Parkinson’s disease (PD) represents a profoundly enigmatic neurodegenerative ailment marked by the inexorable degradation of dopaminergic neurons. Recent scientific inquiry has brought to the forefront the renin-angiotensin system (RAS) as a central participant within the intricate terrain of PD etiology. The present review endeavors to provide an exhaustive examination of the intricate interrelationship between RAS and PD, elucidating the mechanisms that underlie the harmful progression of this condition. Oxidative stress assumes a central position in PD pathogenesis, and the brain’s RAS, with a focus on Angiotensin II (Ang II), emerges as a catalyst for this phenomenon. Ang II, through AT1 receptors, triggers the production of reactive oxygen species via NADPH oxidase (NOX) enzymes, posing a significant threat to dopaminergic neurons. Moreover, Ang II exerts influence on neuroinflammation, apoptosis, and neurotrophic factors, amplifying neuronal vulnerability. Clinical and pre-clinical evidence underscores the potential of RAS modulators, including ACE inhibitors (ACEIs) and Angiotensin II receptor blockers (ARBs), in mitigating neurodegeneration in PD. These findings offer a promising avenue for novel treatments targeting RAS to protect dopaminergic neurons and alleviate PD symptoms. Natural compounds, specifically flavonoids, have attracted considerable scientific interest as prospective angiotensin-converting enzyme ACEIs. In the future, a deeper understanding of flavonoid metabolism and neuronal access will be instrumental in optimizing their therapeutic potential. Investigating the precise mechanisms by which flavonoids interact with the blood-brain barrier and neuronal tissues may yield innovative treatment strategies for PD.
Bhadauriya P, Varshney V, Goyal A. Beyond conventional approaches: Exploring the collaborative defense of flavonoids and the renin-angiotensin system against Parkinson’s challenges. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2025.212194
1. Ou Z, Pan J, Tang S, Duan D, Yu D, Nong H, et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson's disease in 204 countries/territories from 1990 to 2019. Front Public Health. 2021;9:776847. https://doi.org/10.3389/fpubh.2021.776847 | |
2. Klemann CJHM, Martens GJM, Sharma M, Martens MB, Isacson O, Gasser T, et al. Integrated molecular landscape of Parkinson's disease. Parkinsons Dis. 2017;3(1):14. https://doi.org/10.1038/s41531-017-0015-3 | |
3. Emamzadeh FN, Surguchov A. Parkinson's disease: biomarkers, treatment, and risk factors. Front Neurosci. 2018;12:612. https://doi.org/10.3389/fnins.2018.00612 | |
4. Jankovic J, Tan EK. Parkinson's disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795-808. https://doi.org/10.1136/jnnp-2019-322338 | |
5. Alves Da Rocha PA, Mcclelland J, Morris ME. Complementary physical therapies for movement disorders in Parkinson's disease: a systematic review. Eur J PhysRehabil Med. 2015;51(6):693-704. | |
6. Perez-Lloret S, Otero-Losada M, Toblli JE, Capani F. Renin-angiotensin system as a potential target for new therapeutic approaches in Parkinson's disease. Expert OpinInvestig Drugs. 2017;26(10):1163-73. https://doi.org/10.1080/13543784.2017.1371133 | |
7. Yang J, Gao Y, Duan Q, Qiu Y, Feng S, Zhan C, et al. Renin-angiotensin system blockers affect cognitive decline in Parkinson's disease: the PPMI dataset. Parkinsonism RelatDisord. 2022;105:90-5. https://doi.org/10.1016/j.parkreldis.2022.10.019 | |
8. Goldstein B, Speth RC, Trivedi M. Renin-angiotensin system gene expression and neurodegenerative diseases. J Renin Angiotensin Aldosterone Syst. 2016;17(3):1470320316666750. https://doi.org/10.1177/1470320316666750 | |
9. Farag E, Sessler DI, Ebrahim Z, Kurz A, Morgan J, Ahuja S, et al. The renin angiotensin system and the brain: new developments. J ClinNeurosci. 2017;46:1-8. https://doi.org/10.1016/j.jocn.2017.08.055 | |
10. Jung UJ, Kim SR. Beneficial effects of flavonoids against Parkinson's disease. J Med Food. 2018;21(5):421-32. https://doi.org/10.1089/jmf.2017.4078 | |
