Beyond conventional approaches: Exploring the collaborative defense of flavonoids and the renin-angiotensin system against Parkinson’s challenges

Poonam Bhadauriya Vibhav Varshney Ahsas Goyal   

Open Access   

Published:  Nov 15, 2024

DOI: 10.7324/JAPS.2025.212194
Abstract

Parkinson’s disease (PD) represents a profoundly enigmatic neurodegenerative ailment marked by the inexorable degradation of dopaminergic neurons. Recent scientific inquiry has brought to the forefront the renin-angiotensin system (RAS) as a central participant within the intricate terrain of PD etiology. The present review endeavors to provide an exhaustive examination of the intricate interrelationship between RAS and PD, elucidating the mechanisms that underlie the harmful progression of this condition. Oxidative stress assumes a central position in PD pathogenesis, and the brain’s RAS, with a focus on Angiotensin II (Ang II), emerges as a catalyst for this phenomenon. Ang II, through AT1 receptors, triggers the production of reactive oxygen species via NADPH oxidase (NOX) enzymes, posing a significant threat to dopaminergic neurons. Moreover, Ang II exerts influence on neuroinflammation, apoptosis, and neurotrophic factors, amplifying neuronal vulnerability. Clinical and pre-clinical evidence underscores the potential of RAS modulators, including ACE inhibitors (ACEIs) and Angiotensin II receptor blockers (ARBs), in mitigating neurodegeneration in PD. These findings offer a promising avenue for novel treatments targeting RAS to protect dopaminergic neurons and alleviate PD symptoms. Natural compounds, specifically flavonoids, have attracted considerable scientific interest as prospective angiotensin-converting enzyme ACEIs. In the future, a deeper understanding of flavonoid metabolism and neuronal access will be instrumental in optimizing their therapeutic potential. Investigating the precise mechanisms by which flavonoids interact with the blood-brain barrier and neuronal tissues may yield innovative treatment strategies for PD.


Keyword:     Parkinson’s disease RAS oxidative stress neuroinflammation flavonoids ACE


Citation:

Bhadauriya P, Varshney V, Goyal A. Beyond conventional approaches: Exploring the collaborative defense of flavonoids and the renin-angiotensin system against Parkinson’s challenges. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.212194

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Ou Z, Pan J, Tang S, Duan D, Yu D, Nong H, et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson's disease in 204 countries/territories from 1990 to 2019. Front Public Health. 2021;9:776847. https://doi.org/10.3389/fpubh.2021.776847

2. Klemann CJHM, Martens GJM, Sharma M, Martens MB, Isacson O, Gasser T, et al. Integrated molecular landscape of Parkinson's disease. Parkinsons Dis. 2017;3(1):14. https://doi.org/10.1038/s41531-017-0015-3

3. Emamzadeh FN, Surguchov A. Parkinson's disease: biomarkers, treatment, and risk factors. Front Neurosci. 2018;12:612. https://doi.org/10.3389/fnins.2018.00612

4. Jankovic J, Tan EK. Parkinson's disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795-808. https://doi.org/10.1136/jnnp-2019-322338

5. Alves Da Rocha PA, Mcclelland J, Morris ME. Complementary physical therapies for movement disorders in Parkinson's disease: a systematic review. Eur J PhysRehabil Med. 2015;51(6):693-704.

6. Perez-Lloret S, Otero-Losada M, Toblli JE, Capani F. Renin-angiotensin system as a potential target for new therapeutic approaches in Parkinson's disease. Expert OpinInvestig Drugs. 2017;26(10):1163-73. https://doi.org/10.1080/13543784.2017.1371133

7. Yang J, Gao Y, Duan Q, Qiu Y, Feng S, Zhan C, et al. Renin-angiotensin system blockers affect cognitive decline in Parkinson's disease: the PPMI dataset. Parkinsonism RelatDisord. 2022;105:90-5. https://doi.org/10.1016/j.parkreldis.2022.10.019

8. Goldstein B, Speth RC, Trivedi M. Renin-angiotensin system gene expression and neurodegenerative diseases. J Renin Angiotensin Aldosterone Syst. 2016;17(3):1470320316666750. https://doi.org/10.1177/1470320316666750

9. Farag E, Sessler DI, Ebrahim Z, Kurz A, Morgan J, Ahuja S, et al. The renin angiotensin system and the brain: new developments. J ClinNeurosci. 2017;46:1-8. https://doi.org/10.1016/j.jocn.2017.08.055

10. Jung UJ, Kim SR. Beneficial effects of flavonoids against Parkinson's disease. J Med Food. 2018;21(5):421-32. https://doi.org/10.1089/jmf.2017.4078

