Polymer-based nanoparticles in targeted cancer therapy: a review

Farah Al-Sahlawi Aya Yaseen Mahmood Alabdali Sasikala Chinnappan Ali Al-Samydai Marwan Abdelmahmoud Abdelkarim Maki   

Open Access   

Published:  May 23, 2024

DOI: 10.7324/JAPS.2024.172227
Abstract

Tumors are the result of unchecked cell proliferation in the body, which leads to the complicated and widespread illness known as cancer. The formidable issue of providing effective cancer treatment has prompted scientists to investigate novel strategies. Using nanoparticles based on polymers tiny particles made of substances that are harmless for the body is one approach that shows promise. Strong anticancer medications are delivered to cancer cells directly via these nanoparticles, which also increase therapy effectiveness and reduce adverse effects on healthy cells. This study explores the field of targeted cancer treatment using polymer-based nanoparticles, using information from reliable sources such as PubMed, Web of Science, and Scopus. A strict and methodical procedure was followed in the selection of published articles to guarantee the inclusion of relevant and excellent research papers. Numerous production techniques, including self-assembly, emulsion/solvent evaporation, and nanoprecipitation, provide fine control over the size, shape, and properties of nanoparticles. Methods based on ligands, pH response, and stimuli response are used to promote enhanced selectivity and accumulation inside malignancies. Diverse advantages are provided by polymer-based nanoparticles for targeted cancer therapy. Their promise in targeted cancer therapy is highlighted by this comprehensive review, which also provides insights into design concepts, manufacturing techniques, and targeting strategies that open the door to individualized and successful therapies. The benefits of polymer-based nanoparticles are emphasized, including their strong drug-loading ability, prolonged half-life, and active targeting of cancer cells with the least amount of damage to healthy tissues. In order to maximize the usage of polymer-based nanoparticles in customized cancer therapies and eventually improve patient outcomes in the area of oncology, further investigation and clinical trials are necessary.


Keyword:     Cancer polymer-based nanoparticles anticancer drugs targeted therapy tumor targeting drug delivery nanoparticle applications manufacturing methods self-assembly emulsion/solvent evaporation


Citation:

Al-Sahlawi F, Chinnappan S, Alabdali A, Al-Samydai A, Maki MAA. Polymer-based nanoparticles in targeted cancer therapy: a review. J Appl Pharm Sci. 2024. Online first. http://doi.org/10.7324/JAPS.2024.172227

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Rizi HAY, Shin DH, Rizi SY. Polymeric nanoparticles in cancer chemotherapy: a narrative review. Iran J Public Health [Internet]. doi: https://doi.org/10.18502/ijph.v51i2.8677

2. Salari N, Faraji F, Torghabeh FM, Faraji F, Mansouri K, Abam F, et al. Polymer-based drug delivery systems for anticancer drugs: a systematic review. Cancer Treat Res Commun [Internet]. 2022 Jan 1;32:100605. doi: https://doi.org/10.1016/j.ctarc.2022.100605

3. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev [Internet]. 2003 Feb 1;55(3):329–47. doi: https://doi.org/10.1016/s0169-409x(02)00228-4

4. Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol [Internet]. 2019 Dec 1;12(1). doi: https://doi.org/10.1186/s13045-019-0833-3

5. Nicolas S, Bolzinger M, Jordheim LP, Chevalier Y, Fessi H, Almouazen E. Polymeric nanocapsules as drug carriers for sustained anticancer activity of calcitriol in breast cancer cells. Int J Pharm [Internet]. 2018 Oct 1;550(1–2):170–9. doi: https://doi.org/10.1016/j.ijpharm.2018.08.022

6. Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS Open [Internet]. 2022 Aug 1;8(1). doi: https://doi.org/10.1186/s41120-022-00060-7

7. Jank? F. Tumor heterogeneity in the clinic: is it a real problem? Ther Adv Med Oncol [Internet]. 2013 Dec 20;6(2):43–51. doi: https://doi.org/10.1177/1758834013517414

8. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol [Internet]. 2016 Mar 22;13(6):370–83. doi: https://doi.org/10.1038/nrclinonc.2016.36

9. Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med [Internet]. 24(3):257–77. doi: https://doi.org/10.1016/j.molmed.2018.01.001

