INTRODUCTION

Targeted cancer therapy has emerged as a promising approach to revolutionize the field of oncology. It aims to maximize treatment efficacy while minimizing adverse effects commonly associated with conventional cancer therapies [1]. The conventional methods which are included in chemotherapy and radiation therapy, often lack specificity and tend to damage healthy cells along with cancerous ones leading to severe side effects. In contrast, targeted therapy aims to selectively deliver therapeutic agents to cancer cells, leaving healthy cells unharmed [2]. In their pursuit of efficient targeted drug delivery, scientists have thoroughly investigated a variety of nanocarriers, including liposomes, micelles, dendrimers, and inorganic nanoparticles. Due to their distinctive qualities and adaptability, polymer-based nanoparticles have attracted a lot of attention in this industry. Polymers such as poly [lactic-co-glycolic acid] (PLGA), polyethylene glycol (PEG), and poly [lactic acid] make up the majority of these nanoparticles [3]. It is included in biocompatible and biodegradable. These polymers have proven to be highly suitable for targeted cancer therapy.
therapy, offering numerous advantages. One notable advantage lies in the tunable physicochemical properties of polymer-based nanoparticles. By modifying the composition, molecular weight, and structure of the polymers, researchers can precisely control the size, surface charge, and drug release kinetics of the nanoparticles [4]. This tunability allows for customization to match the specific requirements of different cancer types and therapeutic agents. Another critical aspect is the high drug-loading capacity offered by polymer-based nanoparticles. These nanoparticles have a huge surface region-to-volume proportion and enable efficient encapsulation of a diverse array of therapeutic agents. It includes small molecules, proteins, nucleic acids, and even combination therapies. The high drug-loading capacity ensures optimal delivery of therapeutic payloads, maximizing the concentration of drugs at the tumor site while minimizing systemic exposure and off-target effects.

Polymer-based nanoparticles also offer the advantage of extended circulation time within the bloodstream. A defensive layer known as the “stealth effect” is framed by changing the nanoparticle surface with hydrophilic polymers like PEG. This protective layer reduces the identification and removal of nanoparticles by the immune system, resulting in prolonged circulation and enhanced accumulation within the tumor site. Furthermore, polymer-based nanoparticles possess the capability for active targeting. Their surface can be easily tailored by attaching ligands or targeting components that specifically recognize and bind to cancer cell receptors or markers. This active targeting approach significantly improves the selectivity and accumulation of nanoparticles within the tumor, facilitating enhanced drug delivery to cancer cells while minimizing harm to healthy tissues (Fig. 1), thus Nanotechnology improves cancer detection and diagnosis [5].

This review article aims to delve into the wide-ranging application of polymer-based nanoparticles in targeted cancer therapy. It provides a comprehensive overview of the design principles underlying these nanoparticles, including their composition, size, and surface modification strategies [6]. Furthermore, it discusses various fabrication methods employed for the synthesis of polymer-based nanoparticles which are included in nanoprecipitation, emulsion/solvent evaporation, and self-assembly techniques. The review also explores the targeting strategies employed with polymer-based nanoparticles, including ligand-based targeting, pH-responsive targeting, and stimuli-responsive targeting. It discusses the new advances in preclinical and clinical examinations that have showcased the potential of polymer-based nanoparticles in improving cancer treatment outcomes.

MECHANISMS OF TARGETED CANCER THERAPY

Targeting tumor heterogeneity

Cancer is a very varied disease because different groups of cells within the tumor exhibit different genetic profiles and behavior behaviors. Combination drugs have recently been created in targeted cancer therapy to address this tumor heterogeneity, to simultaneously target numerous genetic disorders. Researchers are also investigating strategies to target cancer stem cells, a subgroup of tumor cells that cause tumor growth and medication resistance, to produce more significant and durable therapeutic responses [7].

Chimeric antigen receptor T (CAR-T) cells and adoptive cell therapies

Adoptive cell therapies, in particular CAR-T therapy, have grown into ground-breaking strategies in the treatment of specific cancers. CAR-T cells are designed to detect and target cancer cells that express particular surface antigens [8]. The library of targetable antigens is growing thanks to recent developments in this sector, which additionally improve CAR-T cell durability and persistence and minimize side effects.

