Laser-assisted dentistry, safety, and cross-infection control: A narrative review

Livia Barenghi Alberto Barenghi Andrea Scribante Matteo Pellegrini Francesco Spadari   

Open Access   

Published:  Dec 12, 2024

DOI: 10.7324/JAPS.2025.210316
Abstract

The rapidly expanding use of laser-assisted care in dentistry requires exploring all aspects of safety. The acronym laser stands for “light amplification by stimulated emission of radiation”. The laser produces a very narrow beam of electromagnetic radiation (light) and has been exploited for some innovative dental care technologies. So far, regulatory framework and laser safety issues mainly concern the prevention of some tissue damages (eye, non-target oral tissue, and non-target skin), and laser hazards (chemical, fire, and electric shock), but minimal on cross-infection prevention and control. Concerning infection prevention, it is important to remember that the outlook for infectious risk is alarming, dental patients are potentially infectious, and as with any other innovative oral-dental health technology, laser-assisted dentistry cannot claim to be free of healthcare-associated infections. The narrative review focuses on cross-infection prevention of laser-assisted dental care and includes 158 references. The search was adopted using some essential keywords from documents in databases (PubMed, Scopus) from 2010 to 2023. This study focuses on 10 important areas in results and discussion: a) international guidelines and recommendations; b) pre-procedural mouthwash before LD; c) indoor air quality during laser dentistry and recommendations for indoor air quality in dentistry; d) use of personal protective equipment; e) hand hygiene; g) reconditioning of laser safety eyewear; f) standards for the reconditioning of laser accessories; g) clinical contact surface disinfection and the use of transparent barriers; h) limitations; and i) perspectives. To ensure safety and cross-infection prevention, the study highlights the need for sound research and updated international guidelines, and better information for users with detailed recommendations for dental practitioners.


Keyword:     Dentistry safety laser indoor air particulate matter safety glasses


Citation:

Barenghi L, Barenghi A, Scribante A, Pellegrini M, Spadari F. Laser-assisted dentistry, safety and cross-infection control: A narrative review. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.210316

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Coluzzi DJ, Parker SPA. Lasers in dentistry-current concepts. 2nd ed. Cham, Switzerland: Springer Nature; 2023. https://doi.org/10.1007/978-3-031-43338-2

2. Arnabat-Dominguez J, Del Vecchio A, Todea C, Grzech-Le?niak K, Vescovi P, Romeo U, et al. Laser dentistry in daily practice during the COVID-19 pandemic: benefits, risks, and recommendations for safe treatments. Adv Clin Exp Med. 2021;30:119-25. https://doi.org/10.17219/acem/130598

3. Neves Lago AD, Cordon R, Machado Gonçalves L, Sousa Menezes CF, Silva Furtado G, Nogueira Rodrigues FC, et al. How to use laser safely in times of COVID-19: systematic review. Spec Care Dentist. 2021;41:463-73. https://doi.org/10.1111/scd.12593

4. Malekzadeh M, Zare H. Laser in dentistry during COVID-19 pandemic: a brief review of literature. Avicenna J Dent Res. 2022;14:96-101. https://doi.org/10.34172/ajdr.2022.16

5. Grzech-Lesniak K, Matys J. The effect of Er:YAG lasers on the reduction of aerosol formation for dental workers. Materials. 2021;14:2857. https://doi.org/10.3390/ma14112857

6. Kumar NK, Thomas PM, Sowmya KR, Yavagal C, Hariprasad L, Preetham HS. Laser: a boon during the COVID pandemic in aerosol mitigation-a systematic review. J Indian Assoc Public Health Dent. 2023;21:4-10. https://doi.org/10.4103/jiaphd.jiaphd_30_22

7. Hamedani S, Farshidfar N, Ziaei A. Application of high-power lasers in dentistry during COVID-19 outbreak: an equivocal issue. Int J Med Rev. 2022;9:283-7.

8. Mortazavi H, Baharvand M, Mokhber-Dezfuli M, Rostami N, Doost-Hoseini M, Alavi O, et al. Lasers in dentistry: is it really safe? Dent Hypotheses. 2016;7:123-7. https://doi.org/10.4103/2155-8213.195967

9. Barenghi A, Barenghi L, Pulicari F, Pellegrini M, Di Blasio A, Spadari F. Problems and perspectives on accelerated orthodontic tooth movement by low-level laser photobiomodulation. Dent Res Oral Health. 2023;6:21-4. https://doi.org/10.26502/droh.0058

10. Australian Dental Association (ADA). Guidelines for the use of lasers in dentistry. Sydney, Australia: ADA [cited 2024 Jun 15]. Available from: https://www.ada.org.au/ADA-guidelines-lasers-in-dentistry-Doc.aspx

11. Binrayes A. An update on the use of lasers in prosthodontics. Cureus. 2024;16:e57282. https://doi.org/10.7759/cureus.57282

12. Pardo A, Butera A, Giordano A, Gallo S, Pascadopoli M, Scribante A, et al. Photodynamic therapy in non-surgical treatment of periodontitis: a systematic review and meta-analysis. Appl Sci. 2023;13:1086. https://doi.org/10.3390/app13021086

13. Mills MP, Rosen PS, Chambrone L, Greenwell H, Kao RT, Klokkevold PR, et al. American Academy of Periodontology best evidence consensus statement on the efficacy of laser therapy used alone or as an adjunct to non-surgical and surgical treatment of periodontitis and peri-implant diseases. J Periodontol. 2018;89(7):737-42. https://doi.org/10.1002/JPER.17-0356

14. Patel S, Awan KH, Freitas CMT, Bhandi S, Licari FW, Patil S. Diode laser targeting red-complex bacteria in periodontitis: a systematic review. Eur Rev Med Pharmacol Sci. 2023;27:11806-16.