10. D’Huyvetter M, Xavier C, Caveliers V, Lahoutte T, Muyldermans S, Devoogdt N. Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. Expert Opin Drug Deliv [Internet]. 2014 Jul 18;11(12):1939–54. doi: https://doi.org/10.1517/17425247.2014.941803

11. Chan DA, Giaccia AJ. Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov [Internet]. 2011 Apr 29;10(5):351–64. doi: https://doi.org/10.1038/nrd3374

12. Yerpude ST, Potbhare AK, Bhilkar PR, Alok R, Singh RP, Abdala A, et al. Biomedical,clinical and environmental applications of platinum-based nanohybrids: an updated review. Environ Res [Internet]. 2023 Aug 1;231:116148. doi: https://doi.org/10.1016/j.envres.2023.116148

13. Yerpude ST, Potbhare AK, Bhilkar PR, Thakur P, Khiratkar P, Desimone MF, et al. Computational analysis of nanofluids-based drug delivery system: preparation, current development and applications of nanofluids. Elsevier eBooks [Internet]. 2022. p. 335–64. doi: https://doi.org/10.1016/b978-0-323-90564-0.00014-3

14. Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol [Internet]. 2015 Apr 1;25(4):198–213. Available from: https://www.cell.com/trends/cell-biology/fulltext/S0962-8924(14)00199-8

15. Alabdali AYM, Kzar MS, Chinnappan S, Mani RR, Selvaraja M, Wen KJ, et al. Application of nanoantibiotics approach against anti-bacterial resistance. Int J Appl Pharm[Internet]. 2022 May 7;34–9. doi: https://doi.org/10.22159/ijap.2022v14i3.43508

16. Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules [Internet]. 2021 Sep 29;26(19):5905. doi: https://doi.org/10.3390/molecules26195905

17. Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci [Internet]. 2015 Mar 1;125:75–84. doi: https://doi.org/10.1016/j.ces.2014.08.046

18. Parreidt TS, Müller K, Schmid M. Alginate-based edible films and coatings for food packaging applications. Foods [Internet]. 2018 Oct 17;7(10):170. doi: https://doi.org/10.3390/foods7100170

19. Singh S, Kumar S, Khanna V. A review on surface modification techniques. Mater Today: Proc [Internet]. 2023 Jan 1. doi: https://doi.org/10.1016/j.matpr.2023.01.010

20. Xie M, Pan Y, An Z, Huang S, Dong M. Review on surface polishing methods of optical parts. Adv Mater Sci Eng [Internet]. 2022 May 12;2022:1–30. doi: https://doi.org/10.1155/2022/8723269

21. Golroudbari HT, Banikarimi SP, Ayati A, Hadizadeh A, Zavareh ZK, Hajikhani K, et al. Advanced micro-/nanotechnologies for exosome encapsulation and targeting in regenerative medicine. Clin Exp Med [Internet]. 2023 Jan 27;23(6):1845–66. doi: https://doi.org/10.1007/s10238-023-00993-7

22. Boike L, Henning NJ, Nomura DK. Advances in covalent drug discovery. Nat Rev Drug Discov [Internet]. 2022 Aug 25;21(12):881–98. doi: https://doi.org/10.1038/s41573-022-00542-z

23. Yetisgin AA, Çetinel S, Zuvin M, Ko?ar A, Kutlu Ö. Therapeutic nanoparticles and their targeted delivery applications. Molecules [Internet]. 2020 May 8;25(9):2193. doi: https://doi.org/10.3390/molecules25092193

24. El -Hack MEA, Alabdali AYM, Aldhalmi AK, Reda FM, Bassiony SS, Selim S, et al. Impacts of purslane (Portulaca oleracea) extract supplementation on growing Japanese quails’ growth, carcass traits, blood indices, nutrients digestibility and gut microbiota. Poult Sci [Internet]. 2022 Nov 1;101(11):102166. doi: https://doi.org/10.1016/j.psj.2022.102166

25. Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomed [Internet]. 2014 Jan 1;9:467–483. doi: https://doi.org/10.2147/ijn.s36654

26. Patra JK, Das G, Fraceto LF, Campos EVR, Del Pilar Rodríguez-Torres M, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol [Internet]. 2018 Sep 19;16(1):71. doi: https://doi.org/10.1186/s12951-018-0392-8