Targeting non-coding RNAs

Non-coding long RNAs, in particular microRNAs, are key players in the emergence and spread of cancer. Modern research is identifying many non-coding RNAs as potential therapeutic targets. It is being researched how to target and alter the activity of these non-coding RNAs to stop the growth and spread of malignant cells [9]. These methods include treatments based on RNA interference and antisense oligonucleotides.

Radiolabeled therapeutics

In radiolabeled therapeutics, targeted agents such as antibodies or small compounds are joined with radioactive isotopes. These radiotherapies target and localize the killing of tumor cells by delivering radiation directly to cancer cells that express the target antigen. Modern research in radiolabeled therapeutics is expanding the repertoire of targetable antigens, and radioisotope payloads are being tailored for better therapeutic outcomes [10].

Cancer microenvironment modulation

A patient’s capacity to answer therapy is fundamentally impacted by the cancer microenvironment. Modern research aims to alter the cancer microenvironment to increase the effectiveness of targeted drugs. Among the methods utilized to boost drug absorption and immune cell infiltration are targeting

Figure 1. Nanotechnology improves cancer detection and diagnosis.
immunosuppressive cells, such as regulatory T-cells and myeloid-derived suppressor cells, as well as reprogramming the cancer stroma [10].

Synthetic lethality and vulnerability screens

Advances in high-throughput screening technologies have made it simpler to identify synthetic lethal interactions in cancer cells. Synthetic lethality is the process of killing cancer cells by simultaneously shutting down two genes, neither of which is required in and of itself to induce cancer (Fig. 2). It could be able to eliminate cancer cells without harming healthy cells by concentrating on synthetic deadly interactions.

CURRENT STRATEGIES IN TARGETED CANCER THERAPY

Small molecule inhibitors

Small molecules are designed to inhibit specific proteins involved in cancer growth and survival [11]. Examples: Imatinib targeting breakpoint cluster region-abelson in chronic myeloid leukemia, vemurafenib targeting mutant v-Raf murine sarcoma viral oncogene homolog B (BRAF) in melanoma.

Monoclonal antibodies

Monoclonal antibodies recognize specific cancer cell surface proteins and interfere with their function or trigger immune-mediated destruction. Examples: Trastuzumab targeting HER2 in breast cancer, rituximab targeting CD20 in B-cell lymphomas.

Immune checkpoint inhibitors

These drugs target molecules that suppress the immune response, allowing the immune system to recognize and attack cancer cells more effectively. Examples: Pembrolizumab targeting PD-1 in various cancers, nivolumab targeting PD-1 in melanoma and lung cancer.

RNA THERAPIES

Spherical nucleic acids (SNAs)

Nanostructures with a spherical arrangement of nucleic acids are called SNAs. Small interfering RNA (siRNA) and other RNA medicines may be delivered to cancer cells using these structures. Treatments for brain cancer based on RNA have the potential to be more effective using this method [12].

siRNA using polymetformin nanoparticles

The potential of polymetformin nanoparticles as vehicles for the delivery of siRNA has been investigated. Treatment accuracy and efficacy may be improved by using these nanoparticles to shield therapeutic RNA from degradation and enhance its targeted delivery to cancer cells.
NANOPARTICLE-BASED DRUG DELIVERY SYSTEMS

Liposomal delivery systems
Encapsulating medications or nucleic acids in lipid nanoparticles called liposomes improves their delivery to cancer cells and protects them from destruction. Several therapeutic medicines have been explored for delivery to brain tumors using this method.

Polymeric nanoparticles
It is possible to immobilize therapeutic payloads, such as RNA treatments, in nanoparticles manufactured from biocompatible polymers. Neurocognitive disorders are notoriously difficult to treat, but these nanoparticles can be made to cross the blood-brain barrier.

PERSONALIZED MEDICINE

Genomic profiling
Recent developments in genetic profiling have made it possible to tailor cancer treatments to individual patients. Customized medicines may be developed to target the distinct features of a patient’s tumor by identifying certain genetic abnormalities or changes in their cancer cells [13].

