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INTRODUCTION
Progressive illnesses known as neurodegenerative 

diseases (NDs) weaken and eventually kill neurons in 
the central nervous system (CNS). Disruption of critical 
neurodevelopmental processes results in neurodevelopmental 
disorders like autism spectrum disorder, attention-deficit/
hyperactivity disorder, and intellectual impairment. The blood–
cerebrospinal fluid barrier and the blood–brain barrier (BBB), 
which block medications from entering the CNS from the 
systemic circulation, present challenges to the management 
of illnesses related to neurodevelopment and NDs, which 
collectively impact 120 million people globally [1]. The 
nose-to-brain channel can bypass the BBB. It increases the 

bioavailability of medications taken orally promising to 
better the management of CNS disorders [2]. Nervous system 
dysfunction is the end outcome of neurodegenerative illnesses, 
which are characterized by the progressive and slow death of 
neural cells [3]. Individual NDs  have different aetiologies and 
manifest in different brain areas. They may act on comparable 
cellular and molecular pathways. There is still a great need for 
effective medicines with therapeutic benefits. Although attempts 
to discover suitable therapeutics for neurodegenerative illnesses 
are growing, there are still numerous obstacles to overcome [4]. 
The majority of therapies aim to delay the course of the illness but 
do not result in a full recovery. Many limiting constraints, such 
as BBB prevent many active pharmaceutical agents from having 
the intended therapeutic impact. Therefore, for the successful 
treatment of NDs, it is imperative to guarantee the delivery of 
active molecules to the brain securely and effectively [5]. The 
use of polymers in nose-to-brain microcarrier delivery systems 
represents an innovative approach to neurotherapeutics. It helps 
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ABSTRACT
Neurodegenerative diseases (NDs) have emerged as a major global health concern due to the perpetually aging 
population and unhealthy lifestyle. The most prevalent NDs, such as Alzheimer’s, Parkinson’s, and Migraine, have 
seen a great deal of research into dependable and efficient treatment approaches. However, the conventional approach 
to treating NDs is not very effective due to the presence of the blood–brain barrier (BBB). BBB is a major hurdle for the 
delivery of various therapeutic agents to the brain. Nasal drug delivery is a novel approach providing direct delivery 
of drugs to the brain through the olfactory and trigeminal neurons. The nasal route also guarantees quick absorption, 
avoiding first-pass metabolism and early action of therapeutic activity. The nasal cavity has excellent permeability 
and effective absorption, of drugs including peptides, proteins, and tiny molecular weight polar medicines, which 
are difficult to administer by anything other than injection or where a fast onset of action is necessary. Microspheres 
(MSs) are micron-sized particles that can be used in nose-to-brain delivery. The main justification for using MSs for 
nose-to-brain delivery is to increase the likelihood that the medication will be absorbed by enabling closer and longer 
contact between the medication and the mucosal barrier. MSs swell on contact with nasal mucosa and solidify into a 
gel to prevent its clearance from the nasal cavity. This article made a comprehensive review of the application of MS 
in nose-to-brain drug delivery as a unique approach to treating NDs.Online F
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NOSE-TO-BRAIN DELIVERY
One of the many benefits of administering drugs 

intranasally is that they can enter the brain directly through the 
olfactory and trigeminal neurons, avoiding the BBB [21]. Due 
to its huge surface area (150 cm2) and high blood vascularity, the 
nasal cavity can be used to administer drugs because it allows 
for improved drug absorption through the nasal epithelium 
[22,23]. Since the medication enters the systemic circulation 
by the nose rather than the portal vein, it is especially well-
suited for medicines that experience considerable first-pass 
hepatic inactivation [24] Transport via the trigeminal and 
olfactory nerve branches that supply the respiratory and 
olfactory epithelia, respectively, is the mechanism of nose-
to-brain delivery. Intranasal (IN) routes are divided into 
extracellular and intracellular. The olfactory sensory cells 
initiate the intracellular route by engulfing the medication, 
which is subsequently transported to their synaptic clefts in the 
olfactory bulb by axonal transport. Olfactory neurons replicate 
this transynaptic process, which spreads the drug to other parts 
of the brain. Under the extracellular pathway, medications enter 
the cerebral spinal fluid directly after first traversing the nasal 
epithelium’s paracellular space and then the perineural space, 
leading to the subarachnoid space of the brain [25].

