Neurodegenerative diseases (NDs) have emerged as a major global health concern due to the perpetually aging population and unhealthy lifestyle. The most prevalent NDs, such as Alzheimer’s, Parkinson’s, and Migraine, have seen a great deal of research into dependable and efficient treatment approaches. However, the conventional approach to treating NDs is not very effective due to the presence of the blood–brain barrier (BBB). BBB is a major hurdle for the delivery of various therapeutic agents to the brain. Nasal drug delivery is a novel approach providing direct delivery of drugs to the brain through the olfactory and trigeminal neurons. The nasal route also guarantees quick absorption, avoiding first-pass metabolism and early action of therapeutic activity. The nasal cavity has excellent permeability and effective absorption, of drugs including peptides, proteins, and tiny molecular weight polar medicines, which are difficult to administer by anything other than injection or where a fast onset of action is necessary. Microspheres (MSs) are micron-sized particles that can be used in nose-to-brain delivery. The main justification for using MSs for nose-to-brain delivery is to increase the likelihood that the medication will be absorbed by enabling closer and longer contact between the medication and the mucosal barrier. MSs swell on contact with nasal mucosa and solidify into a gel to prevent its clearance from the nasal cavity. This article made a comprehensive review of the application of MS in nose-to-brain drug delivery as a unique approach to treating NDs.
Pandey S, Nainwal N, Negi T, Lohar AK, Kumar S, Kumar S, Bisht A. Nose-to-brain delivery of microcarrier in the treatment of neurodegenerative diseases. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.211124
1. Clementino AR, Marchi C, Pozzoli M, Bernini F, Zimetti F, Sonvico F. Anti-inflammatory properties of statin-loaded biodegradable lecithin/chitosan nanoparticles: a step toward nose-to-brain treatment of neurodegenerative diseases. Front Pharmacol. 2021;12:716380. https://doi.org/10.3389/fphar.2021.716380 | |
2. Rajan KB, Weuve J, Barnes LL, McAninch EA, Wilson RS, Evans DA. Population estimate of people with clinical Alzheimer's disease and mild cognitive impairment in the United States (2020-2060). Alzheimer's Dementia. 2021;17:1966-75. https://doi.org/10.1002/alz.12362 | |
3. Brown RC, Lockwood AH, Sonawane^ BR. Research I Mini-monoaraph neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect [Internet]. 2005;1250-6. Available from: http://dx.doi.org/iOnline https://doi.org/10.1289/ehp.7567 | |
4. Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E, et al. An overview of oxidative stress, neuroinflammation and neurodegenerative diseases. Int J Mol Sci. 2022;23(11):5938. https://doi.org/10.3390/ijms23115938 | |
5. Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5(11):863-73. 6. Haider MS, Mahato AK, Kotliarova A, Forster S, Böttcher B, Stahlhut P, et al. Biological activity in vitro, absorption, BBB penetration, and tolerability of nanoformulation of BT44:RET agonist with disease-modifying potential for the treatment of neurodegeneration. Biomacromolecules. 2023;24:4348-65. https://doi.org/10.1021/acs.biomac.2c00761 | |
7. Xu J, Yang X, Ji J, Gao Y, Qiu N, Xi Y, et al. RVG-functionalized reduction sensitive micelles for the effective accumulation of doxorubicin in brain. J Nanobiotechnology. 2021;19:251. https://doi.org/10.1186/s12951-021-00997-z | |
8. Volkman R, Offen D. Concise review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells. 2017;35(8):1867-80. https://doi.org/10.1002/stem.2651 | |