TARGETING CANCER STEM CELLS

Stem cell-targeted therapies
Because of their significance in tumor development, progression, and recurrence, cancer stem cells are the focus of current research efforts to find new treatments. Preventing cancer recurrence and improving long-term results are the goals of targeting these cells.

COMBINATION THERAPIES

Combinatorial approaches
Combination treatments aim to tackle the cancer cells’ adaptability and heterogeneity by combining several targeted drugs or modalities. The goals of this strategy are to increase reactivity to therapy and decrease resistance.

PREPARATION OF POLYMERIC NANOPARTICLE

Polymeric nanoparticle synthesis
Nanoparticle synthesis methods are essential in the development of polymer-based nanoparticles for targeted cancer therapy [14]. These methods enable scientists to create tiny particles. These particles can carry therapeutic drugs to specific sites in the body, such as tumor tissues. There are several techniques commonly used for nanoparticle synthesis.

Emulsion/solvent evaporation
Imagine mixing oil and water in a bowl. In this method, the polymer is dissolved in an organic solvent, such as oil. Then, it is emulsified in an aqueous solution, like water. The emulsion is made by vivaciously blending the two fluids. Afterward, the organic solvent is removed, leaving behind nanoparticles that contain the polymer and any therapeutic drugs [15].

Nanoprecipitation
Picture pouring a colored liquid into clear water. Nanoprecipitation involves mixing a polymer solution with a nonsolvent, which causes the formation of nanoparticles [15]. This happens because the polymer can no longer dissolve in the mixture and forms tiny particles instead. The resulting nanoparticles can encapsulate the therapeutic drugs within their structure [16].

Self-assembly
Think of building blocks fitting together to form a structure. Self-assembly is a method that takes advantage of the natural properties of the polymer to form nanoparticles. The polymer molecules arrange themselves into organized structures, such as micelles [like tiny spheres] or aggregates, which can encapsulate the therapeutic drugs [17].

These synthetic methods allow scientists to control the size, shape, and properties of the nanoparticle [18]. These are important factors for efficient drug delivery. By using these techniques, researchers can create polymer-based nanoparticles that can transport therapeutic drugs to targeted cancer cells, enhancing the effectiveness of cancer treatment.

Encapsulating therapeutic agents
Encapsulating therapeutic agents is a crucial method in using polymer-based nanoparticles for targeted cancer therapy Schematic representations of the therapeutic nanoparticles [19,20]. It involves incorporation of the drugs into the nanoparticles to enable controlled release and targeted delivery to cancer cells. There are different techniques used for encapsulation, including attaching the drugs chemically to the nanoparticles (covalent conjugation) (Fig. 3), trapping them physically within the nanoparticle structure [physical entrapment], or using electrostatic interactions to attract charged drugs to the nanoparticle surface [21].

Covalent conjugation connects the drugs to the nanoparticles through chemical bonds, ensuring a strong and
long-lasting attachment. Physical entrapment involves capturing the drugs within the nanoparticles using physical interactions like sticking them together or trapping them in small spaces. Electrostatic interactions occur when the drugs have an electric charge and are drawn to the opposite charge on the nanoparticle surface. Encapsulating the drugs within the nanoparticles brings several benefits for targeted cancer therapy [22]. It shields the drugs from degradation, improves their solubility, and enables precise delivery to the tumor site. By encapsulating the drugs, they can avoid getting eliminated by the body’s natural defense systems and accumulate more effectively at the tumor, while minimizing harm to healthy tissues [23]. Overall, encapsulating therapeutic agents within polymer-based nanoparticles offers a promising approach for targeted cancer therapy. It provides a versatile platform to develop personalized treatments that deliver drugs directly to cancer cells, improving the effectiveness and reducing side effects for cancer patients [24].

SURFACE MODIFICATION TECHNIQUES
Surface modification techniques play a vital role in the application of polymer-based nanoparticles for targeted cancer therapy. These techniques involve modifying the outer surface of nanoparticles to enhance their ability to target cancer cells, improve stability, and optimize drug delivery [24]. Two commonly used surface modification strategies are ligand conjugation and stealth coating.