Factor affecting nose-to-brain delivery
The nasal mucosa has excellent permeability and 

effective absorption that make, the nasal cavity an ideal site for 
administering biopharmaceuticals and small-molecule medicines 
[26]. Therapeutic drugs may be administered noninvasively by 
IN administration, which circumvents the BBB to give immediate 
access to the CNS [27]. A fantastic possibility for quick and 
patient-compliant medication administration is presented by 
nose-to-brain delivery [28]. As previously shown, there are solid 
grounds to believe that pharmacological delivery to the CNS 
would be more likely if the olfactory mucosa were the target 
[29]. However, there are still certain obstacles to be addressed 
in terms of the drug’s application, such as the olfactory area, and 
particularly the olfactory cleft, which is well concealed within 
the nasal cavity. Also, formulations must have excellent adhesion 
to stay on the mucosa since the olfactory cleft is located at the 
top of the nasal cavity [30]. The poor membrane permeability 
where the epithelial cells are positioned in the nasal mucosa is 
the main barrier to the absorption of hydrophilic molecules and 
macromolecules. Tight junctions establish a strong connection 
between cells and are the main regulators of paracellular 
transport [31]. Only potent medications may be administered 
using this route due to the dosage volume limitations for 
liquids (100–250 µl) and powders (20–50 mg, depending on 
the powder’s bulk density) [32]. Potent medications that are 
degraded by the enzymes in the nasal cavity must be shielded 
from deterioration. Nasal formulations must not irritate the nasal 
cavity. Furthermore, the administration of medications via the 
nose-to-brain pathway requires a nasal administration device 
[33]. Novel IN drug delivery methods have been developed to 
boost the systemic bioavailability of medications taken via the 
IN route. Nano- and micro-technologies have become available 
to improve medication access in brain tissue. Natural or artificial 

to overcome some of the major limitations of conventional 
drug delivery methods, offering new possibilities for treating a 
wide range of neurological conditions. Their ability to enhance 
drug targeting, stability, and controlled release, combined 
with their capacity to bypass the BBB, positions them as 
key players in the advancement of effective and innovative 
treatments for neurological disorders. Polymers offer immense 
versatility in the design of microcarriers, allowing them to be 
customized for specific therapeutic applications. Polymers can 
be functionalized with various ligands or targeting molecules 
that enhance their ability to reach and treat the affected brain 
regions. Polymeric microcarriers are generally biocompatible 
and can be designed to minimize toxicity. By selecting 
appropriate polymer materials and optimizing their properties, 
these microcarriers can safely deliver drugs without causing 
adverse reactions or triggering immune responses, making 
them suitable for long-term therapeutic use [6,7]. While various 
NDs—such as amyotrophic lateral sclerosis, multiple system 
atrophy, Alzheimer’s disease (AD), Parkinson’s disease (PD), 
Huntington’s disease, and others—occur in different brain 
regions and have distinct aetiologies, accumulating evidence 
suggests that they share cellular and molecular mechanism 
[8,9].

BARRIER TO BRAIN
Substances can penetrate the BBB by adsorptive 

endocytosis, saturable transporters, extracellular pathways, 
and transmembrane diffusion [10]. The key mechanisms that 
are particularly significant in drug delivery are transmembrane 
diffusion and transporters. Transmembrane diffusion is non-
saturable and is dependent upon the substance’s physicochemical 
properties as determined by the first analysis [11]. The blood–
cerebrospinal fluid barrier, and the BBB, The cerebrospinal 
fluid-brain barrier (CBB) are the three barriers that develop 
between the cerebral vasculature and the brain parenchyma 
[12,13]. Cerebrospinal fluid (CSF) can exchange molecules 
with the brain parenchyma’s interstitial fluid and precisely 
control the entry of blood-borne molecules into the CSF [14]. 
The BBB plays a major role in regulating biological substances 
required for the brain’s metabolic activity and neuronal function 
[15]. The blood vessels that vascularize the CNS have a unique 
property called the BBB that allows them to precisely regulate 
the passage of ions, chemicals, and cells between the blood and 
the brain. Appropriate neuronal activity and protection from 
toxins and pathogens are made possible by the exact regulation 
of CNS homeostasis. Changes in these barrier qualities have a 
substantial impact on pathology and the development of several 
neurological disorders [16]. The pia mater and astrocytes that 
make up the CBB show signs of selective permeabilization and 
aid in the passage of chemicals from the CSF into the brain 
parenchyma [17,18]. The breakdown of the BBB can be caused 
by abnormal angiogenesis, vascular regression, hypoperfusion 
of the brain, rupturing of tight junctions, changes in the way 
that chemicals are transported from the blood to the brain, 
and inflammatory reactions [19]. These elements have the 
potential to initiate or exacerbate a “vicious circle” of medical 
conditions that eventually cause synapses and neurons to die 
and malfunction [20].
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materials make up micro- and nanoparticulate carriers, which 
interact molecularly with biological structures to change the 
way NDs are treated [34]. Several studies have looked at the 
application of microspheres (MSs) to treat NDs via the nose-to-
brain route [35].