27. Kim JU. Block copolymer thin films on patterned substrates [Internet]. 2010. Available from: https://scholarworks.unist.ac.kr/handle/201301/51633

28. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov [Internet]. 2020 Dec 4;20(2):101–24. doi: https://doi.org/10.1038/s41573-020-0090-8

29. Liu L, Pan D, Chen S, Martikainen MV, Kårlund A, Jin K, et al. Systematic design of cell membrane coating to improve tumor targeting of nanoparticles. Nat Commun [Internet]. 2022 Oct 19;13(1):6181. doi: https://doi.org/10.1038/s41467-022-33889-3

30. Niculescu AG, Grumezescu AM. Novel tumor-targeting nanoparticles for cancer treatment—a review. Int J Mol Sci [Internet]. 2022 May 8;23(9):5253. doi: https://doi.org/10.3390/ijms23095253

31. Sun L, Li H, Ye Y, Yang L, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther [Internet]. 2023 Nov 3;8(1). doi: https://doi.org/10.1038/s41392-023-01642-x

32. Abdelkawi A, Slim A, Zinoune Z, Pathak Y. Surface modification of metallic nanoparticles for targeting drugs. Coatings [Internet]. 2023 Sep 21;13(9):1660. doi: https://doi.org/10.3390/coatings13091660

33. Zieli?ska A, Carreiró F, Oliveira AMM, Neves A, Pires BA, Venkatesh DN, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules [Internet]. 2020 Aug 15;25(16):3731. doi: https://doi.org/10.3390/molecules25163731

34. Alabdali AYM, Khalid R, Kzar M, Ezzat MO, Huei GM, Hsia TW, et al. Design, synthesis, in silico and antibacterial evaluation of curcumin derivatives loaded nanofiber as potential wound healing agents. J King Saud Univ Sci [Internet]. 2022 Oct 1;34(7):102205. doi: https://doi.org/10.1016/j.jksus.2022.102205

35. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon [Internet]. 2022 Jan 1;8(1):e08674. doi: https://www.cell.com/heliyon/pdf/S2405-8440(21)02777-8.pdf

36. Jose S, Cinu TA, Sebastian R, Shoja MH, Aleykutty N, Durazzo A, et al. Transferrin-conjugated docetaxel–PLGA nanoparticles for tumor targeting: influence on MCF-7 cell cycle. Polymers [Internet]. 2019 Nov 19;11(11):1905. doi: https://doi.org/10.3390/polym11111905

37. Sharma S, Pathania AR. Biodegradable polymers green synthesis of nanoparticle – an overview. Mater Today: Proc [Internet]. 2022 Jan 1;62:3827–31. doi: https://doi.org/10.1016/j.matpr.2022.04.488

38. Lee C, Kim TI, Oh DW, Bae SM, Ryu J, Kong H, et al. In vivo and in vitro anticancer activity of doxorubicin-loaded DNA-AUNP nanocarrier for the ovarian cancer treatment. Cancers [Internet]. 2020 Mar 9;12(3):634. doi: https://doi.org/10.3390/cancers12030634

39. Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol [Internet]. 2013 Jan 1;04(02):1000164. doi: https://doi.org/10.4172/2157-7439.1000164

40. Li W, Sun Y, Chen J, Jiang Z, Yang J. PEGylated cisplatin nanoparticles for treating colorectal cancer in a PH-responsive manner. J Immunol Res [Internet]. 2022 Aug 5;2022:1–11. doi: https://doi.org/10.1155/2022/8023915

41. Gawande MB, Goswami A, Felpin F, Asefa T, Huang X, Silva R, et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev [Internet]. 2016 Mar 3;116(6):3722–811. doi: https://doi.org/10.1021/acs.chemrev.5b00482

42. Nogueira DR, Tavano L, Mitjans M, Pérez L, Infante MR, Vinardell MP. In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials [Internet]. 2013 Apr 1;34(11):2758–72. doi: https://doi.org/10.1016/j.biomaterials.2013.01.005

43. Kciuk M, Marciniak B, Kontek R. Irinotecan—still an important player in cancer chemotherapy: a comprehensive overview. Int J Mol Sci [Internet]. 2020 Jul 12;21(14):4919. doi: https://doi.org/10.3390/ijms21144919