11. Magalingam KB, Radhakrishnan AK, Haleagrahara N. Protective mechanisms of flavonoids in Parkinson's disease. Oxid Med Cell Longev. 2015;2015:314560. https://doi.org/10.1155/2015/314560 | |
12. Tamtaji OR, Hadinezhad T, Fallah M, Shahmirzadi AR, Taghizadeh M, Behnam M, et al. The therapeutic potential of quercetin in Parkinson's disease: insights into its molecular and cellular regulation. Curr Drug Targets. 2020;21(5):509-18. https://doi.org/10.2174/1389450120666191112155654 | |
13. Zhang X, Molsberry SA, Yeh TS, Cassidy A, Schwarzschild MA, Ascherio A, et al. Intake of flavonoids and flavonoid-rich foods and mortality risk among individuals with Parkinson disease: a prospective cohort study. Neurology. 2022;98(10):e1064-76. https://doi.org/10.1212/WNL.0000000000013275 | |
14. Bellavite P. Neuroprotective potentials of flavonoids: experimental studies and mechanisms of action. Antioxidants (Basel). 2023;12(2):280. https://doi.org/10.3390/antiox12020280 | |
15. Prusty SK, Sahu PK, Subudhi BB. Angiotensin mediated oxidative stress and neuroprotective potential of antioxidants and AT1 receptor blockers. Mini Rev Med Chem. 2017;17(6):518-28. https://doi.org/10.2174/1389557516666161025094539 | |
16. Labandeira Garcia JL, Rodríguez Perez AI, Garrido Gil P, Rodriguez Pallares J, Lanciego JL, Guerra MJ. Brain renin-angiotensin system and microglial polarization: implications for aging and neurodegeneration. Front Aging Neurosci. 2017;9:129. https://doi.org/10.3389/fnagi.2017.00129 | |
17. Shinohara K, Liu X, Morgan DA, Davis DR, Sequeira-Lopez MLS, Cassell MD, et al. Selective deletion of the brain-specific isoform of renin causes neurogenic hypertension. Hypertension. 2016;68(6):1385-92. https://doi.org/10.1161/HYPERTENSIONAHA.116.08242 | |
18. Wright JW, Kawas LH, Harding JW. A role for the brain RAS in Alzheimer's and Parkinson's diseases. Front Endocrinol (Lausanne). 2013;4:158. https://doi.org/10.3389/fendo.2013.00158 | |
19. van Thiel BS, Góes Martini A, TeRiet L, Severs D, Uijl E, Garrelds IM, et al. Brain renin-angiotensin system: does it exist?: does? Hypertension. 2017;69(6):1136-44. https://doi.org/10.1161/HYPERTENSIONAHA.116.08922 | |
20. Nakagawa P, Sigmund CD. How is the brain renin-angiotensin system regulated? Hypertension. 2017;70(1):10-8. https://doi.org/10.1161/HYPERTENSIONAHA.117.08550 | |
21. Bodiga VL, Bodiga S. Renin angiotensin system in cognitive function and dementia. Asian J Neurosci. 2013;2013:1-18. https://doi.org/10.1155/2013/102602 | |
22. Rygiel K. Can angiotensin-converting enzyme inhibitors impact cognitive decline in early stages of Alzheimer's disease? an overview of research evidence in the elderly patient population. J Postgrad Med. 2016;62(4):242-8. https://doi.org/10.4103/0022-3859.188553 | |
23. Jiang T, Gao L, Lu J, Zhang YD. ACE2-Ang-(1-7)-Mas Axis in Brain: a potential target for prevention and treatment of ischemic stroke. CurrNeuropharmacol. 2013;11:209-17. https://doi.org/10.2174/1570159X11311020007. https://doi.org/10.2174/1570159X11311020007 | |
24. Agassandian K, Grobe JL, Liu X, Agassandian M, Thompson AP, Sigmund CD, et al. Evidence for intraventricular secretion of angiotensinogen and angiotensin by the subfornical organ using transgenic mice. Am J Physiol Regul Integr Comp Physiol. 2017;312:R973-81. doi: https://doi.org/10.1152/ajpregu.00511.2016 https://doi.org/10.1152/ajpregu.00511.2016 | |
25. Uijl E, Ren L, Danser AHJ. Angiotensin generation in the brain: a re-evaluation. Clin Sci (Lond.). 2018;132(8):839-50. https://doi.org/10.1042/CS20180236 | |
26. Mascolo A, Sessa M, Scavone C, De Angelis A, Vitale C, Berrino L, et al. New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): focus on cardiovascular and neurological diseases. Int J Cardiol. 2017;227:734-742. https://doi.org/10.1016/j.ijcard.2016.10.069 | |
27. Miners JS, van Helmond Z, Raiker M, Love S, Kehoe PG. ACE variants and association with brain Aβ levels in Alzheimer's disease. Am J Transl Res. 2010;3(1):73-80. | |