11. Magalingam KB, Radhakrishnan AK, Haleagrahara N. Protective mechanisms of flavonoids in Parkinson's disease. Oxid Med Cell Longev. 2015;2015:314560. https://doi.org/10.1155/2015/314560

12. Tamtaji OR, Hadinezhad T, Fallah M, Shahmirzadi AR, Taghizadeh M, Behnam M, et al. The therapeutic potential of quercetin in Parkinson's disease: insights into its molecular and cellular regulation. Curr Drug Targets. 2020;21(5):509-18. https://doi.org/10.2174/1389450120666191112155654

13. Zhang X, Molsberry SA, Yeh TS, Cassidy A, Schwarzschild MA, Ascherio A, et al. Intake of flavonoids and flavonoid-rich foods and mortality risk among individuals with Parkinson disease: a prospective cohort study. Neurology. 2022;98(10):e1064-76. https://doi.org/10.1212/WNL.0000000000013275

14. Bellavite P. Neuroprotective potentials of flavonoids: experimental studies and mechanisms of action. Antioxidants (Basel). 2023;12(2):280. https://doi.org/10.3390/antiox12020280

15. Prusty SK, Sahu PK, Subudhi BB. Angiotensin mediated oxidative stress and neuroprotective potential of antioxidants and AT1 receptor blockers. Mini Rev Med Chem. 2017;17(6):518-28. https://doi.org/10.2174/1389557516666161025094539

16. Labandeira Garcia JL, Rodríguez Perez AI, Garrido Gil P, Rodriguez Pallares J, Lanciego JL, Guerra MJ. Brain renin-angiotensin system and microglial polarization: implications for aging and neurodegeneration. Front Aging Neurosci. 2017;9:129. https://doi.org/10.3389/fnagi.2017.00129

17. Shinohara K, Liu X, Morgan DA, Davis DR, Sequeira-Lopez MLS, Cassell MD, et al. Selective deletion of the brain-specific isoform of renin causes neurogenic hypertension. Hypertension. 2016;68(6):1385-92. https://doi.org/10.1161/HYPERTENSIONAHA.116.08242

18. Wright JW, Kawas LH, Harding JW. A role for the brain RAS in Alzheimer's and Parkinson's diseases. Front Endocrinol (Lausanne). 2013;4:158. https://doi.org/10.3389/fendo.2013.00158

19. van Thiel BS, Góes Martini A, TeRiet L, Severs D, Uijl E, Garrelds IM, et al. Brain renin-angiotensin system: does it exist?: does? Hypertension. 2017;69(6):1136-44. https://doi.org/10.1161/HYPERTENSIONAHA.116.08922

20. Nakagawa P, Sigmund CD. How is the brain renin-angiotensin system regulated? Hypertension. 2017;70(1):10-8. https://doi.org/10.1161/HYPERTENSIONAHA.117.08550

21. Bodiga VL, Bodiga S. Renin angiotensin system in cognitive function and dementia. Asian J Neurosci. 2013;2013:1-18. https://doi.org/10.1155/2013/102602

22. Rygiel K. Can angiotensin-converting enzyme inhibitors impact cognitive decline in early stages of Alzheimer's disease? an overview of research evidence in the elderly patient population. J Postgrad Med. 2016;62(4):242-8. https://doi.org/10.4103/0022-3859.188553

23. Jiang T, Gao L, Lu J, Zhang YD. ACE2-Ang-(1-7)-Mas Axis in Brain: a potential target for prevention and treatment of ischemic stroke. CurrNeuropharmacol. 2013;11:209-17. https://doi.org/10.2174/1570159X11311020007. https://doi.org/10.2174/1570159X11311020007

24. Agassandian K, Grobe JL, Liu X, Agassandian M, Thompson AP, Sigmund CD, et al. Evidence for intraventricular secretion of angiotensinogen and angiotensin by the subfornical organ using transgenic mice. Am J Physiol Regul Integr Comp Physiol. 2017;312:R973-81. doi: https://doi.org/10.1152/ajpregu.00511.2016 https://doi.org/10.1152/ajpregu.00511.2016

25. Uijl E, Ren L, Danser AHJ. Angiotensin generation in the brain: a re-evaluation. Clin Sci (Lond.). 2018;132(8):839-50. https://doi.org/10.1042/CS20180236

26. Mascolo A, Sessa M, Scavone C, De Angelis A, Vitale C, Berrino L, et al. New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): focus on cardiovascular and neurological diseases. Int J Cardiol. 2017;227:734-742. https://doi.org/10.1016/j.ijcard.2016.10.069

27. Miners JS, van Helmond Z, Raiker M, Love S, Kehoe PG. ACE variants and association with brain Aβ levels in Alzheimer's disease. Am J Transl Res. 2010;3(1):73-80.