15. Mulder-van Staden S, Holmes H, Hille J. In vivo investigation of diode laser application on red complex bacteria in non-surgical periodontal therapy: a split-mouth randomised control trial. Sci Rep. 2020;10:21311. https://doi.org/10.1038/s41598-020-78435-7

16. Theodoro LH, Chiérici Marcantonio RA, Wainwright M, Garcia VG. LASER in periodontal treatment: is it an effective treatment or science fiction? Braz Oral Res. 2021;35:e099. https://doi.org/10.1590/1807-3107bor-2021.vol35.0099

17. Pearson S. The effectiveness of laser application in stage ¾ periodontal disease. Br Dent J Team. 2023;10:10-12. https://doi.org/10.1038/s41407-023-1863-9

18. Clem DS, Heard R. Treatment of periodontal diseases with laser: assessing the evidence. Compend Contin Educ Dent. 2021;42(1):44-6.

19. Clem D, Heard R, McGuire M, Scheyer ET, Richardson C, Toback G, et al. A comparison of Er,Cr laser to minimally invasive surgical technique in the treatment of intrabony defects: twelve-month results of a multicenter, randomized, controlled study. J Periodontol. 2024 Jul;95(7):621-31. https://doi.org/10.1002/JPER.23-0286

20. Santonocito S, Polizzi A, Cavalcanti R, Ronsivalle V, Chaurasia A, Spagnuolo G, et al. Impact of laser therapy on periodontal and peri-implant diseases. Photobiomodul Photomed Laser Surg. 2022;40(7):454-62.

21. Barbato L, Cavalcanti R, Rupe C, Scartabelli D, Serni L, Chambrone L, et al. Clinical efficacy of adjunctive methods for the non surgical treatment of peri implantitis: a systematic review and meta analysis. BMC Oral Health. 2023;23:375. https://doi.org/10.1186/s12903-023-03058-z

22. Cheung AWT, Lee AHC, Cheung GSP. Clinical efficacy of activated irrigation in endodontics: a focused review. Restor Dent Endod. 2021;46(1):e10. https://doi.org/10.5395/rde.2021.46.e10

23. Tremaine AM, Avram MM. FDA MAUDE data on complications with lasers, light sources, and energy-based devices. Lasers Surg Med. 2015;47:133-40. https://doi.org/10.1002/lsm.22328

24. Halepas S, Lee KC, Higham ZL, Ferneini EM. A 20-year analysis of adverse events and litigation with light-based skin resurfacing procedures. J Oral Maxillofac Surg. 2020;78(4):619-28. https://doi.org/10.1016/j.joms.2019.12.012

25. Prohaska J, Hohman MH. Laser complications. Treasure Island, FL: StatPearls Publishing; 2023 [cited 2023 Aug 28]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532248/

26. WHO. Global oral health status report: towards universal health coverage for oral health by 2030. Geneva, Switzerland: WHO; 2024 [cited 2024 Jun 16]. Available from:: https://www.who.int/publications/i/item/9789240061484

27. Data Bridge Market Research. Global dental lasers market size, share, and trends analysis report-industry overview and forecast to 2031. Pune, India: Data Bridge Market Research; 2024 [cited 2024 Jun 16]. Available from: https://www.databridgemarketresearch.com/reports/global-dental-lasers-market

28. Mordor Intelligence. Dental lasers market size & share analysis-growth trends & forecasts (2024-2029). Hyderabad, India: Mordor Intelligence; 2024 [cited 2024 Jun 16]. Available from: https://www.mordorintelligence.com/industry-reports/dental-lasers-market

29. WHO. Global strategy on infection prevention and control. Geneva, Switzerland: WHO; 2023 [cited 2024 Jun 04]. Available from: https://www.who.int/publications/m/item/global-strategy-on-infection-prevention-and-control

30. CDC. CDC’s core infection prevention and control practices for safe healthcare delivery in all settings. Atlanta, GA: CDC; 2024 [cited 2024 Jun 20]. Available from: https://www.cdc.gov/infectioncontrol/guidelines/core-practices/index.html

31. ECDC. Consideration for infection prevention and control in relation to respiratory viral infections in health care settings. Solna, Sweden: ECDC; 2024 [cited 2024 Jun 06]. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/Considerations%20for%20IPC%20respiratory%20viral%20infections%20in%20HC%20settings.pdf

32. CDC, USA. Guidelines for infection control in dental health-care settings-2003. Atlanta, GA: CDC; 2024 [cited 2024 Jun 04]. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5217a1.html

33. CDC, USA, Dept of Health and Human Services. Summary of infection prevention practices in dental settings: basic expectations for safe care. Atlanta, GA: Centers for Disease Control and Prevention; 2016 [cited 2024 Jun 04]. Available from: https://www.cdc.gov/oralhealth/infectioncontrol/summary-infection-prevention-practices/index.html

34. Padmanabhan V, Islam MS, Rahman MM, Chaitanya NC, Sivan PP. Understanding patient safety in dentistry: evaluating the present and envisioning the future-a narrative review. BMJ Open Qual. 2024;13:e002502. https://doi.org/10.1136/bmjoq-2023-002502