28. Su G, Dou H, Zhao L, Wang H, Liu G, Huang B, et al. The angiotensin-converting enzyme (ACE) I/D polymorphism in Parkinson's disease. J Renin Angiotensin Aldosterone Syst. 2015;16(2):428-33. https://doi.org/10.1177/1470320313494432 | |
29. Grobe JL, Xu D, Sigmund CD. An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology (Bethesda). 2008;23(4):187-93. https://doi.org/10.1152/physiol.00002.2008 | |
30. Shinohara K, Nakagawa P, Gomez J, Morgan DA, Littlejohn NK, Folchert MD, et al. Selective deletion of renin-b in the brain alters drinking and metabolism. Hypertension. 2017;70(5):990-7. https://doi.org/10.1161/HYPERTENSIONAHA.117.09923 | |
31. Ohishi M, Yamamoto K, Rakugi H. Angiotensin (1-7) and other angiotensin peptides. Curr Pharm Des. 2013;19(17):3060-4. https://doi.org/10.2174/1381612811319170013 | |
32. Kamel AS, Abdelkader NF, Abd El-Rahman SS, Emara M, Zaki HF, Khattab MM. Stimulation of ACE2/ANG (1-7)/mas axis by diminazene ameliorates Alzheimer's disease in the D-galactose-ovariectomized rat model: role of PI3K/Akt pathway. MolNeurobiol. 2018;55(10):8188-202. https://doi.org/10.1007/s12035-018-0966-3 | |
33. Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J PhysiolRegulIntegr Comp Physiol. 2007;292(1):R373-81. https://doi.org/10.1152/ajpregu.00292.2006 | |
34. Abiodun OA, Ola MS. Role of brain renin angiotensin system in neurodegeneration: an update. Saudi J Biol Sci. 2020;27(3):905-12. https://doi.org/10.1016/j.sjbs.2020.01.026 | |
35. Ren L, Lu X, Danser AHJ. Revisiting the brain renin-angiotensin system-focus on novel therapies. CurrHypertens Rep. 2019;21(4):28. https://doi.org/10.1007/s11906-019-0937-8 | |
36. Rodriguez Perez AI, Garrido Gil P, Pedrosa MA, Garcia-Garrote M, Valenzuela R, Navarro G, et al. Angiotensin Type 2 receptors: role in aging and neuroinflammation in the SubstantiaNigra. Brain Behav Immun. 2020;87:256-71. https://doi.org/10.1016/j.bbi.2019.12.011 | |
37. Guo S, Som AT, Arai K, Lo EH, Guo S, Som AT, et al. Effects of angiotensin-II on brain endothelial cell permeability via PPARalpha regulation of para-and trans-cellular pathways. Brain Res. 2019;1722:146353. https://doi.org/10.1016/j.brainres.2019.146353 | |
38. Mertens B, Vanderheyden P, Michotte Y, Sarre S. The role of the central renin-angiotensin system in Parkinson's disease. J Renin Angiotensin Aldosterone Syst. 2010;11(1):49-56. https://doi.org/10.1177/1470320309347789 | |
39. Labandeira-Garcia JL, Rodriguez-Pallares J, Rodríguez-Perez AI, Garrido-Gil P, Villar-Cheda B, Valenzuela R, et al. Brain angiotensin and dopaminergic degeneration: relevance to Parkinson's disease. Am J Neurodegener Dis. 2012;1(3):226-44. | |
40. Sonsalla PK, Coleman C, Wong LY, Harris SL, Richardson JR, Gadad BS, et al. The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism. Exp Neurol. 2013;250:376-83. https://doi.org/10.1016/j.expneurol.2013.10.014 | |
41. Kaur P, Muthuraman A, Kaur M. The implications of angiotensin-converting enzymes and their modulators in neurodegenerative disorders: current and future perspectives. ACS ChemNeurosci. 2015;6(4):508-21. https://doi.org/10.1021/cn500363g | |
42. Mogi M, Horiuchi M. Effect of angiotensin II Type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases. GeriatrGerontol Int. 2013;13(1):13-8. https://doi.org/10.1111/j.1447-0594.2012.00900.x | |
43. De Bundel D, Smolders I, Yang R, Albiston AL, Michotte Y, Chai SY. Angiotensin IV and LVV-Haemorphin 7 enhance spatial working memory in rats: effects on hippocampal glucose levels and blood flow. Neurobiol Learn Mem. 2009;92(1):19-26. https://doi.org/10.1016/j.nlm.2009.02.004 | |
44. Lee J, Albiston AL, Allen AM, Mendelsohn FAO, Ping SE, Barrett GL, et al. Effect of I.C.V. Injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-Hemorphin 7, on spatial learning in rats. Neuroscience. 2004;124(2):341-9. https://doi.org/10.1016/j.neuroscience.2003.12.006 | |