Ligand conjugation is a method where specific molecules like antibodies or peptides are attached to the nanoparticle surface (Fig. 4). These molecules can recognize and bind to specific markers present on the surface of cancer cells [25]. By attaching these molecules, the nanoparticles can actively target and accumulate at the tumor site. This targeted approach improves the precision of drug delivery to cancer cells, making the therapy more effective while minimizing harm to healthy tissues [26].

Stealth coating, also called PEGylation, is a method where a layer of a polymer called PEG [27] is applied to the surface of nanoparticles. PEG is a safe polymer that attracts water and creates a protective shield around the nanoparticles. This shield helps the nanoparticles to avoid detection and removal by the immune system, allowing them to stay in the bloodstream for a longer time. By escaping the immune system, the nanoparticles can gather at the tumor site by utilizing a process called the enhanced permeability and retention (EPR) effect. This effect takes advantage of the special characteristics of blood vessels in tumors, enabling the nanoparticles to specifically accumulate within the tumor tissues [28].

Surface modification techniques offer several benefits in targeted cancer therapy. They enhance the targeting ability of nanoparticles, ensuring they reach cancer cells more effectively while minimizing damage to healthy cells [29]. Moreover, surface modifications improve the stability of nanoparticles and their circulation in the body, enabling sustained release of drugs and better accumulation at the tumor site [30]. These modifications also provide opportunities for personalized medicine by tailoring the nanoparticles to specific types of cancer or individual patient requirements [31]. In conclusion, surface modification techniques, such as ligand conjugation and stealth coating, are crucial for optimizing the performance of polymer-based nanoparticles in targeted cancer therapy. These modifications improve targeting efficiency, enhance stability, and enable controlled drug delivery, promising more effective and personalized treatments for cancer [32].

CONTROLLED DRUG RELEASE
Controlled drug release is an important method used in the application of polymer-based nanoparticles for targeted cancer therapy. It involves creating nanoparticles that can release therapeutic drugs in a controlled and gradual manner at the tumor site (Fig. 5). This controlled release helps to ensure

<table>
<thead>
<tr>
<th>Natural polymer</th>
<th>Synthetic polymer</th>
<th>Co-natural polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitosan</td>
<td>PLGA</td>
<td>Chitosan-Gelatin</td>
</tr>
<tr>
<td>Alginate</td>
<td>PEG</td>
<td>Alginate-hyaluronic acid</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Poly[ε-caprolactone] (PCL)</td>
<td>Gelatin-dextran</td>
</tr>
<tr>
<td>Hyaluronic acid</td>
<td>Polyvinyl alcohol (PVA)</td>
<td>Hyaluronic acid-chitosan</td>
</tr>
<tr>
<td>Dextran</td>
<td>Polycaprolactone (PCL)</td>
<td>Dextran-alginate</td>
</tr>
</tbody>
</table>

Figure 4. Ligand conjunction.
Figure 5. Forms of drugs.
Table 2. Advantages and disadvantages of natural and synthetic polymers [36].

<table>
<thead>
<tr>
<th>Natural polymer [advantages and disadvantages]</th>
<th>Synthetic polymer [advantages and disadvantages]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantage: Natural polymers are generally biocompatible and less likely to cause immune reactions or toxicity in the body.</td>
<td>Advantages: Synthetic polymers can be precisely engineered to achieve specific properties, allowing better control over nanoparticle characteristics.</td>
</tr>
<tr>
<td>Disadvantage: Natural polymers may have limited control over their properties, leading to variations in nanoparticle characteristics.</td>
<td>Disadvantages: Some synthetic polymers may raise biocompatibility issues, requiring additional modifications or coatings to improve safety.</td>
</tr>
<tr>
<td>Advantage: Many natural polymers can be easily broken down by the body, reducing the risk of long-term accumulation.</td>
<td>Advantages: Synthetic polymers often exhibit enhanced stability, ensuring a longer shelf life and consistent performance.</td>
</tr>
<tr>
<td>Disadvantage: The properties of natural polymers can vary between batches, affecting reproducibility.</td>
<td>Disadvantages: Certain synthetic polymers may be non-biodegradable, leading to potential long-term accumulation in the body.</td>
</tr>
<tr>
<td>Advantage: Natural polymers can be sourced from renewable resources, making them environmentally friendly.</td>
<td>Advantages: The release of drugs or therapeutic agents from synthetic polymer nanoparticles can be finely tuned for sustained and controlled delivery.</td>
</tr>
<tr>
<td>Disadvantage: Natural polymers might be susceptible to degradation or instability under certain conditions.</td>
<td>Disadvantages: The production of some synthetic polymers can be costly, impacting the overall cost of nanoparticle preparation.</td>
</tr>
</tbody>
</table>

Table 3. Techniques and types of polymeric nanoparticles.