35. World dental Federation (FDI) Policy Statement. Revision: to be adopted by the general assembly 27-29 September 2021, Sydney, Australia. Adopted by the general assembly: September 2019, San Francisco, United States of America. Original version adopted by the General Assembly: September 2009, Singapore, Singapore. Infection prevention and control in dental practice Adopted by the General Assembly. Int Dent J. 2020;70:17-8. Available from: https://www.fdiworlddental.org/sites/default/files/2021-10/EN%20-%20WDPS6_Infection%20Prevention%20and%20Control%20in%20Dental%20Practice.pdf

36. Karveli A, Tzoutzas IG, Raptis PI, Tzanakakis EGC, Farmakis ETR, Helmis CG. Air quality in a dental clinic during Er:YAG laser

usage for cavity preparation on human teeth-an ex-vivo study. Int J Environ Res Public Health. 2021;18:10920. https://doi.org/10.3390/ijerph182010920

37. Pereira MC, Weber Mello F, Ribeiro DM, Porporatti AL, da Costa Junior S, Flores-Mir C, et al. Prevalence of reported percutaneous injuries on dentists: a meta-analysis. J Dent. 2018;76:9-18. https://doi.org/10.1016/j.jdent.2018.06.019

38. Huang J, Li N, Xu H, Liu Y, An N, Cai Z. Global prevalence, risk factors, and reporting practice of needlestick and sharps injuries among dental students: a systematic review and meta-analysis. J Hosp Inf. 2022;129:89-101. https://doi.org/10.1016/j.jhin.2022.06.015

39. Iwamatsu-Kobayashi Y, Watanabe J, Kusama T, Endo H, Ikeda S, Tokuda K, et al. A 19-year study of dental needlestick and sharps injuries in Japan. Int Dent J. 2023;73:114-20. https://doi.org/10.1016/j.identj.2022.04.009

40. Kaminer R, Liebow C, Margarone JE 3rd, Zambon JJ. Bacteremia following laser and conventional surgery in hamsters. J Oral Maxillofac Surg. 1990;48:45-8. https://doi.org/10.1016/0278-2391(90)90179-6

41. Henneberry K, Hilland S, Haslam S. Are dental hygienists at risk for noise-induced hearing loss? A literature review. Can J Dent Hyg. 2021;55:110-9.

42. Kawtharani A, Chemeisani A, Salman F, Younes AH, Msheik A. Neck and musculoskeletal pain among dentists: a review of the literature. Cureus. 2023;15:e33609. https://doi.org/10.7759/cureus.33609

43. Soo SY, Ang WS, Chong CH, Tew IM, Yahya NA. Occupational ergonomics and related musculoskeletal disorders among dentists: a systematic review. Work. 2023;74:469-76. https://doi.org/10.3233/WOR-211094

44. Lin K, Wink C, Dolan B, Osann K, Habib AA, Gehring J, et al. A novel ergonomic curette design reduces dental prophylaxis-induced muscle work and fatigue. Dent J. 2023;11(12):272. https://doi.org/10.3390/dj11120272

45. Kaur M, Thakur V, Bhalla M. Dental laser: a boon in dentistry & its significance in COVID-19. J Curr Med Res Opin. 2020;3:682-91. https://doi.org/10.15520/jcmro.v3i10.352

46. Smith WAJ, Al-Bayaty HF, Matthews RW. Percutaneous injuries of dental personnel at the University of the West Indies, school of dentistry. Int Dent J. 2006;56:209-14. https://doi.org/10.1111/j.1875-595X.2006.tb00096.x

47. Dukka H, Byrd P, Qian C, Baughman G, Butt S, Rai SN. Occupational percutaneous injuries and exposures in a dental teaching environment: a 10-year report. J Dent Educ. 2021;85:1729-38. https://doi.org/10.1002/jdd.12731

48. Assaf M, Yilmaz S, Kuru B, Dirikan S, Noyun U, Kadir T. Effect of the diode laser on bacteremia associated with dental ultrasonic scaling: a clinical and microbiological study. Photomed Laser Surg. 2007;25(4):250-6. https://doi.org/10.1089/pho.2006.2067

49. Thornhill M, Prendergast B, Dayer M, Frisby A, Peter Lockhart P, Baddour LM. New evidence calls into question NICE’s endocarditis prevention guidance. Br Dent J. 2024;236(9):702-8. https://doi.org/10.1038/s41415-024-7344-5

50. Martins CC, Lockhart PB, Firmino RT, Kilmartin C, Cahill TJ, Dayer M, et al. Bacteremia following different oral procedures: systematic review and meta-analysis. Oral Dis. 2024;30(3):846-54. https://doi.org/10.1111/odi.14531

51. Medicines and Healthcare products Regulatory Agency, UK. Lasers, intense light source systems and LEDs-guidance for safe use in medical, surgical, dental and aesthetic practices. London, UK: Medicines and Healthcare products Regulatory Agency; 2024 [cited 2024 Jun 04]. Available from: https://www.gov.uk/government/publications/guidance-on-the-safe-use-of-lasers-intense-light-source-systems-and-leds

52. Dubai Health Authority. Standards for the use of laser in dentistry. Standard 7. Sterilization and infection control. Dubai, United Arab Emirates (UAE): Dubai Health Authority [cited 2024 Jun 27]. Available from: https://www.dha.gov.ae/uploads/042022/Standards%20for%20Laser%20in%20Dentistry2022459602.pdf

53. Laser Safety Committee, Academy of Laser Dentistry. Laser safety in dentistry: a position paper. J Laser Dent. 2012;20:2.