45. Rivas-Santisteban R, Lillo J, Muñoz A, Rodríguez-Pérez AI, Labandeira-García JL, Navarro G, et al. Novel interactions involving the mas receptor show potential of the renin-angiotensin system in the regulation of microglia activation: altered expression in parkinsonism and dyskinesia. Neurotherapeutics. 2021;18(2):998-1016. https://doi.org/10.1007/s13311-020-00986-4 | |
46. Rabie MA, Abd El Fattah MA, Nassar NN, Abdallah DM, El-Abhar HS. The mas receptor as a future perspective in Parkinson's disease. J Neurol Neuromedicine. 2018;3(4):65-8. https://doi.org/10.29245/2572.942X/2018/4.1208 | |
47. de Morais SDB, Shanks J, Zucker IH. Integrative physiological aspects of brain RAS in hypertension. CurrHypertens Rep. 2018;20(2):10. https://doi.org/10.1007/s11906-018-0810-1 | |
48. Tota S, Nath C, Najmi AK, Shukla R, Hanif K. Inhibition of central angiotensin converting enzyme ameliorates scopolamine induced memory impairment in mice: role of cholinergic neurotransmission, cerebral blood flow and brain energy metabolism. Behav Brain Res. 2012;232(1):66-76. https://doi.org/10.1016/j.bbr.2012.03.015 | |
49. Solleiro Villavicencio H, Rivas Arancibia S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases. Front Cell Neurosci. 2018;12:114. https://doi.org/10.3389/fncel.2018.00114 | |
50. Chen M, Lai L, Li X, Zhang X, He X, Liu W, et al. Baicalein attenuates neurological deficits and preserves blood-brain barrier integrity in a rat model of intracerebralhemorrhage. Neurochem Res. 2016;41(11):3095-102. https://doi.org/10.1007/s11064-016-2032-8 | |
51. Carvalho C, Moreira PI. Oxidative stress: a major player in cerebrovascular alterations associated to neurodegenerative events. Front Physiol. 2018;9:806. https://doi.org/10.3389/fphys.2018.00806 | |
52. Sun MS, Jin H, Sun X, Huang S, Zhang FL, Guo ZN, et al. Free radical damage in ischemia-reperfusion injury: an obstacle in acute ischemic stroke after revascularization therapy. Oxid Med Cell Longev. 2018;2018:3804979. https://doi.org/10.1155/2018/3804979 | |
53. Rodriguez-Perez AI, Sucunza D, Pedrosa MA, Garrido-Gil P, Kulisevsky J, Lanciego JL, et al. Angiotensin type 1 receptor antagonists protect against alpha-synuclein-induced neuroinflammation and dopaminergic neuron death. Neurotherapeutics. 2018;15(4):1063-81. https://doi.org/10.1007/s13311-018-0646-z | |
54. Torika N, Asraf K, Roasso E, Danon A, Fleisher-Berkovich S. Angiotensin converting enzyme inhibitors ameliorate brain inflammation associated with microglial activation: possible implications for Alzheimer's disease. J NeuroimmunePharmacol. 2016;11(4):774-85. https://doi.org/10.1007/s11481-016-9703-8 | |
55. Zhao HR, Jiang T, Tian YY, Gao Q, Li Z, Pan Y, et al. Angiotensin II triggers apoptosis via enhancement of NADPH oxidase-dependent oxidative stress in a dopaminergic neuronal cell line. Neurochem Res. 2015;40(4):854-63. https://doi.org/10.1007/s11064-015-1536-y | |
56. Kim MS, Lee GH, Kim YM, Lee BW, Nam HY, Sim UC, et al. Angiotensin II causes apoptosis of adult hippocampal neural stem cells and memory impairment through the action on AMPK-PGC1α signaling in heart failure. Stem Cells Transl Med. 2017;6(6):1491-503. https://doi.org/10.1002/sctm.16-0382 | |
57. Gao Q, Ou Z, Jiang T, Tian YY, Zhou JS, Wu L, et al. Azilsartan ameliorates apoptosis of dopaminergic neurons and rescues characteristic ParkinsonianBehaviors in a rat model of Parkinson's disease. Oncotarget. 2017;8(15):24099-109. https://doi.org/10.18632/oncotarget.15732 | |
58. Ou Z, Jiang T, Gao Q, Tian YY, Zhou JS, Wu L, et al. Mitochondrial-dependent mechanisms are involved in angiotensin II-induced apoptosis in dopaminergic neurons. J Renin Angiotensin Aldosterone Syst. 2016;17(4):1470320316672349. https://doi.org/10.1177/1470320316672349 | |
59. Auladell C, de Lemos L, Verdaguer E, Ettcheto M, Busquets O, Lazarowski A, et al. Role of JNK isoforms in the kainic acid experimental model of epilepsy and neurodegeneration. Front Biosci (Landmark Ed). 2017;22(5):795-814. https://doi.org/10.2741/4517 | |
