and patients with cirrhosis. Antimicrob Agents Chemother. 1983;23(3):385-9. https://doi.org/10.1128/AAC.23.3.385 | |
20. Bolton WK, Scheld WM, Spyker DA, Sande MA. Pharmacokinetics of cefoperazone in normal volunteers and subjects with renal insufficiency. Antimicrob Agents Chemother. 1981;19(5):821-5. https://doi.org/10.1128/AAC.19.5.821 | |
21. Varghese M, Khan AJ, Kumar K, Rosenfeld W, Schaeffer HA, Evans HE. Pharmacokinetic evaluation of cefoperazone in infants. Antimicrob Agents Chemother. 1985;28(1):149-50. https://doi.org/10.1128/AAC.28.1.149 | |
22. Rosenfeld WN, Evans HE, Batheja R, Jhaveri RC, Vohra K, Khan AJ. Pharmacokinetics of cefoperazone in full-term and premature neonates. Antimicrob Agents Chemother. 1983;23(6):866-9. https://doi.org/10.1128/AAC.23.6.866 | |
23. Philips JB, Braune K, Ravis W, Cassady G, Dillon H. Pharmacokinetics of cefoperazone in newborn infants. Pediatr Phamecology. 1984;4(3):193-7. | |
24. Toyonaga Y, Kurosu Y, Nakamura H, Sugita M, Takahashi T, Hori M. Basic and clinical study of sulbactam/cefbpera zone in pediatrics. Jpn J Antibiot. 1984;37(12):2457-77. | |
25. Foulds G, Stankewich JP, Marshall DC, O’Brien MM, Hayes SL, Weidler DJ, et al. Pharmacokinetics of sulbactam in humans. Antimicrob Agents Chemother. 1983 May;23(5):692-9. https://doi.org/10.1128/AAC.23.5.692 | |
26. Patel KB, Nicolau DP, Nightingale CH, Quintiliani R. Pharmacokinetics of cefotaxime in healthy volunteers and patients. Diagn Microbiol Infect Dis. 1995;22(1-2):49-55. https://doi.org/10.1016/0732-8893(95)00072-I | |
27. Esmieu F, Guibert J, Rosenkilde HC, Ho I, Le Go A. Pharmacokinetics of cefotaxime in normal human volunteers. 1980;83-92. https://doi.org/10.1093/jac/6.suppl_A.83 | |
28. Claforan [Package Insert]. Bridgewater (NJ): Sanofi-aventis U.S. LLC. 2011. | |
29. Kearns GL, Young RA. Pharmacokinetics of cefotaxime and desacetylcefotaxime in the young. Diagn Microbiol Infect Dis. 1995;22(1-2):97-104. https://doi.org/10.1016/0732-8893(95)00052-C | |
30. Steele RW, Eyre LB, Bradsher RW, Weinfeld RE, Patel IH, Spicehandler J. Pharmacokinetics of ceftriaxone in pediatric patients with meningitis. Antimicrob Agents Chemother. 1983;23(2):191-4. https://doi.org/10.1128/AAC.23.2.191 | |
31. Hayton WL, Stoeckel K. Age-associated changes in ceftriaxone pharmacokinetics. Clin Pharmacokinet. 1986;11(1):76-86. https://doi.org/10.2165/00003088-198611010-00005 | |
32. Martin E, Koup JR, Paravicini U, Stoeckel K. Pediatric pharmacology pharmacokinetics of ceftriaxone in neonates and infants with meningitis. J Pediatr. 1984;105:475. https://doi.org/10.1016/S0022-3476(84)80032-3 | |
33. Wildfeuer A, Rühle KH, Bölcskei PL, Springsklee M. Concentrations of ampicillin and sulbactam in serum and in various compartments of the respiratory tract of patients. Infection. 1994;22(2):149-51. https://doi.org/10.1007/BF01739027 | |
34. Tremoulet A, Le J, Poindexter B, Sullivan JE, Laughon M, Delmore P, et al. Characterization of the population pharmacokinetics of ampicillin in neonates using an opportunistic study design. Antimicrob Agents Chemother. 2014 Jun;58(6):3013-20. https://doi.org/10.1128/AAC.02374-13 | |
35. Le J, Greenberg RG, Yoo Y, Clark RH, Benjamin DK, Zimmerman KO, et al. Ampicillin dosing in premature infants for early-onset sepsis: exposure-driven efficacy, safety, and stewardship. J Perinatol Off J Calif Perinat Assoc. 2022 Jul;42(7):959-64. https://doi.org/10.1038/s41372-022-01344-2 | |