9. Bonferoni MC, Rassu G, Gavini E, Sorrenti M, Catenacci L, Giunchedi P. Nose-to-brain delivery of antioxidants as a potential tool for the therapy of neurological diseases. Pharmaceutics. 2020;12:1-21. https://doi.org/10.3390/pharmaceutics12121246 | |
10. Delche NA, Kheiri R, Nejad BG, Sheikhi M, Razavi MS, Rahimzadegan M, et al. Recent progress in the intranasal PLGA-based drug delivery for neurodegenerative diseases treatment. Iran J Basic Med Sci. 2023;26:1107-19. | |
11. Banks WA. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009;9:1-5. https://doi.org/10.1186/1471-2377-9-S1-S3 | |
12. Ale Y, Nainwal N. Progress and challenges in the diagnosis and treatment of brain cancer using nanotechnology. Mol Pharm. 2023;20(10):4893-921. https://doi.org/10.1021/acs.molpharmaceut.3c00554 | |
13. Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 2009;31(4): 497-511. https://doi.org/10.1007/s00281-009-0177-0 | |
14. Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi AR, Awan NR, et al. Neurodegenerative diseases and effective drug delivery: a review of challenges and novel therapeutics. J Control Release. 2021;330: 1152-67. https://doi.org/10.1016/j.jconrel.2020.11.021 | |
15. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1): 13-25. https://doi.org/10.1016/j.nbd.2009.07.030 | |
16. Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133-50. https://doi.org/10.1038/nrneurol.2017.188 | |
17. Pardridge WM. CSF, blood-brain barrier, and brain drug delivery. Expert Opin Drug Deliv. 2016;13(7):963-75. https://doi.org/10.1517/17425247.2016.1171315 | |
18. Zhang S, Gan L, Cao F, Wang H, Gong P, Ma C, et al. The barrier and interface mechanisms of the brain barrier, and brain drug delivery. Brain Res Bull. 2022;190:69-83. https://doi.org/10.1016/j.brainresbull.2022.09.017 | |
19. Nainwal N. Recent advances in transcranial focused ultrasound (FUS) triggered brain delivery. Curr Drug Targets. 2017;18:1225-32. https://doi.org/10.2174/1389450117666161222160025 | |
20. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1-13. https://doi.org/10.1016/j.nbd.2003.12.016 | |
21. Ghadiri M, Young PM, Traini D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics. 2019;11(13):113. https://doi.org/10.3390/pharmaceutics11030113 | |
22. Arora P Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today. 2002;7(18):967-75. https://doi.org/10.1016/S1359-6446(02)02452-2 | |
23. Illum L. Nasal drug delivery-Possibilities, problems and solutions. J Controld Release. 2003;87: 187-98. https://doi.org/10.1016/S0168-3659(02)00363-2 | |
24. Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2:215-22. https://doi.org/10.4103/2231-4040.90876 | |
25. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44-52. https://doi.org/10.1016/j.lfs.2017.12.025 | |
26. Passoni A, Favagrossa M, Colombo L, Bagnati R, Gobbi M, Diomede L, et al. Efficacy of cholesterol nose-to-brain delivery for brain targeting in Huntington's Disease. ACS Chem Neurosci. 2020;11:367-72. https://doi.org/10.1021/acschemneuro.9b00581 | |
27. Zlokovic BV. The blood-brain barrier in Health and chronic neurodegenerative disorders. Neuron. 2008;57: 178-201. https://doi.org/10.1016/j.neuron.2008.01.003 | |
28. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64:614-28. https://doi.org/10.1016/j.addr.2011.11.002 | |
29. Aranaz I, Paños I, Peniche C, Heras Á, Acosta N. Chitosan spray-dried microparticles for controlled delivery of venlafaxine hydrochloride. Molecules. 2017;22:1980. https://doi.org/10.3390/molecules22111980 | |
30. Vaka SRK, Murthy SN. Enhancement of nose-brain delivery of therapeutic agents for treating neurodegenerative diseases using peppermint oil. Pharmazie. 2010;65:690-2. | |
31. Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics. 2018 Aug 3;10(3):116. https://doi.org/10.3390/pharmaceutics10030116 | |