60. Ledda F, Paratcha G. Assembly of neuronal connectivity by neurotrophic factors and leucine-rich repeat proteins. Front Cell Neurosci. 2016;10:199. https://doi.org/10.3389/fncel.2016.00199 | |
61. Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S. Neurotrophic factors in Alzheimer's and Parkinson's diseases: implications for pathogenesis and therapy. Neural Regen Res. 2017;12(4):549-57. https://doi.org/10.4103/1673-5374.205084 | |
62. Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors-relevance for disorders of the central nervous system. Neurobiol Dis. 2017;97(B):80-9. https://doi.org/10.1016/j.nbd.2016.01.021 | |
63. Lindahl M, Saarma M, Lindholm P. Unconventional neurotrophic factors CDNF and MANF: structure, physiological functions and therapeutic potential. Neurobiol Dis. 2017;97(B):90-102. https://doi.org/10.1016/j.nbd.2016.07.009 | |
64. Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the brain: the renin angiotensin system. Int J Mol Sci. 2018;19(3):876. https://doi.org/10.3390/ijms19030876 | |
65. Schaich CL, Wellman TL, Koi B, Erdos B. BDNF acting in the hypothalamus induces acute pressor responses under permissive control of angiotensin II. AutonNeurosci. 2016;197:1-8. https://doi.org/10.1016/j.autneu.2016.02.011 | |
66. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98(3):1627-738. https://doi.org/10.1152/physrev.00038.2017 | |
67. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3(1):17013. https://doi.org/10.1038/nrdp.2017.13 | |
68. Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases. ProgNeurobiol. 2015;125:26-46. https://doi.org/10.1016/j.pneurobio.2014.11.004 | |
69. Rodriguez-Perez AI, Borrajo A, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL. Interaction between NADPH-oxidase and rho-kinase in angiotensin II-induced microglial activation. Glia. 2015;63(3):466-82. https://doi.org/10.1002/glia.22765 | |
70. Ola MS, Ahmed MM, Abuohashish HM, Al-Rejaie SS, Alhomida AS. Telmisartan ameliorates neurotrophic support and oxidative stress in the retina of streptozotocin-induced diabetic rats. Neurochem Res. 2013;38(8):1572-9. https://doi.org/10.1007/s11064-013-1058-4 | |
71. Lin HC, Tseng YF, Shen AL, Chao JCJ, Hsu CY, Lin HL. Association of angiotensin receptor blockers with incident Parkinson disease in patients with hypertension: a retrospective cohort study. Am J Med. 2022;135(8):1001-7. https://doi.org/10.1016/j.amjmed.2022.04.029 | |
72. Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL. The inflammatory response in the MPTP model of Parkinson's disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem. 2009;109(2):656-69. https://doi.org/10.1111/j.1471-4159.2009.05999.x | |
73. Goel R, Bhat SA, Rajasekar N, Hanif K, Nath C, Shukla R. Hypertension exacerbates predisposition to neurodegeneration and memory impairment in the presence of a neuroinflammatory stimulus: protection by angiotensin converting enzyme inhibition. PharmacolBiochemBehav. 2015;133:132-45. https://doi.org/10.1016/j.pbb.2015.04.002 | |
74. Muñoz A, Rey P, Guerra MJ, Mendez-Alvarez E, Soto-Otero R, Labandeira-Garcia JL. Reduction of dopaminergic degeneration and oxidative stress by inhibition of angiotensin converting enzyme in a MPTP model of parkinsonism. Neuropharmacology. 2006;51(1):112-20. https://doi.org/10.1016/j.neuropharm.2006.03.004 | |
75. Grammatopoulos TN, Jones SM, Ahmadi FA, Hoover BR, Snell LD, Skoch J, et al. Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in SubstantiaNigra. MolNeurodegener. 2007;2(1):1. https://doi.org/10.1186/1750-1326-2-1 | |
76. Zhang TT, Yang L, Jiang JG. Bioactive comparison of main components from unripe fruits of RubusChingii Hu and identification of the effective component. Food Funct. 2015;6(7):2205-14. https://doi.org/10.1039/C5FO00406C | |
77. Hong F, Ming L, Yi S, Zhanxia L, Yongquan W, Chi L. The antihypertensive effect of peptides: a novel alternative to drugs? Peptides. 2008;29(6):1062-71. https://doi.org/10.1016/j.peptides.2008.02.005 | |