Microspheres in nose-to-brain delivery
MSs are microscopic solid particles that are spherical 

and have dimensions between 1 and 1,000 micrometers (μm) 
[36]. Therapeutic molecules are dissolved, encapsulated, or 
entrapped into the polymeric matrix of MS. A variety of natural, 
semi-synthetic, and synthetic materials can be used to produce 
MSs [37]. Starch, dextran, albumin, and hyaluronic acid are the 
building blocks to create the MSs [38]. Despite being water-
insoluble, every kind of MS that has been employed for nasal 
delivery absorbs water into its matrix, causing the spheres to 
inflate and form gel. This gives the formulation more time 
to stay in the nasal cavity, improves drug-mucosa contact, 
and increases drug concentration at the deposition site. MSs 
produce sustained drug release which may help achieve the 
desired concentration of the drug at the absorption site [39]. 
Figure 1 depicts the delivery of drug-loaded MSs from the 
nose to the brain. In several animal models, the bioavailability 
of various peptides and proteins was enhanced using MSs. 
Additionally, the delivery of some low-molecular-weight 
medications in microsphere formulations has been beneficial 
[40]. MSs have a significantly longer residence duration in the 

cavity than solutions. They can also improve the absorption of 
large hydrophilic medicines. Additionally, MSs directly affect 
the mucosa, causing the epithelial cells’ tight connections to 
open. Given their recurrent use, starch, and dextran MSs are 
considered safe dose forms [41]. Animal models are chosen 
based on anatomical similarities to the human nasal cavity, 
ease of handling, and established protocols for neurological 
studies. The most frequently used animals include rats, mice, 
rabbits, pigs, dogs, and monkeys. These animal models offer 
unique advantages, helping researchers to optimize nasal drug 
delivery systems and assess their potential for effective nose-
to-brain transport. Sheep are one of the favored animal models 
for pharmacokinetic (PK) and formulation research in nasal 
medication administration; therefore, in vivo experiments were 
conducted on them [42].

MSs in the nose-to-brain delivery for migraine
Migraine, an episodic headache condition, is 

characterized by recurring episodes of intense, usually 
unilateral, undulating pain that are typically accompanied 
by nausea, vomiting, photophobia, and phonophobia [43]. 
Dysfunction of the brain’s sensory processing that is likely 
cyclical and impacted by both heredity and environment gives 
rise to migraine attacks [44]. Migraine is the second most 
typical reason for impairment in young and middle-aged people 
[45,46]. One of the main indicators of several psychiatric and 
mental illnesses, such as anxiety and sadness, is migraine [47]. 

Figure 1. Drug-loaded MSs delivered from the nose to the brain. 
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Neurogenic inflammation of the trigeminal nerve in the cranial 
dura mater is the cause of migraine headaches. Trigeminal 
neurons may be activated and sensitized by these central 
stimulations [48]. For the treatment of acute migraines, the IN 
route is known to provide a high brain drug concentration and a 
quick beginning of action as given in Table 1 [49].

MSs in nose to brain delivery for Alzheimer
AD is a major global cause of dementia or memory 

loss that primarily affects older folks. The hallmark of AD is 
the progressive deterioration and loss of brain cells, especially 
neurons, which results in a reduction in cognitive ability [56]. 
AD symptoms progressively get worse over time, making 
it harder for a person to do everyday tasks and ultimately 
resulting in a serious deterioration in cognitive and functional 
abilities.  However, with today’s lifestyle, it appears to affect 
people at a younger age, a condition called as younger-stage AD 
[57]. Most of the FDA-approved pharmaceuticals for treating 
AD symptomatology are sold as traditional oral medications 
[58,59]. AD is linked to the buildup of aberrant protein deposits 
in the brain, such as tau tangles and beta-amyloid plaques, 
which obstruct neuronal transmission and promote cell death 
[60]. Gene therapy, stem cell treatment, and innovative drug 
delivery methods like nose-to-brain distribution using MSs are 
examples of emerging techniques meant to increase therapeutic 
efficacy and more precisely target certain brain areas [61]. Table 
2 highlights some research based on nose-to-brain delivery of 
MS for the treatment of Alzheimer’s.