54. CDC-NIOSH, USA. Health and safety practices survey of healthcare workers. Surg Smoke. 2015. [cited 2024 Jun 04]. Available from: https://www.cdc.gov/niosh/topics/healthcarehsps/smoke.html#print

55. CDC, USA. Surgical smoke inhalation: dangerous consequences for the surgical team. Atlanta, GA: CDC; 2024 [cited 2024 Jun 04]. Available from: https://blogs.cdc.gov/niosh-science-blog/2020/06/18/surgical-smoke/

56. CDC, USA. Interim infection prevention and control recommendations for healthcare personnel during the Coronavirus Disease 2019 (COVID-19) pandemic. Atlanta, GA: CDC

2024 [cited 2024 Jun 04]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-recommendations.html

57. APIC. Modernizing medical device instructions for use (IFUs). Arlington, VA: APIC; 2024. Available from: https://apic.org/modernizing-medical-device-instructions-for-use-ifus/

58. Weber J, Bonn EL, Auer DL, Kirschneck C, Buchalla W, Scholz KJ, et al. Preprocedural mouthwashes for infection control in dentistry-an update. Clin Oral Investig. 2023;27(Suppl 1):33-44. https://doi.org/10.1007/s00784-023-04953-z

59. Hasan F, Chiu HY, Salamanca E, Ridwan ES, Wiratama BS, Budi HS. Effects of chlorhexidine and povidone-iodine on the SARS-CoV-2 load: a systematic review and meta-analysis. Eur J Dent. 2023;17:587-601. https://doi.org/10.1055/s-0042-1753470

60. Rahman GS, Alshetan AAN, Alotaibi SSO, Alaskar BMI, Baseer MA. Is chlorhexidine mouthwash effective in lowering COVID-19 viral load? A systematic review. Eur Rev Med Pharmacol Sci. 2023;27:366-77.

61. Van Tran V, Park D, Lee YC. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. Int J Environ Res Public Health. 2020;17:2927. https://doi.org/10.3390/ijerph17082927

62. Polednik B. Exposure of staff to aerosols and bioaerosols in a dental office. Build Environ J. 2021;187:107388. https://doi.org/10.1016/j.buildenv.2020.107388

63. Chatoutsidou SE, Saridaki A, Raisi L, Katsivela E, Tsiamis G, Zografakis M, et al. Airborne particles and microorganisms in a dental clinic: variability of indoor concentrations, impact of dental procedures, and personal exposure during everyday practice. Indoor Air. 2021;31:1164-77. https://doi.org/10.1111/ina.12820

64. Cocârta DM, Prodana M, Demetrescu I, Lungu PEM, Didilescu AC. Indoor air pollution with fine particles and implications for Workers’ Health in Dental Offices: a brief review. Sustainability. 2021;13:599. https://doi.org/10.3390/su13020599

65. Tzoutzas I, Karoussis I, Maltezou HC. Air quality in dental care facilities: update to current management and control strategies implementing new technologies: a comprehensive review. Vaccines. 2022;10:847. https://doi.org/10.3390/vaccines10060847

66. Dabiri D, Conti SR, Pour NS, Chong A, Dadjoo S, Dabiri D, et al. A multi-disciplinary review on the aerobiology of COVID-19 in dental settings. Front Dent Med. 2021;2:726395. https://doi.org/10.3389/fdmed.2021.726395

67. Nóbrega TMC, da Rosa MoreiraBastos RT, Mecenas P, de Toledo IP, Richardson-Lozano R, Altabtbaei K, et al. Aerosol generated by dental procedures: a scopingreview. J Evid Based Med. 2021;14:303-12. https://doi.org/10.1111/jebm.12461

68. Kayahan E, Wu M, Van Gerven T, Braeken L, Stijven L, Politis C, et al. Droplet size distribution, atomization mechanism and dynamics of dental aerosols. J Aerosol Sci. 2022;166:106049. https://doi.org/10.1016/j.jaerosci.2022.106049

69. Kumar P, Subramanian K. Demystifying the mist: sources of microbial bioload in dental aerosols. J Periodont. 2020;91:1113-22. https://doi.org/10.1002/JPER.20-0395

70. Meethil AP, Saraswat S, Chaudhary PP, Dabdoub SM, Kumar PS. Sources of SARS-CoV-2 and other microorganisms in dental aerosols. J Dent Res. 2021;100:817-23. https://doi.org/10.1177/00220345211015948

71. Baudet A, Baures E, Blanchard O, Le Cann P, Gangneux JP, Florentin A. Indoor carbon dioxide, fine particulate matter and total volatile organic compounds in private healthcare and elderly care facilities. Toxics. 2022;10:136. https://doi.org/10.3390/toxics10030136

72. Baudet A, Baurès E, Guegan H, Blanchard O, Guillaso M, Le Cann P, et al. Indoor air quality in healthcare and care facilities: chemical pollutants and microbiological contaminants. Atmosphere. 2021;12:1337. https://doi.org/10.3390/atmos12101337

73. Zomuansangi R, Lalbiaktluangi C, Gupta VK, Medders AA, Vidal JE, Singh BP, et al. Interaction of bacteria and inhalable particulate matter in respiratory infectious diseases caused by bacteria. Atmos Pollut Res. 2024;15:102012. https://doi.org/10.1016/j.apr.2023.102012