28. Su G, Dou H, Zhao L, Wang H, Liu G, Huang B, et al. The angiotensin-converting enzyme (ACE) I/D polymorphism in Parkinson's disease. J Renin Angiotensin Aldosterone Syst. 2015;16(2):428-33. https://doi.org/10.1177/1470320313494432

29. Grobe JL, Xu D, Sigmund CD. An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology (Bethesda). 2008;23(4):187-93. https://doi.org/10.1152/physiol.00002.2008

30. Shinohara K, Nakagawa P, Gomez J, Morgan DA, Littlejohn NK, Folchert MD, et al. Selective deletion of renin-b in the brain alters drinking and metabolism. Hypertension. 2017;70(5):990-7. https://doi.org/10.1161/HYPERTENSIONAHA.117.09923

31. Ohishi M, Yamamoto K, Rakugi H. Angiotensin (1-7) and other angiotensin peptides. Curr Pharm Des. 2013;19(17):3060-4. https://doi.org/10.2174/1381612811319170013

32. Kamel AS, Abdelkader NF, Abd El-Rahman SS, Emara M, Zaki HF, Khattab MM. Stimulation of ACE2/ANG (1-7)/mas axis by diminazene ameliorates Alzheimer's disease in the D-galactose-ovariectomized rat model: role of PI3K/Akt pathway. MolNeurobiol. 2018;55(10):8188-202. https://doi.org/10.1007/s12035-018-0966-3

33. Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J PhysiolRegulIntegr Comp Physiol. 2007;292(1):R373-81. https://doi.org/10.1152/ajpregu.00292.2006

34. Abiodun OA, Ola MS. Role of brain renin angiotensin system in neurodegeneration: an update. Saudi J Biol Sci. 2020;27(3):905-12. https://doi.org/10.1016/j.sjbs.2020.01.026

35. Ren L, Lu X, Danser AHJ. Revisiting the brain renin-angiotensin system-focus on novel therapies. CurrHypertens Rep. 2019;21(4):28. https://doi.org/10.1007/s11906-019-0937-8

36. Rodriguez Perez AI, Garrido Gil P, Pedrosa MA, Garcia-Garrote M, Valenzuela R, Navarro G, et al. Angiotensin Type 2 receptors: role in aging and neuroinflammation in the SubstantiaNigra. Brain Behav Immun. 2020;87:256-71. https://doi.org/10.1016/j.bbi.2019.12.011

37. Guo S, Som AT, Arai K, Lo EH, Guo S, Som AT, et al. Effects of angiotensin-II on brain endothelial cell permeability via PPARalpha regulation of para-and trans-cellular pathways. Brain Res. 2019;1722:146353. https://doi.org/10.1016/j.brainres.2019.146353

38. Mertens B, Vanderheyden P, Michotte Y, Sarre S. The role of the central renin-angiotensin system in Parkinson's disease. J Renin Angiotensin Aldosterone Syst. 2010;11(1):49-56. https://doi.org/10.1177/1470320309347789

39. Labandeira-Garcia JL, Rodriguez-Pallares J, Rodríguez-Perez AI, Garrido-Gil P, Villar-Cheda B, Valenzuela R, et al. Brain angiotensin and dopaminergic degeneration: relevance to Parkinson's disease. Am J Neurodegener Dis. 2012;1(3):226-44.

40. Sonsalla PK, Coleman C, Wong LY, Harris SL, Richardson JR, Gadad BS, et al. The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism. Exp Neurol. 2013;250:376-83. https://doi.org/10.1016/j.expneurol.2013.10.014

41. Kaur P, Muthuraman A, Kaur M. The implications of angiotensin-converting enzymes and their modulators in neurodegenerative disorders: current and future perspectives. ACS ChemNeurosci. 2015;6(4):508-21. https://doi.org/10.1021/cn500363g

42. Mogi M, Horiuchi M. Effect of angiotensin II Type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases. GeriatrGerontol Int. 2013;13(1):13-8. https://doi.org/10.1111/j.1447-0594.2012.00900.x

43. De Bundel D, Smolders I, Yang R, Albiston AL, Michotte Y, Chai SY. Angiotensin IV and LVV-Haemorphin 7 enhance spatial working memory in rats: effects on hippocampal glucose levels and blood flow. Neurobiol Learn Mem. 2009;92(1):19-26. https://doi.org/10.1016/j.nlm.2009.02.004