78. Farzamirad V, Aluko RE. Angiotensin-converting enzyme inhibition and free-radical scavenging properties of cationic peptides derived from soybean protein hydrolysates. Int J Food SciNutr. 2008;59(5):428-37. https://doi.org/10.1080/09637480701592897 | |
79. Guang C, Phillips RD. Plant food-derived angiotensin I converting enzyme inhibitory peptides. J Agric Food Chem. 2009;57(12):5113-20. https://doi.org/10.1021/jf900494d | |
80. Loizzo MR, Said A, Tundis R, Rashed K, Statti GA, Hufner A, et al. Inhibition of angiotensin converting enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Phytother Res. 2007;21(1):32-6. https://doi.org/10.1002/ptr.2008 | |
81. Margalef M, Bravo FI, Arola-Arnal A, Muguerza B. Natural angiotensin converting enzyme (ACE) inhibitors with antihypertensive properties. In: Andrade PB, Valentão P, Pereira DM. editors. Natural products targeting clinically relevant enzymes. Hoboken, NJ: John Wiley & Sons; 2017. pp. 45-67. Available from: https://onlinelibrary.wiley.com/doi/10.1002/9783527805921.ch3 https://doi.org/10.1002/9783527805921.ch3 | |
82. NileekaBalasuriya BW, Vasantha Rupasinghe HP. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct Foods Health Dis. 2011;1(5):172-88. https://doi.org/10.31989/ffhd.v1i5.132 | |
83. Zilli AMH, Zilli EM. Review of evidence and perspectives of flavonoids on metabolic syndrome and neurodegenerative disease. Protein PeptLett. 2021;28(7):725-34. https://doi.org/10.2174/0929866528666210127152359 | |
84. Zheng W, Tian E, Liu Z, Zhou C, Yang P, Tian K, et al. Small molecule angiotensin converting enzyme inhibitors: a medicinal chemistry perspective. Front Pharmacol. 2022;13:968104. https://doi.org/10.3389/fphar.2022.968104 | |
85. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Circadian rhythms, neuroinflammation and oxidative stress in the story of Parkinson's disease. Cells. 2020;9(2):314. https://doi.org/10.3390/cells9020314 | |
86. Wijesekara I, Kim SK. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: prospects in the pharmaceutical industry. Mar Drugs. 2010;8(4):1080-93. https://doi.org/10.3390/md8041080 | |
87. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J ClinNutr. 2004;79(5):727-47. https://doi.org/10.1093/ajcn/79.5.727 | |
88. Aherne SA, O'Brien NM. Dietary flavonols: chemistry, food content, and metabolism. Nutrition. 2002;18(1):75-81. https://doi.org/10.1016/S0899-9007(01)00695-5 | |
89. Dias MC, Pinto DCGA, Silva AMS. Plant flavonoids: chemical characteristics and biological activity. Molecules. 2021;26(17):5377. https://doi.org/10.3390/molecules26175377 | |
90. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. https://doi.org/10.1016/j.foodchem.2022.132531 | |
91. Medina dos Santos N, Berilli Batista P, Batista ÂG, MarósticaJúnior MR. Current evidence on cognitive improvement and neuroprotection promoted by anthocyanins. CurrOpin Food Sci. 2019;26:71-8. https://doi.org/10.1016/j.cofs.2019.03.008 | |
92. Li P, Feng D, Yang D, Li X, Sun J, Wang G, et al. Protective effects of anthocyanins on neurodegenerative diseases. Trends Food Sci Technol. 2021;117:205-17. https://doi.org/10.1016/j.tifs.2021.05.005 | |
93. Caruso G, Torrisi SA, Mogavero MP, Currenti W, Castellano S, Godos J, et al. Polyphenols and neuroprotection: therapeutic implications for cognitive decline. Pharmacol. Ther. 2022;232 (108013):108013. doi: https://doi.org/10.1016/j.pharmthera.2021.108013 https://doi.org/10.1016/j.pharmthera.2021.108013 | |
94. Socci V, Tempesta D, Desideri G, De Gennaro L, Ferrara M. Enhancing human cognition with cocoa flavonoids. Front Nutr. 2017;4:19. https://doi.org/10.3389/fnut.2017.00019 | |
95. Khalatbary AR, Khademi E. The green tea Polyphenolic Catechin Epigallocatechin Gallate and neuro protection. Nutr Neuro sci. 2020;23(4):281-94. https://doi.org/10.1080/1028415X.2018.1500124 | |
96. Singh NA, Mandal AKA, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J. 2016;15(1):60. https://doi.org/10.1186/s12937-016-0179-4 | |