74. Mirhoseini SH, Koolivand A, Bayani M, Sarlak H, Moradzadeh R, Ghamari F, et al. Quantitative and qualitative assessment of microbial

aerosols in different indoor environments of a dental school clinic. Aerobiologia. 2021;37:217-24. https://doi.org/10.1007/s10453-020-09679-z

75. Abdelkarim-Elafifi H, Arnabat-Artés C, Parada-Avendaño I, Polonsky M, Arnabat-Domínguez J. Aerosols generation using Er,Cr:YSGG laser compared to rotary instruments in conservative dentistry: a preliminary study. J Clin Exp Dent. 2021;13:e30-6. https://doi.org/10.4317/jced.57731

76. Matys J, Grzech-Lesniak K. Dental aerosol as a hazard risk for dental workers. Materials (Basel). 2020;13:5109. https://doi.org/10.3390/ma13225109

77. Dixon K, Dasgupta P, Vasdev N. A systematic review of the harmful effects of surgical smoke inhalation on operating room personnel. Health Sci Rev. 2023;6:100077. https://doi.org/10.1016/j.hsr.2023.100077

78. Tang F, Wen X, Zhang X, Qi S, Tang X, Huang J, et al. Ultrafine particles exposure is associated with specific operative procedures in a multi-chair dental clinic. Heliyon. 2022;8:e11127. https://doi.org/10.1016/j.heliyon.2022.e11127

79. Anagnostaki E, Mylona V, Parker S, Lynch E, Grootveld M. Systematic review on the role of lasers in endodontic therapy: valuable adjunct treatment?. Dent J (Basel). 2020;8:63. https://doi.org/10.3390/dj8030063

80. Huang Q, Li Z, Lyu P, Xhou X, Fan Y. Current applications and future directions of lasers in endodontics: a narrative review. Bioengineering. 2023;10:296. https://doi.org/10.3390/bioengineering10030296

81. McKinley Jr IB, Ludlow MO. Hazards of laser smoke during endodontic therapy. J Endod. 1994;20:558-9. https://doi.org/10.1016/S0099-2399(06)80073-7

82. Padmanabhan AK, Prabhuji MLV, Mampuzha S, Subramanya AP. Surgical smoke in dental practice: a potential biohazard. Dentist Case Rep. 2020;4:01-4.

83. Fox-Lewis A, Allum C, Vokes D, Roberts S. Human papillomavirus and surgical smoke: a systematic review. Occup Environ Med. 2020;77:809-17. https://doi.org/10.1136/oemed-2019-106333

84. Kokosa JM, Eugene J. Chemical composition of laser-tissue interaction smoke plume. J Laser. 1989;3:59-63. https://doi.org/10.2351/1.4745238

85. OSHA Hazard Information Bulletins Hazard of Laser Surgery Smoke [cited 2024 Jun 04]. Available from: https://www.osha.gov/publications/hib19880411

86. Harrel SK, Molinari J. Aerosols and splatter in dentistry: a brief review of the literature and infection control implications. J Am Dent Assoc. 2004;135:429-37. https://doi.org/10.14219/jada.archive.2004.0207

87. Jacks ME. A laboratory comparison of evacuation devices on aerosol reduction. J Dent Hyg. 2022;76:202-6.

88. Blackley BH, Anderson KR, Panagakos F, Chipps T, Virji MA. Efficacy of dental evacuation systems for aerosol exposure mitigation in dental clinic settings. J Occup Environ Hyg. 2022;19:281-94. https://doi.org/10.1080/15459624.2022.2053140

89. Fennelly M, Callagher C, Harding M, Hellebust S, Wenger J, O’Sullivan N, et al. Real-time monitoring of aerosol generating dental procedures. J Dent. 2022;120:104092. https://doi.org/10.1016/j.jdent.2022.104092

90. Nulty A, Lefkaditis C, Zachrisson P, Van Tonder Q, Yar R. A clinical study measuring dental aerosols with and without a high-volume extraction device. Br Dent J. 2020;20:1-8. https://doi.org/10.1038/s41415-020-2274-3

91. Maurais MT, Kriese J, Fournier M, Langevin L, MacLeod B, Blier S, et al. Effectiveness of selected air cleaning devices during dental procedures. Mil Med. 2023;188:e80-5. https://doi.org/10.1093/milmed/usab225

92. Watanabe J, Iwamatsu-Kobayashi Y, Kikuchi K, Kajita T, Morishima H, Yamauchi K, et al. Visualization of droplets and aerosols in simulated dental treatments to clarify the effectiveness of oral suction devices. J Prosthodont Res. 2024;68:85-91. https://doi.org/10.2186/jpr.JPR_D_23_00013

93. Liu MH, Chi-Tsung C, Li-Chuan C, Wen-Ming L, Gwo-Hwa W. Removal efficiency of central vacuum system and protective masks to suspended particles from dental treatment. PLoS One. 2019;14:e0225644. https://doi.org/10.1371/journal.pone.0225644

94. Comisi JC, Ravenel TD, Kelly A, Teich ST, Renne W. Aerosol and splatter mitigation in dentistry: analysis of the effectiveness of 13 setups. J Est Restor Dent. 2021;1:1-14. https://doi.org/10.1111/jerd.12717

95. Böke ES, Kele? A, Keskin C, Çayci YT, Turk T. Are aerosol control devices effective in preventing the spread of dental aerosol? Peer J.2022;10:e13714. https://doi.org/10.7717/peerj.13714