44. Lee J, Albiston AL, Allen AM, Mendelsohn FAO, Ping SE, Barrett GL, et al. Effect of I.C.V. Injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-Hemorphin 7, on spatial learning in rats. Neuroscience. 2004;124(2):341-9. https://doi.org/10.1016/j.neuroscience.2003.12.006

45. Rivas-Santisteban R, Lillo J, Muñoz A, Rodríguez-Pérez AI, Labandeira-García JL, Navarro G, et al. Novel interactions involving the mas receptor show potential of the renin-angiotensin system in the regulation of microglia activation: altered expression in parkinsonism and dyskinesia. Neurotherapeutics. 2021;18(2):998-1016. https://doi.org/10.1007/s13311-020-00986-4

46. Rabie MA, Abd El Fattah MA, Nassar NN, Abdallah DM, El-Abhar HS. The mas receptor as a future perspective in Parkinson's disease. J Neurol Neuromedicine. 2018;3(4):65-8. https://doi.org/10.29245/2572.942X/2018/4.1208

47. de Morais SDB, Shanks J, Zucker IH. Integrative physiological aspects of brain RAS in hypertension. CurrHypertens Rep. 2018;20(2):10. https://doi.org/10.1007/s11906-018-0810-1

48. Tota S, Nath C, Najmi AK, Shukla R, Hanif K. Inhibition of central angiotensin converting enzyme ameliorates scopolamine induced memory impairment in mice: role of cholinergic neurotransmission, cerebral blood flow and brain energy metabolism. Behav Brain Res. 2012;232(1):66-76. https://doi.org/10.1016/j.bbr.2012.03.015

49. Solleiro Villavicencio H, Rivas Arancibia S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases. Front Cell Neurosci. 2018;12:114. https://doi.org/10.3389/fncel.2018.00114

50. Chen M, Lai L, Li X, Zhang X, He X, Liu W, et al. Baicalein attenuates neurological deficits and preserves blood-brain barrier integrity in a rat model of intracerebralhemorrhage. Neurochem Res. 2016;41(11):3095-102. https://doi.org/10.1007/s11064-016-2032-8

51. Carvalho C, Moreira PI. Oxidative stress: a major player in cerebrovascular alterations associated to neurodegenerative events. Front Physiol. 2018;9:806. https://doi.org/10.3389/fphys.2018.00806

52. Sun MS, Jin H, Sun X, Huang S, Zhang FL, Guo ZN, et al. Free radical damage in ischemia-reperfusion injury: an obstacle in acute ischemic stroke after revascularization therapy. Oxid Med Cell Longev. 2018;2018:3804979. https://doi.org/10.1155/2018/3804979

53. Rodriguez-Perez AI, Sucunza D, Pedrosa MA, Garrido-Gil P, Kulisevsky J, Lanciego JL, et al. Angiotensin type 1 receptor antagonists protect against alpha-synuclein-induced neuroinflammation and dopaminergic neuron death. Neurotherapeutics. 2018;15(4):1063-81. https://doi.org/10.1007/s13311-018-0646-z

54. Torika N, Asraf K, Roasso E, Danon A, Fleisher-Berkovich S. Angiotensin converting enzyme inhibitors ameliorate brain inflammation associated with microglial activation: possible implications for Alzheimer's disease. J NeuroimmunePharmacol. 2016;11(4):774-85. https://doi.org/10.1007/s11481-016-9703-8

55. Zhao HR, Jiang T, Tian YY, Gao Q, Li Z, Pan Y, et al. Angiotensin II triggers apoptosis via enhancement of NADPH oxidase-dependent oxidative stress in a dopaminergic neuronal cell line. Neurochem Res. 2015;40(4):854-63. https://doi.org/10.1007/s11064-015-1536-y

56. Kim MS, Lee GH, Kim YM, Lee BW, Nam HY, Sim UC, et al. Angiotensin II causes apoptosis of adult hippocampal neural stem cells and memory impairment through the action on AMPK-PGC1α signaling in heart failure. Stem Cells Transl Med. 2017;6(6):1491-503. https://doi.org/10.1002/sctm.16-0382

57. Gao Q, Ou Z, Jiang T, Tian YY, Zhou JS, Wu L, et al. Azilsartan ameliorates apoptosis of dopaminergic neurons and rescues characteristic ParkinsonianBehaviors in a rat model of Parkinson's disease. Oncotarget. 2017;8(15):24099-109. https://doi.org/10.18632/oncotarget.15732

58. Ou Z, Jiang T, Gao Q, Tian YY, Zhou JS, Wu L, et al. Mitochondrial-dependent mechanisms are involved in angiotensin II-induced apoptosis in dopaminergic neurons. J Renin Angiotensin Aldosterone Syst. 2016;17(4):1470320316672349. https://doi.org/10.1177/1470320316672349