MSs in nose-to-brain delivery for Parkinsonism
PD is a prevalent and intricate neurological condition 

[66]. Changes in the neuronal cytoskeleton that occur in a small 
number of vulnerable kinds of nerve cells cause this illness. 
Lewy bodies and Lewy neurites are eventually produced by 
damaged neurons in their perikaryal and neuronal processes 
have an impact on mobility [67]. It happens gradually, with 

symptoms that frequently begin mildly and get worse with time. 
Among the main signs and symptoms of PD are involuntary 
shaking, which often begins in one hand, slowness of motion, 
which makes basic things challenging, Stiffness in the trunk or 
limbs, which can hurt and restrict range of motion, decreased 
coordination and balance, which raises the possibility of falls. 
Cognitive impairment, emotional issues, and alterations in 
speech, writing, and facial expressions are possible additional 
symptoms [68]. The substantia nigra, a part of the brain, is where 
dopamine-producing neurons are lost in PD [69]. Levodopa 
and other medications raise dopamine levels in the brain, 
which helps with movement issues [70]. With the goal of better 
management and, perhaps, a cure, research on novel medicines 
and the underlying processes of PD is still ongoing [71,72]. The 
role of MS in the treatment of PD has been discussed in Table 3.

Miscellaneous application of MSs for nose-to-brain
Solid microparticles based on chitosan or methyl-β-

cyclodextrin were used to increase the nose-to-brain transport 
of deferoxamine mesylate (DFO), a neuroprotector that is 
unable to pass through the BBB and has detrimental peripheral 
effects. Beta-cyclodextrin is a cyclic oligosaccharide with 
a hydrophobic interior and a hydrophilic exterior. This 
amphiphilic structure allows it to form inclusion complexes 
with various drugs, improving their solubility and stability. 
In nose-to-brain delivery, the most crucial feature of beta-
cyclodextrin is its ability to enhance drug bioavailability. By 
encapsulating lipophilic drugs within its hydrophobic core, beta-
cyclodextrin can protect the drugs from enzymatic degradation 
in the nasal cavity, thereby increasing the amount of drug 
that reaches the brain. Additionally, its hydrophilic exterior 
ensures good compatibility with the nasal mucosa, facilitating 
efficient drug transport across the nasal epithelium. Chitosan 
is a natural polysaccharide known for its biocompatibility and 
mucoadhesive properties. The primary chemical feature that 
makes chitosan crucial for nose-to-brain delivery is its positive 

Table 1. MSs in nose to brain delivery for Migraine. 

Drug Polymer Method of 
preparation

Key findings References

Sumatriptan succinate HPMC-K4M, and K15M Spray drying The mucoadhesion of HPMC-based MS was sufficient, 
without any negative effects on the nasal mucosa.

[50]

Zolmitriptan Chitosan glutamate (CG), 
HPMC

Spray drying Within an hour, CG microparticles demonstrated the 
maximum zolmitriptan effectiveness.

[51]

Sumatriptan succinate Polylactic-co-glycolic acid 
(PLGA)

Spray drying Particle size and entrapment efficiency were found to 
be 12–30 µm and 94%–100% respectively.

[52]

Almo triptan Gellan gum Water-in-oil (w/o) 
emulsification cross-
linking technique

Spherical and smooth microspheres with drug 
entrapment efficiency of 71.65% ± 1.09%–91.65% ± 
1.13%.

[53]

Rizatriptan benzoate Polysaccharide (Trigonella 
Foenum-Graecum)

Emulsification Particle size and encapsulation efficiency were found 
to be 40.82 + 12 µm–62.48 + 0.41 µm &60.7% + 
0.2%–79.22% + 0.2% respectively.

[54]

Rizatriptan 
mucoadhesive 
microparticle

Carbopol, chitosan Spray drying Drug permeability was found to be 76.53–91.09 
and 78.49%–92.25 % for chitosan and Carbopol 
respectively.