44. Cheng M, Dai D. Inhibitory of active dual cancer targeting 5-fluorouracil nanoparticles on liver cancer in vitro and in vivo. Front Oncol [Internet]. 2022 Aug 5;12:971475. doi: https://doi.org/10.3389/fonc.2022.971475

45. Nair PR. Delivering combination chemotherapies and targeting oncogenic pathways via polymeric drug delivery systems. Polymers [Internet]. 2019 Apr 5;11(4):630. doi: https://doi.org/10.3390/polym11040630

46. Bonferoni MC, Gavini E, Rassu G, Maestri M, Giunchedi P. Chitosan nanoparticles for therapy and theranostics of hepatocellular carcinoma (HCC) and liver-targeting. Nanomaterials [Internet]. 2020 Apr 30;10(5):870. doi: https://doi.org/10.3390/nano10050870

47. ?api?ska Z, Szwedowicz U, Choroma?ska A, Saczko J. Electroporation and electrochemotherapy in gynecological and breast cancer treatment. Molecules [Internet]. 2022 Apr 12;27(8):2476. doi: https://doi.org/10.3390/molecules27082476

48. Nocito MC, De Luca A, Prestia F, Avena P, La Padula D, Zavaglia L, et al. Antitumoral activities of curcumin and recent advances to improve its oral bioavailability. Biomedicines [Internet]. 2010 Oct 14;9(10):1476. Available from: https://www.mdpi.com/2227-9059/9/10/1476

49. Moammeri A, Abbaspour K, Zafarian A, Jamshidifar E, Motasadizadeh H, Moghaddam FD, et al. PH-responsive, adorned nanoniosomes for codelivery of cisplatin and epirubicin: synergistic treatment of breast cancer. ACS Appl Bio Mat [Internet]. 2022 Feb 7;5(2):675–90. doi: https://doi.org/10.1021/acsabm.1c01107

50. Entezar-Almahdi E, Mohammadi-Samani S, Tayebi L, Farjadian F.Recent advances in designing 5-fluorouracil delivery systems: a stepping stone in the safe treatment of colorectal cancerInt J Nanomed [Internet]. 2020 Jul 1;Volume 15:5445–58. doi: https://doi.org/10.2147/ijn.s257700

51. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther [Internet]. 2018 Mar 16;3(1):7. doi: https://doi.org/10.1038/s41392-017-0004-3

52. Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials [Internet]. 2011 Nov 1;32(32):8281–90. doi: https://doi.org/10.1016/j.biomaterials.2011.07.032

53. Niu S, Williams GR, Wu J, Wu J, Zhang X, Chen X, et al. A chitosan-based cascade-responsive drug delivery system for triple-negative breast cancer therapy. J Nanobiotechnol [Internet]. 2019 Sep 10;17(1). doi: https://doi.org/10.1186/s12951-019-0529-4

54. Sloat BR, Sandoval MA, Dong L, Chung WG, Lansakara-P DSP, Proteau P, et al. In vitro and in vivo anti-tumor activities of a gemcitabine derivative carried by nanoparticles. Int J Pharm [Internet]. 2011 May 1;409(1–2):278–88. doi: https://doi.org/10.1016/j.ijpharm.2011.02.037

55. Wang X, Wang Y, Chen ZG, Shin DM. Advances of cancer therapy by nanotechnology. Cancer Res Treat [Internet]. 2009 Jan 1;41(1):1–11. doi: https://doi.org/10.4143/crt.2009.41.1.1

56. Son KH, Hong JH, Lee JW. Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomed [Internet]. 2016 Oct 1;Volume 11:5163–85. doi: https://doi.org/10.2147/ijn.s112660

57. Sun Y, Wen M, Yang Y, He M, Li A, Bai L, et al. Cancer nanotechnology: enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian J Pharm Sci [Internet]. 2019 Nov 1;14(6):581–94. doi: https://doi.org/10.1016/j.ajps.2019.04.005

58. Jia M, Yang L, Yang X, Huang Y, Wu H, Huang Y, et al. Development of both methotrexate and mitomycin C loaded PEGylated chitosan nanoparticles for targeted drug codelivery and synergistic anticancer effect. ACS Appl Mater Interfaces [Internet]. 2014 Jul 10;6(14):11413–23. doi: https://doi.org/10.1021/am501932s