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Type of polymeric nanoparticles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsion polymerization</td>
<td>Polymeric micelles</td>
</tr>
<tr>
<td>Solvent evaporation/extraction</td>
<td>Nanospheres</td>
</tr>
<tr>
<td>Nanoprecipitation</td>
<td>Nano capsules</td>
</tr>
<tr>
<td>Self-assembly techniques [e.g., Micelles, Nanogels]</td>
<td>Dendrimers</td>
</tr>
<tr>
<td>Electrospinning [for nanofiber-based nanoparticles]</td>
<td>Nanogels</td>
</tr>
</tbody>
</table>

The natural and synthetic polymers are mentioned in Table 1.

The advantages and disadvantages of natural and synthetic polymers are mentioned in Table 2.

The techniques and types of polymeric nanoparticles in Table 3.

POLYMERIC-BASED NANOPARTICLES IN THE TREATMENT OF CANCER

Polymeric-based nanoparticles stand out in the field of malignant growth treatment because of their extraordinary properties and expected applications. These nanoparticles are regularly made out of biocompatible and biodegradable polymers that can exemplify or form with remedial specialists, taking into consideration focused on and controlled conveyance to malignant growth cells. This is an outline of the way polymeric-based nanoparticles are utilized in the therapy of disease [36].

Drug delivery

Polymeric nanoparticles can embody different sorts of helpful specialists, for example, chemotherapy drugs, little particles, and, surprisingly, natural specialists like siRNA or miRNA. The nanoparticles shield these specialists from debasement in the circulatory system and work with their aggregation in cancer tissues. This designated drug diminishes fundamental poisonousness and upgrades the adequacy of the treatment by concentrating the helpful payload at the cancer site [37].

Targeted therapy

Functionalization of polymeric nanoparticles with a focus on ligands, like antibodies or peptides, empowers the dynamic focusing of disease cells. These ligands perceive explicit markers overexpressed on the outer layer of malignant growth cells, permitting the nanoparticles to tie to and enter these cells specifically. This approach upgrades the particularity of the treatment and limits harm to solid cells [38].

EPR effect

Polymeric nanoparticles can exploit the EPR impact, which is a trademark element of growth vasculature. Cancers
will generally have flawed veins and debilitated lymphatic waste, prompting the collection of nanoparticles inside the growth tissue. This detached focus on the procedure considers special amassing of nanoparticles in the growth, further working on the restorative result [39].

Combination therapy

Polymeric nanoparticles can convey various remedial specialists, empowering mix treatment draws near. This is particularly valuable for conquering drug opposition or focusing on various pathways associated with disease movement at the same time [40].

Here is the table of polymer-based nanoparticles in the treatment of cancer in Table 4.