59. Auladell C, de Lemos L, Verdaguer E, Ettcheto M, Busquets O, Lazarowski A, et al. Role of JNK isoforms in the kainic acid experimental model of epilepsy and neurodegeneration. Front Biosci (Landmark Ed). 2017;22(5):795-814. https://doi.org/10.2741/4517

60. Ledda F, Paratcha G. Assembly of neuronal connectivity by neurotrophic factors and leucine-rich repeat proteins. Front Cell Neurosci. 2016;10:199. https://doi.org/10.3389/fncel.2016.00199

61. Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S. Neurotrophic factors in Alzheimer's and Parkinson's diseases: implications for pathogenesis and therapy. Neural Regen Res. 2017;12(4):549-57. https://doi.org/10.4103/1673-5374.205084

62. Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors-relevance for disorders of the central nervous system. Neurobiol Dis. 2017;97(B):80-9. https://doi.org/10.1016/j.nbd.2016.01.021

63. Lindahl M, Saarma M, Lindholm P. Unconventional neurotrophic factors CDNF and MANF: structure, physiological functions and therapeutic potential. Neurobiol Dis. 2017;97(B):90-102. https://doi.org/10.1016/j.nbd.2016.07.009

64. Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the brain: the renin angiotensin system. Int J Mol Sci. 2018;19(3):876. https://doi.org/10.3390/ijms19030876

65. Schaich CL, Wellman TL, Koi B, Erdos B. BDNF acting in the hypothalamus induces acute pressor responses under permissive control of angiotensin II. AutonNeurosci. 2016;197:1-8. https://doi.org/10.1016/j.autneu.2016.02.011

66. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98(3):1627-738. https://doi.org/10.1152/physrev.00038.2017

67. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3(1):17013. https://doi.org/10.1038/nrdp.2017.13

68. Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases. ProgNeurobiol. 2015;125:26-46. https://doi.org/10.1016/j.pneurobio.2014.11.004

69. Rodriguez-Perez AI, Borrajo A, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL. Interaction between NADPH-oxidase and rho-kinase in angiotensin II-induced microglial activation. Glia. 2015;63(3):466-82. https://doi.org/10.1002/glia.22765

70. Ola MS, Ahmed MM, Abuohashish HM, Al-Rejaie SS, Alhomida AS. Telmisartan ameliorates neurotrophic support and oxidative stress in the retina of streptozotocin-induced diabetic rats. Neurochem Res. 2013;38(8):1572-9. https://doi.org/10.1007/s11064-013-1058-4

71. Lin HC, Tseng YF, Shen AL, Chao JCJ, Hsu CY, Lin HL. Association of angiotensin receptor blockers with incident Parkinson disease in patients with hypertension: a retrospective cohort study. Am J Med. 2022;135(8):1001-7. https://doi.org/10.1016/j.amjmed.2022.04.029

72. Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL. The inflammatory response in the MPTP model of Parkinson's disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem. 2009;109(2):656-69. https://doi.org/10.1111/j.1471-4159.2009.05999.x

73. Goel R, Bhat SA, Rajasekar N, Hanif K, Nath C, Shukla R. Hypertension exacerbates predisposition to neurodegeneration and memory impairment in the presence of a neuroinflammatory stimulus: protection by angiotensin converting enzyme inhibition. PharmacolBiochemBehav. 2015;133:132-45. https://doi.org/10.1016/j.pbb.2015.04.002

74. Muñoz A, Rey P, Guerra MJ, Mendez-Alvarez E, Soto-Otero R, Labandeira-Garcia JL. Reduction of dopaminergic degeneration and oxidative stress by inhibition of angiotensin converting enzyme in a MPTP model of parkinsonism. Neuropharmacology. 2006;51(1):112-20. https://doi.org/10.1016/j.neuropharm.2006.03.004

75. Grammatopoulos TN, Jones SM, Ahmadi FA, Hoover BR, Snell LD, Skoch J, et al. Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in SubstantiaNigra. MolNeurodegener. 2007;2(1):1. https://doi.org/10.1186/1750-1326-2-1

76. Zhang TT, Yang L, Jiang JG. Bioactive comparison of main components from unripe fruits of RubusChingii Hu and identification of the effective component. Food Funct. 2015;6(7):2205-14. https://doi.org/10.1039/C5FO00406C

77. Hong F, Ming L, Yi S, Zhanxia L, Yongquan W, Chi L. The antihypertensive effect of peptides: a novel alternative to drugs? Peptides. 2008;29(6):1062-71. https://doi.org/10.1016/j.peptides.2008.02.005