97. Yao C, Zhang J, Liu G, Chen F, Lin Y. Neuroprotection by (-)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress. Mol Med Rep. 2014;9(1):69-76. https://doi.org/10.3892/mmr.2013.1778 | |
98. Grewal AK, Singh TG, Sharma D, Sharma V, Singh M, Rahman MH, et al. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother. 2021;140:111729. https://doi.org/10.1016/j.biopha.2021.111729 | |
99. Dajas F, Abin-Carriquiry JA, Arredondo F, Blasina F, Echeverry C, Martínez M, et al. Quercetin in brain diseases: potential and limits. Neurochem Int. 2015;89:140-8. https://doi.org/10.1016/j.neuint.2015.07.002 | |
100. Boyina HK, Geethakhrishnan SL, Panuganti S, Gangarapu K, Devarakonda KP, Bakshi V, et al. In silico and in vivo studies on quercetin as potential anti-Parkinson agent. Adv Exp Med Biol. 2020;1195:1-11. https://doi.org/10.1007/978-3-030-32633-3_1 | |
101. Pan X, Liu X, Zhao H, Wu B, Liu G. Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson's disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. J Funct Foods. 2020;74:104-40. https://doi.org/10.1016/j.jff.2020.104140 | |
102. Han X, Zhao S, Song H, Xu T, Fang Q, Hu G, et al. Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: implications in Parkinson's disease. Redox Biol. 2021;41:(101911). https://doi.org/10.1016/j.redox.2021.101911 | |
103. Dhanraj V, Karuppaiah J, Balakrishnan R, Elangovan N. Myricetin attenuates neurodegeneration and cognitive impairment in parkinsonism. Front Biosci (Elite Ed). 2018;10(3):481-94. https://doi.org/10.2741/e835 | |
104. Wu HC, Hu QL, Zhang SJ, Wang YM, Jin ZK, Lv LF, et al. Neuroprotective effects of genistein on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neural Regen Res. 2018;13(8):1375-83. https://doi.org/10.4103/1673-5374.235250 | |
105. Siddique YH, Naz F, Jyoti S, Ali F, Rahul. Effect of genistein on the transgenic drosophila model of Parkinson's disease. J Diet Suppl. 2019;16(5):550-63. https://doi.org/10.1080/19390211.2018.1472706 | |
106. Arbabi E, Hamidi G, Talaei SA, Salami M. Estrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of parkinsonism. Iran J Basic Med Sci. 2016;19(12):1285-90. | |
107. Wu Q, Wang M, Chen W, Wang K, Wang Y, Exerts D. Daidzein exerts Neuroprotective activity against MPTP-induced Parkinson's disease in experimental mice and lipopolysaccharide-induced BV2 microglial cells. J BiochemMolToxicol. 2022;36(2):e22949. https://doi.org/10.1002/jbt.22949 | |
108. Goel R, Chaudhary R. Effect of daidzein on Parkinson disease induced by reserpine in rats. Braz J Pharm Sci. 2020;56:e18388. https://doi.org/10.1590/s2175-97902019000318388 | |
109. de Rus Jacquet A, Ambaw A, Tambe MA, Ma SY, Timmers M, Grace MH, et al. Neuroprotective mechanisms of red clover and soy isoflavones in Parkinson's disease models. Food Funct. 2021;12(23):11987-2007. https://doi.org/10.1039/D1FO00007A | |
110. Siddique YH. Role of luteolin in overcoming Parkinson's disease. BioFactors. 2021;47(2):198-206. https://doi.org/10.1002/biof.1706 | |
111. Elmazoglu Z, YarSaglam AS, Sonmez C, Karasu C. Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson's disease and inflammatory pathways. Drug ChemToxicol. 2020;43(1):96-103. https://doi.org/10.1080/01480545.2018.1504961 | |
112. Chen HQ, Jin ZY, Wang XJ, Xu XM, Deng L, Zhao JW. Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. NeurosciLett. 2008;448(2):175-9. https://doi.org/10.1016/j.neulet.2008.10.046 | |
113. Siddique YH, Jyoti S, Naz F. Protective effect of luteolin on the transgenic drosophila model of Parkinson's disease. Braz J Pharm Sci. 2018;54(3):e17760. https://doi.org/10.1590/s2175-97902018000317760 | |
114. Kempuraj D, Thangavel R, Kempuraj DD, Ahmed ME, Selvakumar GP, Raikwar SP, et al. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. BioFactors. 2021;47(2):190-7. https://doi.org/10.1002/biof.1687 | |
115. Warnakulasuriya SN. Antioxidant and cytoprotective properties of long chain fatty acid acylated derivatives of quercetin-3-o-glucoside. Halifax, Canada: Dalhouse University; 2013. https://doi.org/10.3390/biom4040980 | |