32. Claus S, Weiler C, Schiewe J, Friess W. How can we bring high drug doses to the lung? Eur J Pharm Biopharm. 2014;86:1-6. https://doi.org/10.1016/j.ejpb.2013.11.005 | |
33. Hanson LR, Frey WH. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008 Dec 10;9 Suppl 3(Suppl 3):S5. https://doi.org/10.1186/1471-2202-9-S3-S5 | |
34. Marcello E, Chiono V. Biomaterials-enhanced intranasal delivery of drugs as a direct route for brain targeting. Int J Mol Sci. 2023 Feb 8;24(4):3390. https://doi.org/10.3390/ijms24043390 | |
35. Ruby JJ, Pandey VP. Formulation and evaluation of olanzapine loaded chitosan nanoparticles for nose to brain targeting an in vitro and ex vivo toxicity study. J Appl Pharm Sci [Internet]. 2016 [cited 2024 Jul 23];6:034-40. https://doi.org/10.7324/JAPS.2016.60905 | |
36. Sahil K, Akanksha M, Premjeet S, Bilandi A, Kapoor B. Microsphere: a review. IJRPC [Internet]. 2011;4(4):1184-98. Available from: www.ijrpc.com | |
37. Wang Z, Xiong G, Tsang WC, Schätzlein AG, Uchegbu IF. Nose-to-brain delivery. J Pharmacol Exp Therap. 2019;370:593-601. https://doi.org/10.1124/jpet.119.258152 | |
38. Jeong SH, Jang JH, Lee YB. Drug delivery to the brain via the nasal route of administration: exploration of key targets and major consideration factors. J Pharm Investig. 2023;53:119-52. https://doi.org/10.1007/s40005-022-00589-5 | |
39. Fortuna A, Alves G, Serralheiro A, Sousa J, Falcão A. Intranasal delivery of systemic-acting drugs: small-molecules and biomacromolecules. Eur J Pharm Biopharm. 2014;88:8-27. https://doi.org/10.1016/j.ejpb.2014.03.004 | |
40. Patel MM, Patel BM. Crossing the blood-brain barrier: recent advances in drug delivery to the brain. CNS Drugs. 2017;31:109-33. https://doi.org/10.1007/s40263-016-0405-9 | |
41. Pereswetoff-Morath L, Morath M. Microspheres as nasal drug delivery systems 1. Adv Drug Deliv Rev. 1998;29:185-94. https://doi.org/10.1016/S0169-409X(97)00069-0 | |
42. Chen BK, Staff NP, Knight AM, Nesbitt JJ, Butler GW, Padley DJ, et al. A safety study on intrathecal delivery of autologous mesenchymal stromal cells in rabbits directly supporting Phase I human trials. Transfusion (Paris). 2015;55:1013-20. https://doi.org/10.1111/trf.12938 | |
43. Nagini KSS. Formulation and evaluation of anti migraine nasal microparticles [Master's thesis]. Bangalore, India: Rajiv Gandhi University of Health Sciences; 2013. | |
44. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev [Internet]. 2017;97:553-622. Available from: www.prv.org https://doi.org/10.1152/physrev.00034.2015 | |
45. Hansen JM, Charles A. Differences in treatment response between migraine with aura and migraine without aura: lessons from clinical practice and RCTs. J Headache Pain. 2019;20:96. https://doi.org/10.1186/s10194-019-1046-4 | |
46. Assadpour S, Shiran MR, Asadi P, Akhtari J, Sahebkar A. Harnessing intranasal delivery systems of sumatriptan for the treatment of migraine. Biomed Res Int. 2022;2022:3692065. https://doi.org/10.1155/2022/3692065 | |
47. Goadsby PJ. Migraine pathophysiology. J Head Face Pain. 2005;45:S14-25. https://doi.org/10.1111/j.1526-4610.2005.4501003.x | |
48. Abo El-Enin HA, Mostafa RE, Ahmed MF, Naguib IA, Abdelgawad MA, Ghoneim MM, et al. Assessment of nasal-brain-targeting efficiency of new developed mucoadhesive emulsomes encapsulating an anti-migraine drug for effective treatment of one of the major psychiatric disorders symptoms. Pharmaceutics. 2022;14:410. https://doi.org/10.3390/pharmaceutics14020410 | |
49. Thalakoti S, Patil VV, Damodaram S, Vause CV, Langford LE, Freeman SE, et al. Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache. 2007;47:1008-23. https://doi.org/10.1111/j.1526-4610.2007.00854.x | |