96. Hallier C, Williams DW, Potts AJ, Lewis MAO. A pilot study of bioaerosol reduction using an air cleaning system during dental procedures. Br Dent J. 2010;209:E14. https://doi.org/10.1038/sj.bdj.2010.975

97. ANSI/ASHRAE/ASHE Standard 170-2021-Ventilation of Health Care Facilities [cited 2024 Jun 04]. Available from: https://blog.ansi.org/ansi-ashrae-ashe-170-2021-health-care-ventilation/

98. OSAP. Strategies: for air quality management using engineering controls. Infect Control Pract [cited 2024 Jun 04]. Available from: https://www.osap.org/assets/docs/education-training/icip/icip-2023-1-february.pdf

99. CDC, USA. C. Air [cited 2024 Jun 15]. Available from: https://www.cdc.gov/infection-control/hcp/environmental-control/air.html. see section d: Air Sampling

100. Saini S, Dutta M, Marques G. A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustainable Env Res. 2020;30:6. https://doi.org/10.1186/s42834-020-0047-y

101. Zhang H, Srinivasan R. A systematic review of air quality sensors, guidelines, and measurement studies for indoor air quality management. Sustainability. 2020;12:9045. https://doi.org/10.3390/su12219045

102. Alvarengaa MOP, Diasb JMM, Limac BJLA, Gomesd ASL, Monteiro GQM. The implementation of portable air-cleaning technologies in healthcare settings-a scoping review. J Hosp Inf. 2023;132:93-103. https://doi.org/10.1016/j.jhin.2022.12.004

103. Cao R, Qiu P, Xu B, Lin J, Chu D, Fan Z. Effectiveness of interventions to reduce aerosol generation in dental environments: a systematic review. Prev Med Rep. 2023;35:102383. https://doi.org/10.1016/j.pmedr.2023.102383

104. Odontes-AQ Sensor Professional-Sensore di qualità dell’aria interna [cited 2024 Jun 04]. Available from: https://odontes.it/prodotto/aq-sensor-professional-sensore-di-qualita-dellaria-interna/

105. IQ Air-Air Quality Monitors [cited 2024 Jun 04]. Available from: https://www.iqair.com/air-quality-monitors

106. Trotec-Particle Counter PC200 [cited 2024 Jun 04]. Available from: https://uk.trotec.com/products-services/measuring-devices/air-quality/particle-counter/pc200-particle-counter/

107. Chawla H, Anand P, Garg K, Bhagat N, Varmani SG, Bansal T, et al. A comprehensive review of microbial contamination in the indoor environment: sources, sampling, health risks, and mitigation strategies. Front Public Health. 2023;1:1285393. https://doi.org/10.3389/fpubh.2023.1285393

108. Akbari M, Atoof F, Nazari-Alam A, Nasab ZS, Bagher M, Mirzaei MN. Assessment of bacterial bioaerosols and particulate matters characteristics in the indoor air of dentistry clinics. Int Arch of Health Sci. 2023;10(3):130-6.

109. Park S, Doosam Song D. CO2 concentration as an indicator of indoor ventilation performance to control airborne transmission of SARS-CoV-2. J Inf Pub Health. 2023;16(7):1037-44. https://doi.org/10.1016/j.jiph.2023.05.011

110. Robertson C, Clarkson JE, Aceves-Martins M, Ramsay CR, Richards D, Thibault Colloc T, et al. A review of aerosol generation mitigation in International Dental Guidance. Int Dent J. 2022;72:203-10. https://doi.org/10.1016/j.identj.2021.04.002

111. Li R, Zhang M, Wu Y, Tang P, Sun G, Wang L, et al. What we are learning from COVID-19 for respiratory protection: contemporary and emerging issues. Polymers. 2021;13:4165. https://doi.org/10.3390/polym13234165

112. CDC, USA Interim Infection Prevention and Control Recommendations for Healthcare Personnel During the Coronavirus Disease 2019 (COVID-19) Pandemic. See section 3. Setting-specific considerations: Dental Facilities [cited 2024 Mar 18]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-recommendations.html

113. Virdi MK, Durman K, Deacon S. The debate: what are aerosol generating procedures in dentistry? a rapid review. JDR Clin Transl Res. 2021;6(2):115-27. https://doi.org/10.1177/2380084421989946

114. NHS England. Appendix 11a: Aide memoire for optimal patient placement and respiratory protective equipment (RPE) for infectious agents in hospital inpatients (based on evidence from WHO, CDC and UKHSA). Redditch, UK: NHS England; 2023 [cited 2024 Jun 15]. Available from: https://www.england.nhs.uk/publication/national-infection-prevention-and-control-manual-for-england-appendices/

115. Mueller JT, Holly D, Geyer HD, Karimi S, Poterack KA, Seville MTA, et al. Two masks can be worse than one: N95 respirator failure caused by an overlying face mask. Infect Control Hosp Epidemiol. 2023;44:1529-31. https://doi.org/10.1017/ice.2022.277

116. Russell AD. Lethal effects of heat on bacterial physiology and structure. Sci Prog. 2003;86:115-37. https://doi.org/10.3184/003685003783238699

117. Wolf A, Moissl-Eichinger C, Perras A, Koskinen K, Tomazic PV, Thurnher D. The salivary microbiome as an indicator of carcinogenesis in patients with oropharyngeal squamous cell carcinoma: a pilot study. Sci Rep. 2017;7(1):5867. https://doi.org/10.1038/s41598-017-06361-2