Table 4. Polymer-based nanoparticles in the treatment of cancer.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Drug</th>
<th>Cancer cell line</th>
<th>In vitro and in vivo studies</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLGA</td>
<td>Docetaxel</td>
<td>Breast cancer cells</td>
<td>In vitro cytotoxicity, In vivo tumor regression</td>
<td>[33]</td>
</tr>
<tr>
<td>Chitosan</td>
<td>Doxorubicin</td>
<td>Ovarian cancer cells</td>
<td>Improved drug take-up in vitro, cancer development hindrance in vivo</td>
<td>[41]</td>
</tr>
<tr>
<td>PEG</td>
<td>Cisplatin</td>
<td>Colon cancer cells</td>
<td>In vitro cellular take-up, in vivo tumor suppression</td>
<td>[42]</td>
</tr>
<tr>
<td>Alginate</td>
<td>Methotrexate</td>
<td>Leukemia cells</td>
<td>Controlled drug discharge in vitro, in vivo therapeutic efficacy</td>
<td>[43]</td>
</tr>
<tr>
<td>PLGA</td>
<td>Paclitaxel</td>
<td>Prostate cancer cells</td>
<td>Enhanced cellular take-up in vitro, in vivo tumor growth inhibition</td>
<td>[44]</td>
</tr>
<tr>
<td>Chitosan</td>
<td>Methotrexate</td>
<td>Melanoma cells</td>
<td>Controlled drug discharge in vitro, in vivo tumor regression</td>
<td>[45]</td>
</tr>
<tr>
<td>PCL</td>
<td>Docorubicin</td>
<td>Pancreatic cancer cells</td>
<td>In vitro cytotoxicity, in vivo therapeutic efficacy</td>
<td>[46]</td>
</tr>
<tr>
<td>PEG</td>
<td>Irinotecan</td>
<td>Gastric cancer cells</td>
<td>Sustained drug discharge in vitro, in vivo antitumor activity</td>
<td>[47]</td>
</tr>
<tr>
<td>Alginate</td>
<td>5-Fluouracil</td>
<td>Esophageal cancer cells</td>
<td>In vitro cellular take-up, in vivo tumor suppression</td>
<td>[48]</td>
</tr>
<tr>
<td>PLGA</td>
<td>Gemcitabine</td>
<td>Bladder cancer cells</td>
<td>Enhanced drug take-up in vitro, in vivo tumor growth inhibition</td>
<td>[49]</td>
</tr>
<tr>
<td>Chitosan</td>
<td>Etoposide</td>
<td>Hepatocellular carcinoma cells</td>
<td>Controlled drug discharge in vitro, in vivo therapeutic efficacy</td>
<td>[26]</td>
</tr>
<tr>
<td>PCL</td>
<td>Bleomycin</td>
<td>Cervical cancer cells</td>
<td>In vitro cytotoxicity, in vivo tumor regression</td>
<td>[50]</td>
</tr>
<tr>
<td>PEG</td>
<td>Mitomycin C</td>
<td>Endometrial cancer cells</td>
<td>Sustained drug discharge in vitro, in vivo antitumor activity</td>
<td>[51]</td>
</tr>
<tr>
<td>Alginate</td>
<td>Vinblastine</td>
<td>Neuroblastoma cells</td>
<td>In vitro cellular uptake, in vivo tumor suppression</td>
<td>[52]</td>
</tr>
<tr>
<td>PLGA</td>
<td>Epirubicin</td>
<td>Thyroid cancer cells</td>
<td>Enhanced cellular take-up in vitro, in vivo tumor growth inhibition</td>
<td>[53]</td>
</tr>
<tr>
<td>Chitosan</td>
<td>Camptothecin</td>
<td>Head and neck cancer cells</td>
<td>Controlled drug discharge in vitro, in vivo therapeutic efficacy</td>
<td>[54]</td>
</tr>
<tr>
<td>PCL</td>
<td>Fluorouracil</td>
<td>Colorectal cancer cells</td>
<td>In vitro cytotoxicity, in vivo therapeutic efficacy</td>
<td>[55]</td>
</tr>
<tr>
<td>PEG</td>
<td>Methotrexate</td>
<td>Leukemia cells</td>
<td>Sustained drug release in vitro, In vivo antitumor activity</td>
<td>[56]</td>
</tr>
<tr>
<td>Alginate</td>
<td>Cisplatin</td>
<td>Lung cancer cells</td>
<td>In vitro cellular take-up, in vivo tumor suppression</td>
<td>[57]</td>
</tr>
<tr>
<td>PLGA</td>
<td>Doxorubicin</td>
<td>Ovarian cancer cells</td>
<td>Enhanced drug uptake in vitro, in vivo tumor growth inhibition</td>
<td>[58]</td>
</tr>
<tr>
<td>Chitosan</td>
<td>Paclitaxel</td>
<td>Breast cancer cells</td>
<td>Controlled drug discharge in vitro, in vivo therapeutic efficacy</td>
<td>[59]</td>
</tr>
<tr>
<td>PCL</td>
<td>Gemcitabine</td>
<td>Pancreatic cancer cells</td>
<td>In vitro cytotoxicity, in vivo tumor regression</td>
<td>[60]</td>
</tr>
<tr>
<td>PEG</td>
<td>Irinotecan</td>
<td>Gastric cancer cells</td>
<td>Sustained drug discharge in vitro, in vivo antitumor activity</td>
<td>[61]</td>
</tr>
<tr>
<td>Alginate</td>
<td>Etoposide</td>
<td>Bladder cancer cells</td>
<td>In vitro cellular take-up, in vivo tumor suppression</td>
<td>[62]</td>
</tr>
<tr>
<td>PLGA</td>
<td>Bleomycin</td>
<td>Hepatocellular carcinoma cells</td>
<td>Controlled drug release in vitro, in vivo therapeutic efficacy</td>
<td>[63]</td>
</tr>
<tr>
<td>Chitosan</td>
<td>Mitomycin C</td>
<td>Cervical cancer cells</td>
<td>Controlled drug release in vitro, in vivo antitumor activity</td>
<td>[64]</td>
</tr>
<tr>
<td>Alginate</td>
<td>Vinblastine</td>
<td>Endometrial cancer cells</td>
<td>In vitro cytotoxicity, in vivo tumor regression</td>
<td>[65]</td>
</tr>
<tr>
<td>PLGA</td>
<td>Epirubicin</td>
<td>Neuroblastoma cells</td>
<td>Sustained drug release in vitro, in vivo antitumor activity</td>
<td>[66]</td>
</tr>
<tr>
<td>Alginate</td>
<td>Camptothecin</td>
<td>Thyroid cancer cells</td>
<td>In vitro cellular uptake, in vivo tumor suppression</td>
<td>[67]</td>
</tr>
<tr>
<td>PLGA</td>
<td>5-Fluouracil</td>
<td>Head and neck cancer cells</td>
<td>Enhanced cellular uptake in vitro, in vivo tumor growth inhibition</td>
<td>[68]</td>
</tr>
<tr>
<td>Chitosan</td>
<td>Methotrexate</td>
<td>Colorectal cancer cells</td>
<td>Controlled drug release in vitro, in vivo therapeutic efficacy</td>
<td>[69]</td>
</tr>
<tr>
<td>Alginate</td>
<td>Paclitaxel</td>
<td>Breast cancer cells</td>
<td>In vitro cellular take-up, in vivo tumor suppression</td>
<td>[70]</td>
</tr>
<tr>
<td>PLGA</td>
<td>Gemcitabine</td>
<td>Pancreatic cancer cells</td>
<td>Enhanced cellular uptake in vitro, in vivo tumor growth inhibition</td>
<td>[71]</td>
</tr>
</tbody>
</table>