59. Tomko AM, Whynot EG, O’Leary L, Dupré DJ. Anti-cancer potential of cannabis terpenes in a taxol-resistant model of breast cancer. Can J Physiol Pharmacol [Internet]. 2022 Aug 1;100(8):806–17. doi: https://doi.org/10.1139/cjpp-2021-0792

60. Meng L, Wang Z, Hou Z, Wang H, Zhang X, Zhang X, et al. Study of epirubicin sustained–release chemoablation in tumor suppression and tumor microenvironment remodeling. Front Immunol [Internet]. 2022 Dec 20;13:1064047. doi: https://doi.org/10.3389/fimmu.2022.1064047

61. Samimi H, Sohi AN, Irani S, Arefian E, Mahdiannasser M, Fallah P, et al. Alginate-based 3D cell culture technique to evaluate the half-maximal inhibitory concentration: an in vitro model of anticancer drug study for anaplastic thyroid carcinoma. Thyroid Res [Internet]. 2021 Dec 3;14(1):27. doi: https://doi.org/10.1186/s13044-021-00118-w

62. Haider M, Elsherbeny A, Jagal J, Hubatová-Vacková A, Ahmed IS. Optimization and evaluation of poly(lactide-co-glycolide) nanoparticles for enhanced cellular uptake and efficacy of paclitaxel in the treatment of head and neck cancer. Pharmaceutics [Internet]. 2020 Aug 30;12(9):828. doi: https://doi.org/10.3390/pharmaceutics12090828

63. Al-Nemrawi NK, Hameedat F, Al-Husein B, Nimrawi S. Photolytic controlled release formulation of methotrexate loaded in Chitosan/TIO2 nanoparticles for breast cancer. Pharmaceuticals [Internet]. 2022 Jan 26;15(2):149. doi: https://doi.org/10.3390/ph15020149

64. Duan X, He C, Kron SJ, Lin W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol [Internet]. 2016 Feb 5;8(5):776–91. doi: https://doi.org/10.1002/wnan.1390

65. Ye W, Du J, Zhang B, Ren N, Song Y, Mei Q, et al. Cellular uptake and antitumor activity of DOX-Hyd-PEG-FA nanoparticles. PLoS one [Internet]. 2014 May 14;9(5):e97358. doi: https://doi.org/10.1371/journal.pone.0097358

66. Joseph TM, Mahapatra DK, Esmaeili A, Piszczyk ?, Hasanin MS, Kattali M, et al. Nanoparticles: taking a unique position in medicine. Nanomaterials [Internet]. 2023 Jan 31;13(3):574. doi: https://doi.org/10.3390/nano13030574

67. Gahtani RM, Alqahtani A, Alqahtani T, Asiri SA, Mohamed JMM, Prabhu S, et al. 5-Fluorouracil-Loaded PLGA nanoparticles: formulation, physicochemical characterisation, and in VitroAnti-Cancer activity. Bioinorg Chem Appl [Internet]. 2023 Apr 17;2023:1–11. doi: https://doi.org/10.1155/2023/2334675

68. Novio F. Design of targeted nanostructured coordination polymers (NCPS) for cancer therapy. Molecules [Internet]. 2020 Jul 29;25(15):3449. doi: https://doi.org/10.3390/molecules25153449

69. Verma J, Warsame C, Seenivasagam RK, Katiyar NK, Aleem E, Goel S. Nanoparticle-mediated cancer cell therapy: basic science to clinical applications. Cancer Metastasis Rev [Internet]. 2023 Feb 24;42(3):601–27. doi: https://doi.org/10.1007/s10555-023-10086-2

70. Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence [Internet]. 2019 Jul 15;6(1). doi: https://doi.org/10.1186/s40580-019-0193-2

71. Fernández-Lázaro D, Hernández JLG, García AC, Martínez AC, Mielgo-Ayuso J, Hernández JJC. Liquid biopsy as novel tool in precision medicine: origins, properties, identification and clinical perspective of cancer’s biomarkers. Diagnostics [Internet]. 2020 Apr 13;10(4):215. doi: https://doi.org/10.3390/diagnostics10040215

72. Zhang X, Xu X, Bertrand N, Pridgen EM, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev [Internet]. 2012 Oct 1;64(13):1363–84. doi: https://doi.org/10.1016/j.addr.2012.08.005