[55]
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charge, which arises from its amino groups. This positive 
charge allows chitosan to interact with the negatively charged 
cell membranes in the nasal mucosa, enhancing adhesion and 
prolonging the residence time of the drug at the absorption 
site. Furthermore, chitosan can transiently open tight junctions 
between epithelial cells, promoting paracellular transport 
and improving drug permeation across the nasal barrier. 
This property is particularly valuable for delivering larger 
molecules, such as peptides and proteins, directly to the brain 
[77,78]. Solid microparticle formulations as nasal drug delivery 
vehicles could augment the transfer of DFO from the nose to 
the brain. Spray drying was used to create spherical chitosan 
chloride microparticles loaded with DFO DCH and methyl-
βcyclodextrin microparticles loaded with DFO MCD. The 
aerodynamic diameters of microparticles were approximately 
1.1 μm and the volume-surface diameters varied from 1.77 ± 
0.06 μm DCH to 3.47 ± 0.05 μm MCD. As demonstrated by 

ex vivo permeation investigations across pig nasal mucosa, 
MCD improved DFO permeability across lipophilic membranes 
in comparison to DCH. Additionally, MCD may increase 
DFO permeability via PC 12 cell monolayers (which are like 
neurons). However, unlike DCH, it was unable to alter the 
DFO permeation pattern through Caco-2 monolayers (which 
are similar to epithelium). When 200 μg of DFO encapsulated 
in microparticles was administered nasally to rats, the 
microparticles’ absorption into the CSF was observed. Thirty 
minutes after insufflation, peak values ranged from 3.83 ± 0.68 
μg/ml DCH to 14.37 ± 1.69 μg/ml MCD. DCH and MCD nasal 
delivery produced DFO systemic absolute bio availabilities 
of 6% and 15%, respectively [79].Quercetin (Que), a potent 
antioxidant, has limited absorption upon oral treatment and 
poor solubility restricts its beneficial effects. It has been 
discovered that the physicochemical characteristics of Que 
were improved by complexation with two distinct cyclodextrin 

Table 2. MSs in the nose to brain delivery for Alzheimer. 

Drug Polymer Method of 
preparation

Key findings References

Rivastigmine Ethylcellulose, chitosan Solvent emulsion 
method

Particle size, entrapment efficiency, and drug release properties 
were found to be 19.9µm, 77.8% and 80% in 7.3 hours. 4.4% 
respectively.

[62]

Flurbiprofen sodium 
(FS)

- Spray drying For pellets and microparticles, the absolute bioavailability was 
58% and 33%, respectively. FS administration as nose powder 
is worth it since the Direct Transport Percentage Index showed 
that more than 60% of the intranasal dosage reached the brain.

[63]

Rivastigmine 
(microemulsion, 
mucoadhesive 
microemulsions)

Cetyl trimethyl 
ammonium bromide, and 
chitosan

Titration method Zeta potential, drug content, and globule size range from 
2.73 Mv–6.52 mV, 53.8 nm–55.4 nm, and 98.59%–99.43%, 
respectively.

[64]

Curcumin 
(microemulsion)

Deacetylated gellan gum 
(DGG), Capryol 90

Emulsification In comparison to an IV solution, the AUC increases three 
times following IN delivery.Compared to IV solution, brain 
targeting index was found to be significantly greater at 6.50 in 
IN delivery.

[65]

Table 3. MSs in the nose to brain delivery for Parkinsonism. 

Drug Polymer Method of 
preparation

Key findings References

Levodopa(microparticulate) n N-palmitoyl-N-
monomethyl-N, 
N-dimethyl-N, N, 
N-trimethyl-6-O-
glycolchitosan (GCPQ)

spray-drying DA (Dopamine) concentrations in the brain increased 
with time, reaching far greater levels than those found 
in a crystalline L-DOPA dispersion. Plasma L-DOPA 
availability increased when GCPQ-LDOPA was 
administered nasally.

[73]

Ropinirole hydrochloride 
(RH)

Chitosan Spray drying method Entrapment efficacy of RH is in the range of 91%–99%. 
A drug-polymer ratio of 90:10 (w/w) showed prolonged 
drug release with an amorphous form

[74]

Ropinirole hydrochloride 
(microparticle)

Sodium Alginate Spray drying method Spray-dried particle size and encapsulation efficiency 
within the range of 2.5–4.37µm & 101%–106% 
respectively.

[75]

Ropinirole hydrochoride Chitosan, Carbopol 974P 
and guar gum

Emulsion solvent 
evaporation technique

The in-vitro drug release studies were performed for 
F1-F21 in 250 ml phosphate buffer at pH6.6 for 12 hours. 
F21 demonstrated 81.2% drug release over 12 hours, 
while F15 demonstrated 82.7% ± 0.23%.

[76]Online F
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