78. Farzamirad V, Aluko RE. Angiotensin-converting enzyme inhibition and free-radical scavenging properties of cationic peptides derived from soybean protein hydrolysates. Int J Food SciNutr. 2008;59(5):428-37. https://doi.org/10.1080/09637480701592897

79. Guang C, Phillips RD. Plant food-derived angiotensin I converting enzyme inhibitory peptides. J Agric Food Chem. 2009;57(12):5113-20. https://doi.org/10.1021/jf900494d

80. Loizzo MR, Said A, Tundis R, Rashed K, Statti GA, Hufner A, et al. Inhibition of angiotensin converting enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Phytother Res. 2007;21(1):32-6. https://doi.org/10.1002/ptr.2008

81. Margalef M, Bravo FI, Arola-Arnal A, Muguerza B. Natural angiotensin converting enzyme (ACE) inhibitors with antihypertensive properties. In: Andrade PB, Valentão P, Pereira DM. editors. Natural products targeting clinically relevant enzymes. Hoboken, NJ: John Wiley & Sons; 2017. pp. 45-67. Available from: https://onlinelibrary.wiley.com/doi/10.1002/9783527805921.ch3 https://doi.org/10.1002/9783527805921.ch3

82. NileekaBalasuriya BW, Vasantha Rupasinghe HP. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct Foods Health Dis. 2011;1(5):172-88. https://doi.org/10.31989/ffhd.v1i5.132

83. Zilli AMH, Zilli EM. Review of evidence and perspectives of flavonoids on metabolic syndrome and neurodegenerative disease. Protein PeptLett. 2021;28(7):725-34. https://doi.org/10.2174/0929866528666210127152359

84. Zheng W, Tian E, Liu Z, Zhou C, Yang P, Tian K, et al. Small molecule angiotensin converting enzyme inhibitors: a medicinal chemistry perspective. Front Pharmacol. 2022;13:968104. https://doi.org/10.3389/fphar.2022.968104

85. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Circadian rhythms, neuroinflammation and oxidative stress in the story of Parkinson's disease. Cells. 2020;9(2):314. https://doi.org/10.3390/cells9020314

86. Wijesekara I, Kim SK. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: prospects in the pharmaceutical industry. Mar Drugs. 2010;8(4):1080-93. https://doi.org/10.3390/md8041080

87. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J ClinNutr. 2004;79(5):727-47. https://doi.org/10.1093/ajcn/79.5.727

88. Aherne SA, O'Brien NM. Dietary flavonols: chemistry, food content, and metabolism. Nutrition. 2002;18(1):75-81. https://doi.org/10.1016/S0899-9007(01)00695-5

89. Dias MC, Pinto DCGA, Silva AMS. Plant flavonoids: chemical characteristics and biological activity. Molecules. 2021;26(17):5377. https://doi.org/10.3390/molecules26175377

90. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. https://doi.org/10.1016/j.foodchem.2022.132531

91. Medina dos Santos N, Berilli Batista P, Batista ÂG, MarósticaJúnior MR. Current evidence on cognitive improvement and neuroprotection promoted by anthocyanins. CurrOpin Food Sci. 2019;26:71-8. https://doi.org/10.1016/j.cofs.2019.03.008

92. Li P, Feng D, Yang D, Li X, Sun J, Wang G, et al. Protective effects of anthocyanins on neurodegenerative diseases. Trends Food Sci Technol. 2021;117:205-17. https://doi.org/10.1016/j.tifs.2021.05.005

93. Caruso G, Torrisi SA, Mogavero MP, Currenti W, Castellano S, Godos J, et al. Polyphenols and neuroprotection: therapeutic implications for cognitive decline. Pharmacol. Ther. 2022;232 (108013):108013. doi: https://doi.org/10.1016/j.pharmthera.2021.108013 https://doi.org/10.1016/j.pharmthera.2021.108013

94. Socci V, Tempesta D, Desideri G, De Gennaro L, Ferrara M. Enhancing human cognition with cocoa flavonoids. Front Nutr. 2017;4:19. https://doi.org/10.3389/fnut.2017.00019

95. Khalatbary AR, Khademi E. The green tea Polyphenolic Catechin Epigallocatechin Gallate and neuro protection. Nutr Neuro sci. 2020;23(4):281-94. https://doi.org/10.1080/1028415X.2018.1500124

96. Singh NA, Mandal AKA, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J. 2016;15(1):60. https://doi.org/10.1186/s12937-016-0179-4

97. Yao C, Zhang J, Liu G, Chen F, Lin Y. Neuroprotection by (-)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress. Mol Med Rep. 2014;9(1):69-76. https://doi.org/10.3892/mmr.2013.1778