CHALLENGES AND FUTURE DIRECTIONS

Polymer-based nanoparticles have emerged as promising drug delivery systems in targeted cancer therapy, offering enhanced drug stability, controlled release, and improved tumor-specific targeting.
Biocompatibility and safety concerns

Guaranteeing the bio compatibility and well-being of polymer-based nanoparticles is a critical challenge in their clinical application. Some polymers may trigger immune responses or cause toxicity limiting their therapeutic use [72]. Advanced research focuses on developing biocompatible polymers and surface modifications. It is used to minimize adverse effects and enhance nanoparticle clearance from the body.

Drug loading and releasing kinetics

Efficient loading of therapeutic agents into polymer-based nanoparticles and controlled release at the tumor site are critical factors influencing treatment efficacy. Advanced research aims to optimize drug loading techniques and tailor releasing kinetics to match the drug’s pharmacokinetics and therapeutic window, ensuring sustained drug exposure at the target site [73].

Biomarker identification

Identifying the reliable biomarkers for patient selection and predicting response to targeted therapies is crucial for maximizing treatment efficacy. Advances in genomic profiling and liquid biopsies are aiding in this area. Examples: Testing for EGFR mutations to predict response to EGFR inhibitors in lung cancer, and HER2 amplification testing to guide HER2-targeted therapy in breast cancer [74].