36. Peechakara BV, Basit H, Gupta M. Ampicillin. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2023 [cited 2023 Oct 12]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK519569/ | |
37. Kaplan JM, McCracken GH, Horton LJ, Thomas ML, Davis N. Pharmacologic studies in neonates given large dosages of ampicillin. J Pediatr. 1974 Apr;84(4):571-7. https://doi.org/10.1016/S0022-3476(74)80684-0 | |
38. Pacifici GM, Labatia J, Mulla H, Choonara I. Clinical pharmacokinetics of penicillins in the neonate: a review of the literature. Eur J Clin Pharmacol. 2009 Feb;65(2):191-8. https://doi.org/10.1007/s00228-008-0562-y | |
39. Mouton JW, van den Anker JN. Meropenem clinical pharmacokinetics. Clin Pharmacokinet. 1995 Apr;28(4):275-86. https://doi.org/10.2165/00003088-199528040-00002 | |
40. van den Anker JN, Pokorna P, Kinzig-Schippers M, Martinkova J, de Groot R, Drusano GL, et al. Meropenem pharmacokinetics in the newborn. Antimicrob Agents Chemother. 2009 Sep;53(9):3871-9. https://doi.org/10.1128/AAC.00351-09 | |
41. 050706s037lbl.pdf [Internet]. [cited 2023 Oct 12]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/050706s037lbl.pdf | |
42. Thønnings S, Jensen KS, Nielsen NB, Skjønnemand M, Hansen DS, Lange KHW, et al. Cefuroxime pharmacokinetics and pharmacodynamics for intravenous dosage regimens with 750 mg or 1500 mg doses in healthy young volunteers. J Med Microbiol. 2020;69(3):387-95. https://doi.org/10.1099/jmm.0.001138 | |
43. de Louvois J, Mulhall A, Hurley R. Cefuroxime in the treatment of neonates. Arch Dis Child. 1982 Jan;57(1):59-62. | |
44. Brogden RN, Heel RC, Speight TM, Avery GS. Cefuroxime: a review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs. 1979 Apr 1;17(4):233-66. https://doi.org/10.2165/00003495-197917040-00001 | |
45. Gertler R, Gruber M, Wiesner G, Grassin-Delyle S, Urien S, Tassani-Prell P, et al. Pharmacokinetics of cefuroxime in infants and neonates undergoing cardiac surgery. Br J Clin Pharmacol. 2018 Sep;84(9):2020-8. https://doi.org/10.1111/bcp.13632 | |
46. del Rio M de los A, Chrane DF, Shelton S, McCracken GH, Nelson JD. Pharmacokinetics of cefuroxime in infants and children with bacterial meningitis. Antimicrob Agents Chemother. 1982 Dec;22(6):990-4. https://doi.org/10.1128/AAC.22.6.990 | |
47. Jain A, Dhir S, Sandhu SK. Use of off-label drugs in the neonatal intensive care unit in India. Int J Basic Clin Pharmacol. 2023 Apr 27;12(3):481-8. https://doi.org/10.18203/2319-2003.ijbcp20231132 | |
48. Hsia Y, Lee BR, Versporten A, Yang Y, Bielicki J, Jackson C, et al. Use of the WHO access, watch, and reserve classification to define patterns of hospital antibiotic use (AWaRe): an analysis of paediatric survey data from 56 countries. Lancet Glob Health. 2019 Jul;7(7):e861-71. | |
49. Johnson J, Akinboyo IC, Schaffzin JK. Infection prevention in the neonatal intensive care unit. Clin Perinatol. 2021 Jun;48(2):413-29. https://doi.org/10.1016/j.clp.2021.03.011 | |
50. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacomet Syst Pharmacol. 2012 Sep;1(9):e6. https://doi.org/10.1038/psp.2012.4 | |
51. Ei E, Pj W. Population pharmacokinetics I: background, concepts, and models. Ann Pharmacother [Internet]. 2004 Oct [cited 2023 Aug 16];38(10):1702-6. Available from: https://pubmed.ncbi.nlm.nih.gov/15328391/ https://doi.org/10.1345/aph.1D374 | |
52. Korfmacher WA. Foundation review: principles and applications of LC-MS in new drug discovery. Drug Discov Today. 2005 Oct 15;10(20):1357-67. https://doi.org/10.1016/S1359-6446(05)03620-2 | |