98. Grewal AK, Singh TG, Sharma D, Sharma V, Singh M, Rahman MH, et al. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother. 2021;140:111729. https://doi.org/10.1016/j.biopha.2021.111729

99. Dajas F, Abin-Carriquiry JA, Arredondo F, Blasina F, Echeverry C, Martínez M, et al. Quercetin in brain diseases: potential and limits. Neurochem Int. 2015;89:140-8. https://doi.org/10.1016/j.neuint.2015.07.002

100. Boyina HK, Geethakhrishnan SL, Panuganti S, Gangarapu K, Devarakonda KP, Bakshi V, et al. In silico and in vivo studies on quercetin as potential anti-Parkinson agent. Adv Exp Med Biol. 2020;1195:1-11. https://doi.org/10.1007/978-3-030-32633-3_1

101. Pan X, Liu X, Zhao H, Wu B, Liu G. Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson's disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. J Funct Foods. 2020;74:104-40. https://doi.org/10.1016/j.jff.2020.104140

102. Han X, Zhao S, Song H, Xu T, Fang Q, Hu G, et al. Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: implications in Parkinson's disease. Redox Biol. 2021;41:(101911). https://doi.org/10.1016/j.redox.2021.101911

103. Dhanraj V, Karuppaiah J, Balakrishnan R, Elangovan N. Myricetin attenuates neurodegeneration and cognitive impairment in parkinsonism. Front Biosci (Elite Ed). 2018;10(3):481-94. https://doi.org/10.2741/e835

104. Wu HC, Hu QL, Zhang SJ, Wang YM, Jin ZK, Lv LF, et al. Neuroprotective effects of genistein on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neural Regen Res. 2018;13(8):1375-83. https://doi.org/10.4103/1673-5374.235250

105. Siddique YH, Naz F, Jyoti S, Ali F, Rahul. Effect of genistein on the transgenic drosophila model of Parkinson's disease. J Diet Suppl. 2019;16(5):550-63. https://doi.org/10.1080/19390211.2018.1472706

106. Arbabi E, Hamidi G, Talaei SA, Salami M. Estrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of parkinsonism. Iran J Basic Med Sci. 2016;19(12):1285-90.

107. Wu Q, Wang M, Chen W, Wang K, Wang Y, Exerts D. Daidzein exerts Neuroprotective activity against MPTP-induced Parkinson's disease in experimental mice and lipopolysaccharide-induced BV2 microglial cells. J BiochemMolToxicol. 2022;36(2):e22949. https://doi.org/10.1002/jbt.22949

108. Goel R, Chaudhary R. Effect of daidzein on Parkinson disease induced by reserpine in rats. Braz J Pharm Sci. 2020;56:e18388. https://doi.org/10.1590/s2175-97902019000318388

109. de Rus Jacquet A, Ambaw A, Tambe MA, Ma SY, Timmers M, Grace MH, et al. Neuroprotective mechanisms of red clover and soy isoflavones in Parkinson's disease models. Food Funct. 2021;12(23):11987-2007. https://doi.org/10.1039/D1FO00007A

110. Siddique YH. Role of luteolin in overcoming Parkinson's disease. BioFactors. 2021;47(2):198-206. https://doi.org/10.1002/biof.1706

111. Elmazoglu Z, YarSaglam AS, Sonmez C, Karasu C. Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson's disease and inflammatory pathways. Drug ChemToxicol. 2020;43(1):96-103. https://doi.org/10.1080/01480545.2018.1504961

112. Chen HQ, Jin ZY, Wang XJ, Xu XM, Deng L, Zhao JW. Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. NeurosciLett. 2008;448(2):175-9. https://doi.org/10.1016/j.neulet.2008.10.046

113. Siddique YH, Jyoti S, Naz F. Protective effect of luteolin on the transgenic drosophila model of Parkinson's disease. Braz J Pharm Sci. 2018;54(3):e17760. https://doi.org/10.1590/s2175-97902018000317760

114. Kempuraj D, Thangavel R, Kempuraj DD, Ahmed ME, Selvakumar GP, Raikwar SP, et al. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. BioFactors. 2021;47(2):190-7. https://doi.org/10.1002/biof.1687

115. Warnakulasuriya SN. Antioxidant and cytoprotective properties of long chain fatty acid acylated derivatives of quercetin-3-o-glucoside. Halifax, Canada: Dalhouse University; 2013. https://doi.org/10.3390/biom4040980