118. Du GH, Wang YF, Chen JJ, Deng YW, Han XZ, Tang GY. Potential association between Fusobacterium nucleatum enrichment on oral mucosal surface and oral lichen planus. Oral Dis. 2020;26:122-30. https://doi.org/10.1111/odi.13232

119. Morrison AG, Sarkar S, Umar S, Lee STM, Thomas SM. The contribution of the human oral microbiome to oral disease: a review. Microorganisms. 2023;11:318. https://doi.org/10.3390/microorganisms11020318

120. Yougbaré S, Chinmaya Mutalik C, Krisnawati DI, Kristanto H, Jazidie A, Nuh M, et al. Nanomaterials for the photothermal killing of bacteria. Nanomaterials. 2020;10:1123. https://doi.org/10.3390/nano10061123

121. Cremasco M, Vigoroso L, Solinas C, Caffaro F. Discomfort in use and physical disturbance of FFP2 masks in a group of Italian doctors, nurses and nursing aides during the COVID-19 pandemic. Safety. 2023;9:40. https://doi.org/10.3390/safety9020040

122. C.D.C USA. Counterfeit respirators/misrepresentation of NIOSH approval. Atlanta, GA: CDC; 2024 [cited 2024 May 22]. Available from: https://www.cdc.gov/niosh/npptl/usernotices/counterfeitResp.html

123. Resende KKM, Neves LF, de Rezende Costa Nagib L, Oliveira Martins LJ, Rezende Costa CR. Educator and student hand hygiene adherence in dental schools: a systematic review and meta-analysis. J Dent Educ. 2019;83:575-84. https://doi.org/10.21815/JDE.019.060

124. Caggiano M, Acerra A, Martina S, Galdi M, D’Ambrosio F. Infection control in dental practice during the COVID-19 pandemic: what is changed? Int J Environ Res Public Health. 2023;20:3903. https://doi.org/10.3390/ijerph20053903

125. CDC. Hand hygiene guidance. Atlanta, GA: CDC; 2024 [cited 2024 Jun 04]. Available from: https://www.cdc.gov/handhygiene/providers/guideline.html

126. Glowicz JB, Landon E, Sickbert-Bennet EE, Aiello AE, deKay K, Hoffmann KK, et al. SHEA/IDSA/APIC practice recommendation: strategies to prevent healthcare-associated infection through hand hygiene: 2022 update. Inf Control Hosp Epidemiol. 2023;44:355-37. https://doi.org/10.1017/ice.2022.304

127. Blackman G. PPE directive revision impacts user safety eyewear suppliers. Laser Systems Europe. Spring; 2018 [cited 2024 Jun 27]. Available from: https://www.lasersystemseurope.com/feature/ppe-directive-revision-impacts-laser-safety-eyewear-suppliers

128. Xamax Workplace Solutions. How long do Goggles and safety glasses last? [cited 2024 Jun 27]. Available from: https://www.xamax.co.uk/blog/how-long-does-ppe-last.html

129. DiOptika. Cleaning laser safety glasses [cited 2024 Jun 27]. Available from: https://www.lasersafetyglasses.com.au/blog/cleaning-laser-safety-glasses/

130. Laser Safety Industries. How to clean laser safety glasses [cited 2024 Jun 27]. Available from: https://lasersafetyindustries.com/blogs/laser-safety-articles/how-to-clean-and-care-for-your-laser-safety-glasses

131. MIT. Guidelines for the use and disinfection of shared PPE [cited 2024 Jun 27]. Available from: https://ehs.mit.edu/wp-content/uploads/2020/06/MITEHS_shared_ppe_guidance.pdf

132. iLase User Manual P/N 5400230 Rev.J. Cleaning and sterilization. Section 6. Avaialble from: https://www.biolase.com/media/5400230-RevJ_ilase-UM.pdf

133. Kakaboura A, Tzoutzas J, Pitsinigos D, Vougiouklakis G. The effect of sterilization methods on the light transmission characteristics and structure of light-curing tips. J Oral Rehabilitation. 2004;31:918-23. https://doi.org/10.1111/j.1365-2842.2004.01314.x

134. Stolov AA, Slyman BE, David T, Burgess DT, Hokansson AS, Li J, et al. Effects of sterilization methods on key properties of specialty optical fibers used in medical devices. Conference Paper in Proceedings of SPIE-The International Society for Optical Engineering; Bellingham, WA: SPIE-The International Society for Optical Engineering; March 2013. Avaialble from: www.researchgate.net/profile/Andrei-Stolov/publication/271541382_Effects_of_sterilization_methods_on_key_properties_of_specialty_optical_fibers_used_in_medical_devices/links/5678d4f308ae0ad265c83fb0/Effects-of-sterilization-methods-on-key-properties-of-specialty-optical-fibers-used-in-medical-devices.pdf

135. Barenghi L. Clean, disinfect and cover: top activities for clinical contact surfaces in dentistry. Orange, CA: Kerr Dental; 2018 [cited 2024 Jun 04]. Available from: https://www.ultimatedental.com/uploads/KerrDrLiviaBarenghi.pdf

136. Nogueira Rodrigues FC, de Araújo JGL, dos Santos Araújo EM, Lago ADN, Mantilla TF, de Freitas PM. Influence of biosafety materials of the laser output power. Lasers Med Sci. 2021;36:311-5. https://doi.org/10.1007/s10103-020-03030-1

137. EPA, USA. Selected EPA-registered disinfectants. Washington, DC: EPA. Available from: https://www.epa.gov/pesticide-registration/selected-epa-registered-disinfectants