53. Seger C, Salzmann L. After another decade: LC-MS/MS became routine in clinical diagnostics. Clin Biochem. 2020 Aug;82:2-11. https://doi.org/10.1016/j.clinbiochem.2020.03.004 | |
54. Rizk M, Zou L, Savic R, Dooley K. Importance of drug pharmacokinetics at the site of action. Clin Transl Sci. 2017 May;10(3):133-42. https://doi.org/10.1111/cts.12448 | |
55. Popowicz ND, O’Halloran SJ, Fitzgerald D, Lee YCG, Joyce DA. A rapid, LC-MS/MS assay for quantification of piperacillin and tazobactam in human plasma and pleural fluid; application to a clinical pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Apr 1;1081-1082:58-66. https://doi.org/10.1016/j.jchromb.2018.02.027 | |
56. Barco S, Risso FM, Bruschettini M, Bandettini R, Ramenghi LA, Tripodi G, et al. A validated LC-MS/MS method for the quantification of piperacillin/tazobactam on dried blood spot. Bioanalysis. 2014;6(21):2795-802. https://doi.org/10.4155/bio.14.205 | |
57. Barco S, Bandettini R, Maffia A, Tripodi G, Castagnola E, Cangemi G. Quantification of piperacillin, tazobactam, meropenem, ceftazidime, and linezolid in human plasma by liquid chromatography/tandem mass spectrometry. J Chemother. 2015 Nov 2;27(6):343-7. https://doi.org/10.1179/1973947814Y.0000000209 | |
58. Cohen-Wolkowiez M, White NR, Bridges A, Benjamin DK, Kashuba ADM. Development of a liquid chromatography-tandem mass spectrometry assay of six antimicrobials in plasma for pharmacokinetic studies in premature infants. J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Nov 15;879(30):3497-506. https://doi.org/10.1016/j.jchromb.2011.09.031 | |
59. Kan M, Wu YE, Li X, Dong YN, Du B, Guo ZX, et al. An adapted LC-MS/MS method for the determination of free plasma concentration of cefoperazone in children: Age-dependent protein binding. J Chromatogr B. 2020 May 1;1144:122081. https://doi.org/10.1016/j.jchromb.2020.122081 | |
60. Wu XJ, Huang X, Shi HY, Chen XK, Dong Q, Hao GX, et al. Determination of cefoperazone and sulbactam in serum by HPLC-MS/MS: An adapted method for therapeutic drug monitoring in children. Biomed Chromatogr BMC. 2018 Apr;32(4). https://doi.org/10.1002/bmc.4143 | |
61. Zhou Y, Zhang J, Guo B, Yu J, Shi Y, Wang M, et al. Liquid chromatography/tandem mass spectrometry assay for the simultaneous determination of cefoperazone and sulbactam in plasma and its application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Nov 15;878(30):3119-24. https://doi.org/10.1016/j.jchromb.2010.09.021 | |
62. Ohmori T, Suzuki A, Niwa T, Ushikoshi H, Shirai K, Yoshida S, et al. Simultaneous determination of eight β-lactam antibiotics in human serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2011 May 1;879(15):1038-42. https://doi.org/10.1016/j.jchromb.2011.03.001 | |
63. M10_Guideline_Step4_2022_0524.pdf [Internet]. [cited 2023 Oct 14]. Available from: https://database.ich.org/sites/default/files/M10_Guideline_Step4_2022_0524.pdf | |
64. Raveendran A, Gupta A, Lewis LE, Prabhu K, Moorkoth S. A comprehensive approach for detection of biotin deficiency from dried blood spot samples using liquid chromatography-mass spectrometry. Future Sci OA. 2024 Dec 31;10(1):2355038. https://doi.org/10.1080/20565623.2024.2355038 | |
65. AMC LCMS Guide_tcm18-240030.pdf [Internet]. [cited 2023 Oct 14]. Available from: https://www.rsc.org/images/AMC%20LCMS%20Guide_tcm18-240030.pdf |
Year
Month