116. Ojeda D, Jiménez-Ferrer E, Zamilpa A, Herrera-Arellano A, Tortoriello J, Alvarez L. Inhibition of angiotensin Convertin enzyme (ACE) activity by the AnthocyaninsDelphinidin-and Cyanidin-3-O-Sambubiosides from Hibiscus sabdariffa. J Ethnopharmacol. 2010;127(1):7-10. https://doi.org/10.1016/j.jep.2009.09.059 | |
117. Ma H, Johnson SL, Liu W, DaSilva NA, Meschwitz S, Dain JA, et al. Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-β-amyloid aggregation, and microglial neuroprotective effects. Int J Mol Sci. 2018;19(2):461. https://doi.org/10.3390/ijms19020461 | |
118. Yamane T. Beneficial effects of anthocyanin from natural products on lifestyle-related diseases through inhibition of protease activities. Stud Nat Prod Chem. 2018;58:245-64. https://doi.org/10.1016/B978-0-444-64056-7.00008-8 | |
119. Fernández K, Labra J. Simulated digestion of proanthocyanidins in grape skin and seed extracts and the effects of digestion on the angiotensin I-converting enzyme (ACE) inhibitory activity. Food Chem. 2013;139(1-4):196-202. https://doi.org/10.1016/j.foodchem.2013.01.021 | |
120. Ahmed F, Siddesha JM, Urooj A, Vishwanath BS. Radical scavenging and angiotensin converting enzyme inhibitory activities of standardized extracts of FicusRacemosa stem bark. Phytother Res. 2010;24(12):1839-43. https://doi.org/10.1002/ptr.3205 | |
121. Xu YY, Yang C, Li SN. Effects of genistein on angiotensin-converting enzyme in rats. Life Sci. 2006;79(9):828-37. https://doi.org/10.1016/j.lfs.2006.02.035 | |
122. Montenegro MF, Pessa LR, Tanus-Santos JE. IsoflavoneGenistein inhibits the angiotensin-converting enzyme and alters the vascular responses to angiotensin I and bradykinin. Eur J Pharmacol. 2009;607(1-3):173-7. https://doi.org/10.1016/j.ejphar.2009.02.015 | |
123. Loizzo M. Inhibition of angiotensin converting enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Int J Devoted PharmacolToxicolEval Nat Prod Derivatives. 2007;21:32-6. https://doi.org/10.1002/ptr.2008 | |
124. Chang CI, Chen CC, Wang, SY, Chen JJ, Chen MJ, Wu MD, et al. Two new dimericAbietanoid peroxides with xanthine oxidase and ACE inhibitory activities from the Bark of Cryptomeria Japonica. PhytochemLett. 2020;40:15-20. https://doi.org/10.1016/j.phytol.2020.08.011 | |
125. Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, et al. Optimization of an extraction solvent for angiotensin-converting enzyme inhibitors from Hibiscus sabdariffa L. based on Its UPLC-MS/MS metabolic profiling. Molecules. 2020;25(10):2307. https://doi.org/10.3390/molecules25102307 | |
126. Loizzo MR, Tundis R, Conforti F, Statti GA, Menichini F. Inhibition of angiotensin converting enzyme activity by five senecio species. Pharm Biol. 2009;47(6):516-20. https://doi.org/10.1080/13880200902845787 | |
127. Tsutsumi Y Shimada A, Miyano A, Nishida T, Mitsunaga T. In vitro screening of angiotensin iconverting enzyme inhibitors from Japanese Cedar (Crptomera Japonica). J Wood Sci. 1997;44(6):463-8. https://doi.org/10.1007/BF00833411 | |
128. Jonadet M, Bastide J, Bastide P, Boyer B, Carnat AP, Lamaison JL. In vitro enzyme inhibitory and in vivo cardioprotective activities of hibiscus (Hibiscus sabdariffa L.). J Pharm Belg. 1990;45(2):120-4. | |
129. Yonekura Sakakibara K, Higashi Y, Nakabayashi R. The origin and evolution of plant flavonoid metabolism. Front Plant Sci. 2019;10:943. https://doi.org/10.3389/fpls.2019.00943 | |
130. Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem. 2018;82(4):600-10. https://doi.org/10.1080/09168451.2018.1444467 | |
131. Chen Z, Zheng S, Li L, Jiang H. Metabolism of flavonoids in human: a comprehensive review. Curr Drug Metab. 2014;15(1):48-61. https://doi.org/10.2174/138920021501140218125020 | |
132. Ferri P, Angelino D, Gennari L, Benedetti S, Ambrogini P, Del Grande P, et al. Enhancement of flavonoid ability to cross the blood-brain barrier of rats by co-administration with Alpha-tocopherol. Food Funct. 2015;6:394-400. https://doi.org/10.1039/C4FO00817K |
Year
Month