50. Jain SA, Chauk DS, Mahajan HS, Tekade AR, Gattani SG. Formulation and evaluation of nasal mucoadhesive microspheres of Sumatriptan succinate. J Microencapsul. 2009;26:711-21. https://doi.org/10.3109/02652040802685241 | |
51. Gavini E, Rassu G, Ferraro L, Beggiato S, Alhalaweh A, Velaga S, et al. Influence of polymeric microcarriers on the in vivo intranasal uptake of an anti-migraine drug for brain targeting. Eur J Pharm Biopharm. 2013;83:174-83. https://doi.org/10.1016/j.ejpb.2012.10.010 | |
52. Mistry R, Mandale D, Chauhan NN. Development, characterization and in-vitro/Ex-vivo evaluation of mucoadhesive microsphere of sumatriptan succinate for nasal delivery. Int J Pharm Res. 2021;13:430-5. https://doi.org/10.31838/ijpr/2021.13.03.060 | |
53. Abbas Z, Marihal S. Gellan gum-based mucoadhesive microspheres of almotriptan for nasal administration: formulation optimization using factorial design, characterization, and in vitro evaluation. J Pharm Bioallied Sci. 2014;6:267-77. https://doi.org/10.4103/0975-7406.142959 | |
54. Sharma M, Sharma N, Sharma A. Rizatriptan benzoate loaded natural polysaccharide based microspheres for nasal drug delivery system. Int J Appl Pharm. 2018;10:261-9. https://doi.org/10.22159/ijap.2018v10i5.27877 | |
55. Jadhav S, Mishra S. The spray-dried mucoadhesive microparticles of rizatriptan with chitosan and carbopol in migraine. Egypt Pharm J. 2022;21:293-301. https://doi.org/10.4103/epj.epj_37_22 | |
56. Liu WH, Song JL, Liu K, Chu DF, Li YX. Preparation and in vitro and in vivo release studies of huperzine a loaded microspheres for the treatment of Alzheimer's disease. J Control Release. 2005;107:417-27. https://doi.org/10.1016/j.jconrel.2005.03.025 | |
57. Matthews KA, Xu W, Gaglioti AH, Holt JB, Croft JB, Mack D, et al. Racial and ethnic estimates of Alzheimer's disease and related dementias in the United States (2015-2060) in adults aged ≥65 years. Alzheimer's Dementia. 2019;15:17-24. https://doi.org/10.1016/j.jalz.2018.06.3063 | |
58. Wen MM, El-Salamouni NS, El-Refaie WM, Hazzah HA, Ali MM, Tosi G, et al. Nanotechnology-based drug delivery systems for Alzheimer's disease management: technical, industrial, and clinical challenges. Journal of Controlled Release. 2017;245:95-107. https://doi.org/10.1016/j.jconrel.2016.11.025 | |
59. Lista S, Dubois B, Hampel H. Paths to Alzheimer's disease prevention: from modifiable risk factors to biomarker enrichment strategies. J Nutr Health Aging. 2015;19:154-63. https://doi.org/10.1007/s12603-014-0515-3 | |
60. Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease - Insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol. 2017;13:612-23. https://doi.org/10.1038/nrneurol.2017.111 | |
61. Perl DP. Neuropathology of Alzheimer's disease. Mount Sinai J Med. 2010;77:32-42. https://doi.org/10.1002/msj.20157 | |
62. Gao Y, Almalki WH, Afzal O, Panda SK, Kazmi I, Alrobaian M, et al. Systematic development of lectin conjugated microspheres for nose-to-brain delivery of rivastigmine for the treatment of Alzheimer's disease. Biomed Pharmacother. 2021;141:111829. https://doi.org/10.1016/j.biopha.2021.111829 | |
63. Tiozzo Fasiolo L, Manniello MD, Banella S, Napoli L, Bortolotti F, Quarta E, et al. Flurbiprofen sodium microparticles and soft pellets for nose-to-brain delivery: serum and brain levels in rats after nasal insufflation. Int J Pharm. 2021;605:120827. https://doi.org/10.1016/j.ijpharm.2021.120827 | |
64. Shah BM, Misra M, Shishoo CJ, Padh H. Nose to brain microemulsion-based drug delivery system of rivastigmine: formulation and ex-vivo characterization. Drug Deliv. 2015;22:918-30. https://doi.org/10.3109/10717544.2013.878857 | |
65. Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018;281: 139-77. https://doi.org/10.1016/j.jconrel.2018.05.011 | |