116. Ojeda D, Jiménez-Ferrer E, Zamilpa A, Herrera-Arellano A, Tortoriello J, Alvarez L. Inhibition of angiotensin Convertin enzyme (ACE) activity by the AnthocyaninsDelphinidin-and Cyanidin-3-O-Sambubiosides from Hibiscus sabdariffa. J Ethnopharmacol. 2010;127(1):7-10. https://doi.org/10.1016/j.jep.2009.09.059

117. Ma H, Johnson SL, Liu W, DaSilva NA, Meschwitz S, Dain JA, et al. Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-β-amyloid aggregation, and microglial neuroprotective effects. Int J Mol Sci. 2018;19(2):461. https://doi.org/10.3390/ijms19020461

118. Yamane T. Beneficial effects of anthocyanin from natural products on lifestyle-related diseases through inhibition of protease activities. Stud Nat Prod Chem. 2018;58:245-64. https://doi.org/10.1016/B978-0-444-64056-7.00008-8

119. Fernández K, Labra J. Simulated digestion of proanthocyanidins in grape skin and seed extracts and the effects of digestion on the angiotensin I-converting enzyme (ACE) inhibitory activity. Food Chem. 2013;139(1-4):196-202. https://doi.org/10.1016/j.foodchem.2013.01.021

120. Ahmed F, Siddesha JM, Urooj A, Vishwanath BS. Radical scavenging and angiotensin converting enzyme inhibitory activities of standardized extracts of FicusRacemosa stem bark. Phytother Res. 2010;24(12):1839-43. https://doi.org/10.1002/ptr.3205

121. Xu YY, Yang C, Li SN. Effects of genistein on angiotensin-converting enzyme in rats. Life Sci. 2006;79(9):828-37. https://doi.org/10.1016/j.lfs.2006.02.035

122. Montenegro MF, Pessa LR, Tanus-Santos JE. IsoflavoneGenistein inhibits the angiotensin-converting enzyme and alters the vascular responses to angiotensin I and bradykinin. Eur J Pharmacol. 2009;607(1-3):173-7. https://doi.org/10.1016/j.ejphar.2009.02.015

123. Loizzo M. Inhibition of angiotensin converting enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Int J Devoted PharmacolToxicolEval Nat Prod Derivatives. 2007;21:32-6. https://doi.org/10.1002/ptr.2008

124. Chang CI, Chen CC, Wang, SY, Chen JJ, Chen MJ, Wu MD, et al. Two new dimericAbietanoid peroxides with xanthine oxidase and ACE inhibitory activities from the Bark of Cryptomeria Japonica. PhytochemLett. 2020;40:15-20. https://doi.org/10.1016/j.phytol.2020.08.011

125. Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, et al. Optimization of an extraction solvent for angiotensin-converting enzyme inhibitors from Hibiscus sabdariffa L. based on Its UPLC-MS/MS metabolic profiling. Molecules. 2020;25(10):2307. https://doi.org/10.3390/molecules25102307

126. Loizzo MR, Tundis R, Conforti F, Statti GA, Menichini F. Inhibition of angiotensin converting enzyme activity by five senecio species. Pharm Biol. 2009;47(6):516-20. https://doi.org/10.1080/13880200902845787

127. Tsutsumi Y Shimada A, Miyano A, Nishida T, Mitsunaga T. In vitro screening of angiotensin iconverting enzyme inhibitors from Japanese Cedar (Crptomera Japonica). J Wood Sci. 1997;44(6):463-8. https://doi.org/10.1007/BF00833411

128. Jonadet M, Bastide J, Bastide P, Boyer B, Carnat AP, Lamaison JL. In vitro enzyme inhibitory and in vivo cardioprotective activities of hibiscus (Hibiscus sabdariffa L.). J Pharm Belg. 1990;45(2):120-4.

129. Yonekura Sakakibara K, Higashi Y, Nakabayashi R. The origin and evolution of plant flavonoid metabolism. Front Plant Sci. 2019;10:943. https://doi.org/10.3389/fpls.2019.00943

130. Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem. 2018;82(4):600-10. https://doi.org/10.1080/09168451.2018.1444467

131. Chen Z, Zheng S, Li L, Jiang H. Metabolism of flavonoids in human: a comprehensive review. Curr Drug Metab. 2014;15(1):48-61. https://doi.org/10.2174/138920021501140218125020

132. Ferri P, Angelino D, Gennari L, Benedetti S, Ambrogini P, Del Grande P, et al. Enhancement of flavonoid ability to cross the blood-brain barrier of rats by co-administration with Alpha-tocopherol. Food Funct. 2015;6:394-400. https://doi.org/10.1039/C4FO00817K

Article Metrics
69 Views 16 Downloads 85 Total

Year

Month

Related Search

By author names