73. Bennet D, Kim S. Polymer nanoparticles for smart drug delivery. In: Sezer AD, editor. Application of nanotechnology in drug delivery [In­ternet]. Available from: https://tinyurl.com/2h2xhk5d

74. Shen Z, Nieh M, Li Y. Decorating nanoparticle surface for targeted drug delivery: opportunities and challenges. Polymers [Internet]. 2016 Mar 17;8(3):83. doi: https://doi.org/10.3390/polym8030083

75. Thangam R, Patel KD, Kang H, Paulmurugan R. Advances in engineered polymer nanoparticle tracking platforms towards cancer immunotherapy—current status and future perspectives. Vaccines [Internet]. 2021 Aug 23;9(8):935. doi: https://doi.org/10.3390/vaccines9080935

76. Muthwill MS, Kong P, Dinu IA, Necula D, John C, Palivan CG. Tailoring polymer-based nanoassemblies for stimuli-responsive theranostic applications. Macromol Biosci [Internet]. 2022 Sep 26;22(11). doi: https://doi.org/10.1002/mabi.202200270

77. Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Ela??Ssari A. pH-sensitive polymers: classification and some fine potential applications. Polym Adv Technol [Internet]. 2021 Feb 3;32(4):1455–84. doi: https://doi.org/10.1002/pat.5230

78. Bao Y, Maeki M, Ishida A, Tani H, Tokeshi M. Preparation of size-tunable sub-200 nm PLGA-based nanoparticles with a wide size range using a microfluidic platform. PLoS one [Internet]. 2022 Aug 4;17(8):e0271050. doi: https://doi.org/10.1371/journal.pone.0271050

79. Plucinski A, Lyu Z, Schmidt BVKJ. Polysaccharide nanoparticles: from fabrication to applications. J Mater Chem B [Internet]. 2021 Jan 1;9(35):7030–62. doi: https://doi.org/10.1039/d1tb00628b

80. Martínez-Muñoz OI, Ospina-Giraldo LF, Mora-Huertas CE. Nanoprecipitation: applications for entrapping active molecules of interest in pharmaceutics. In: Abu-Thabit N, editor. Nano- and microencapsulation [Internet]. Available from: https://books.google.co.uk/books?hl=en&lr=&id=Nanoprecipitation:+Applications+for+Entrapping+Active+Molecules+of+Interest+in+Pharmaceutics.+In:+Nano-+and+Microencapsulation+Techniques+and+Applications

81. Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao C. Lipid nanoparticles for drug delivery. Advanced NanoBiomed Res [Internet]. 2021 Nov 25;2(2). doi: https://doi.org/10.1002/anbr.202100109

82. Pulingam T, Foroozandeh P, Chuah J, Sudesh K. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials [Internet]. 2022 Feb 8;12(3):576. doi: https://doi.org/10.3390/nano12030576

83. Macchione MA, Strumia MC. Stimuli-responsive nanosystems as smart nanotheranostics. Elsevier eBooks [Internet]. 2023. p. 363–96. doi: https://doi.org/10.1016/b978-0-323-85785-7.00016-4

84. Rasel MdSI, Mohona FA, Akter W, Kabir S, Chowdhury AA, Chowdhury JA, et al. Exploration of site-specific drug targeting—a review on EPR-, stimuli-, chemical-, and receptor-based approaches as potential drug targeting methods in cancer treatment. J Oncol [Internet]. 2022 Sep 29;2022:1–26. doi: https://doi.org/10.1155/2022/9396760

85. Bandyopadhyay A, Das T, Nandy S, Sahib S, Preetam S, Gopalakrishnan AV, et al. Ligand-based active targeting strategies for cancer theranostics. Naunyn-Schmiedeberg’s Arch Pharmacol [Internet]. 2023 Jul 19;396(12):3417–41. doi: https://doi.org/10.1007/s00210-023-02612-4

86. Atkinson SP, Andreu Z, Vicent MJ. Polymer therapeutics: biomarkers and new approaches for personalized cancer treatment. J Pers Med [Internet]. 2018 Jan 23;8(1):6. doi: https://doi.org/10.3390/jpm8010006

Article Metrics
85 Views 7 Downloads 92 Total

Year

Month

Related Search

By author names