66. Kalia LV, Lang AE. Parkinson's disease. Lancet. 2015;386:896-912. https://doi.org/10.1016/S0140-6736(14)61393-3 | |
67. Braak H, Braak E. Pathoanatomy of Parkinson's disease. J Neurol. 2000;247:3-10. https://doi.org/10.1007/PL00007758 | |
68. Rinaldi F, Seguella L, Gigli S, Hanieh PN, Del Favero E, Cantù L, et al. inPentasomes: an innovative nose-to-brain pentamidine delivery blunts MPTP parkinsonism in mice. J Control Release. 2019;294:17-26. https://doi.org/10.1016/j.jconrel.2018.12.007 | |
69. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, MY Lee V, et al. Short communication aggregation of a-synuclein in lewy bodies of sporadic Parkinson's disease and dementia with lewy bodies. Am JPathol. 1998;152:879-84. | |
70. Dawson TM, Dawson VL. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Investig. 2003;111:145-51. https://doi.org/10.1172/JCI200317575 | |
71. Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet. 2006;7(4):306-18. https://doi.org/10.1038/nrg1831 | |
72. Md S, Bhattmisra SK, Zeeshan F, Shahzad N, Mujtaba MA, Srikanth Meka V, et al. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol. 2018;43:295-310. https://doi.org/10.1016/j.jddst.2017.09.022 | |
73. Dimiou S, Lopes RM, Kubajewska I, Mellor RD, Schlosser CS, Shet MS, et al. Particulate levodopa nose-to-brain delivery targets dopamine to the brain with no plasma exposure. Int J Pharm. 2022;618:121658. https://doi.org/10.1016/j.ijpharm.2022.121658 | |
74. Hussein NR. Bioadhesive microparticles and liposomes of anti parkinsons drugs for nasal delivery [Doctoral dissertation]. Preston, UK: University of Central Lancashire; 2014. | |
75. Hussein N, Omer H, Ismael A, Albed Alhnan M, Elhissi A, Ahmed W. Spray-dried alginate microparticles for potential intranasal delivery of ropinirole hydrochloride: development, characterization and histopathological evaluation. Pharm Dev Technol. 2020;25:290-9. https://doi.org/10.1080/10837450.2019.1567762 | |
76. Mantry S, Balaji A. Formulation design and characterization of ropinirole hydrochoride microsphere for intranasal delivery. Asian J Pharm Clin Res. 2017;10:195-203. https://doi.org/10.22159/ajpcr.2017.v10i7.18475 | |
77. Jain AK, Mishra K, Thareja S. In Silico docking of anti cancerous drugs with β-cyclodextrin polymer as a prominent approach to improve the bioavailability. Anticancer Agents Med Chem [Internet]. 2020 [cited 2024 Aug 30];21:1275-83. https://doi.org/10.2174/1871520620666201013145725 | |
78. Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules. 2020;25(20):4613. https://doi.org/10.3390/molecules25204613 | |
79. Rassu G, Soddu E, Cossu M, Brundu A, Cerri G, Marchetti N, et al. Solid microparticles based on chitosan or methyl-β-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. J Control Release. 2015;201:68-77. https://doi.org/10.1016/j.jconrel.2015.01.025 | |
80. Manta K, Papakyriakopoulou P, Nikolidaki A, Balafas E, Kostomitsopoulos N, Banella S, et al. Comparative serum and brain pharmacokinetics of quercetin after oral and nasal administration to rats as lyophilized complexes with β-cyclodextrin derivatives and their blends with Mannitol/Lecithin microparticles. Pharmaceutics. 2023;15:2036. https://doi.org/10.3390/pharmaceutics15082036 | |
81. Nodilo LN, Ugrina I, Špoljari? D, Klari? DA, Brala CJ, Perkuši? M, et al. A dry powder platform for nose-to-brain delivery of dexamethasone: formulation development and nasal deposition studies. Pharmaceutics. 2021;13:795. https://doi.org/10.3390/pharmaceutics13060795 | |
82. Potdar MB, Jain NK, Rathod SS, Patil KD. A Study on the nose to brain drug delivery system. Int J Pharm Sci Res [Internet]. 2022;13:569. |
Year
Month