138. Dental Patient Safety Foundation [cited 2024 Jun 19]. Available from: https://www.dentalpatientsafety.org/

139. Bertagnolio S, Dobreva Z, Centner CM, Olaru ID, Donà D, Burzo S, et al. WHO global research priorities for antimicrobial resistance in human health. Lancet Microbe. 2024 [cited 2024 Aug 12]. doi: https://doi.org/10.1016/S2666-5247(24)00134-4 https://doi.org/10.1016/S2666-5247(24)00134-4

140. Meadows AJ, Stephenson N, Madhav NK, Oppenheim B. Historical trends demonstrate a pattern of increasingly frequent and severe spillover events of high-consequence zoonotic viruses. BMJ Glob Health. 2023;8:e012026. https://doi.org/10.1136/bmjgh-2023-012026

141. WHO. 2023. Available from: https://www.weforum.org/publications/quantifying-the-impact-of-climate-change-on-human-health/

142. Cannon RD. Oral fungal infections: past, present, and future. Front Oral Health. 2020;3:838639. https://doi.org/10.3389/froh.2022.838639

143. WHO Bacterial Priority Pathogens List, 2024. Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva, Switzerland: World Health Organization; 2024. Licence: CC BY-NC-SA 3.0 IGO.

144. Liu J, Spencer N, Utter DR, Grossman A, Santos NCD, Shi W, et al. Persistent enrichment of multidrug-resistant Klebsiella in oral and nasal communities during long term starvation. Microbiome. 2024;12:132. https://doi.org/10.1186/s40168-024-01854-5

145. Smiline Girija AS. Acinetobacter baumanii as an oro dental pathogen: a red alert. J Appl Oral Sci. 2024;32:e20230382. https://doi.org/10.1590/1678-7757-2023-0382

146. WHO. WHO fungal priority pathogens list to guide research, development and public health action. Geneva, Switzerland: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.

147. Le PH, Linklater DP, Aburto-Medina A, Nie S, Williamson NA, Crawford RJ, et al. Apoptosis of multi-drug resistant Candida species on microstructured titanium surfaces. Adv Mater Interfaces. 2023;10:2300314 https://doi.org/10.1002/admi.202300314

148. Drago F, Ciccarese G, Merlo G, Trave I, Javor S, Rebora A, et al. Oral and cutaneous manifestations of viral and bacterial infections: not only COVID-19 disease. Clin Dermatol. 2021;39:384-404. https://doi.org/10.1016/j.clindermatol.2021.01.021

149. ADA Huddles. Global measles outbreak sees ‘alarming’ increase. ADA Huddles. February 2024. Available from: https://adanews.ada.org/huddles/global-measles-outbreak-sees-alarming-increase/

150. Bah M, Wilseck ZM, Lin LY, Peterson AJ, Chaudhary M, Gemmete JJ. The interplay among a dental procedure, infective endocarditis, and an acute ischemic stroke. JADA. 2024;155:P244-50. https://doi.org/10.1016/j.adaj.2023.11.009

151. Caminada S, Mele A, Ferrigno L, Alfonsi V, Crateri S, Iantosca G, et al. Risk of parenterally transmitted hepatitis following exposure to invasive procedures in Italy: SEIEVA surveillance 2000-2021. J Hepatol. 2023;79:61-8. https://doi.org/10.1016/j.jhep.2023.03.002

152. Singh J, O’Donnell K, Nieves DJ, Adler-Shohet FC, Arrieta C, Negar Ashouri N, et al. Invasive Mycobacterium abscessus outbreak at a pediatric dental clinic. Open Forum Infect Dis. 2021 Jun;8(6):ofab165. https://doi.org/10.1093/ofid/ofab165

153. Zuo W, He D, Liang C, Du S, Hua Z, Nie Q, et al. The persistence of SARS-CoV-2 in tissues and its association with long COVID symptoms: a cross-sectional cohort study in China. Lancet Inf Dis. 2024;24:845-55. https://doi.org/10.1016/S1473-3099(24)00171-3

154. Willis JA, Cheburkanov V, Chen S, Soares JM, Kassab G, Blanco KC, et al. Breaking down antibiotic resistance in methicillin-resistant Staphylococcus aureus: combining antimicrobial photodynamic and antibiotic treatments. PNAS. 2022;119(36):e2208378119. https://doi.org/10.1073/pnas.2208378119

155. Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, Tufekci Z, et al. Airborne transmission of respiratory viruses. Science. 2021;373:9eabd9149. https://doi.org/10.1126/science.abd9149

156. Haddrell A, Oswin H, Otero-Fernandez M, Robinson JF, Cogan T, Alexander R, et al. Ambient carbon dioxide concentration correlates with SARS-CoV-2 aerostability and infection risk. Nat Commun. 2024;15:3487. https://doi.org/10.1038/s41467-024-47777-5

157. Zemouri C, Awad SF, Volgenant CMC, Crielaard W, Laheij AMGA, de Soet JJ. Modeling of the transmission of Coronaviruses, Measles virus, influenza virus, Mycobacterium tuberculosis, and Legionella pneumophila in dental clinics. J Dent Res. 2020;99(10):1192-8. https://doi.org/10.1177/0022034520940288

158. Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, et al. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Env Sci. 2024;135:449-73. https://doi.org/10.1016/j.jes.2022.08.013

Article Metrics
51 Views 23 Downloads 74 Total

Year

Month

Related Search

By author names