Personalized nanoparticle design

Each cancer patient’s tumor exhibits unique characteristics, necessitating personalized treatment approaches. Advanced research is moving towards tailoring polymer-based nanoparticles based on patient-specific factors, such as genetic mutations, tumor heterogeneity, and treatment response. Personalized nanoparticle design aims to maximize treatment efficacy while minimizing off-target effects, fostering the development of precision medicine in cancer therapy [75,76].

Combination therapies combining therapies

Combining targeted therapies with other treatment modalities, like chemotherapy, radiation therapy, or immunotherapy, holds promise for improved outcomes. The rational design of combination regimens is an active area of investigation [28]. Examples: Combining BRAF and MEK inhibitors in BRAF-mutated melanoma, combining immune checkpoint inhibitors with other immunomodulatory agents.

DISCUSSION

Targeted cancer therapy using polymer-based nanoparticles has emerged as a potential approach in the field of oncology. This study has covered a wide range of topics related to the use of polymer-based nanoparticles in targeted cancer therapy [77] therapy, which includes design principles, manufacturing processes, targeting strategies, and most recent advancements [78].

The design principles of polymer-based nanoparticles are crucial for their successful application in targeted cancer therapy [79]. By changing the composition, molecular weight, and structural characteristics of polymers, it is possible to precisely control the nanoparticles’ size, surface charge, and drug release kinetics [80]. This tunability is essential to increase drug delivery to cancer cells while avoiding off-target effects [81]. The advantages of polymer-based nanoparticles are their high loading and drug-loading capacity, biocompatibility, and biodegradability. Their capacity to incorporate proteins, nucleic acids, small chemicals, and combination therapies makes them a flexible platform that can support a variety of therapeutic approaches.

While making polymer-based nanoparticles for targeted malignant growth treatment, fabrication techniques are crucial. Techniques that are frequently employed include self-assembly, emulsion/solvent evaporation, and nanoprecipitation. A polymer solution and a nonsolvent are combined in nanoprecipitation, which results in the creation of nanoparticles. A polymer that has been dissolved in an organic solvent must be emulsified with an aqueous solution before the organic solvent is evaporated [82]. Self-assembly creates nanoparticles by arranging polymer molecules into well-organized structures, taking advantage of the intrinsic qualities of polymers. These production techniques offer important control over the nanoparticles’ size, shape, and other characteristics.

Targeting strategies are employed to enhance the specificity and accumulation of polymer-based nanoparticles within tumors while minimizing harm to healthy tissues. Ligand-based targeting involves attaching specific molecules, such as antibodies or peptides, to the nanoparticle surface. These molecules recognize and bind to receptors or markers present on the surface of cancer cells, facilitating active targeting and accumulation at the tumor site [70]. This approach improves the selectivity of drug delivery and reduces the impact on healthy tissues. pH-responsive targeting takes advantage of the acidic tumor microenvironment to trigger drug release from the nanoparticles. Stimuli-responsive targeting utilizes external stimuli, such as light, heat, or magnetic fields, to trigger drug release at specific sites. These targeting strategies enable precise drug delivery, ensuring that therapeutic agents reach the intended location within the tumor [83].

Recent advances in preclinical and clinical studies have demonstrated the potential of polymer-based nanoparticles in targeted cancer therapy. These studies have highlighted the efficacy of polymer-based nanoparticles in delivering therapeutic agents to targeted cancer cells [84]. Stealth coating is accomplished by applying a layer of PEG to the nanoparticle surface and broadens expanding the dissemination season of nanoparticles in the circulation system. It permits in for improved aggregation at the growth site through the EPR impact. It allows enhanced accumulation at the tumor site through the EPR effect. Ligand conjugation improves active targeting and accumulation of nanoparticles within the tumor by specifically recognizing and binding to cancer cell receptors or markers. pH-responsive and stimuli-responsive strategies provide controlled and precise drug release, maximizing treatment effectiveness and minimizing side effects. These advances have shown promising results in preclinical and clinical settings. They are demonstrating the potential of polymer-based nanoparticles to improve cancer treatment outcomes [85].
Combination therapies and personalized medicine are emerging as important areas of research in the field of targeted cancer therapy using polymer-based nanoparticles [86]. Combining targeted therapies with other therapy modalities, like chemotherapy, radiation treatment, or immunotherapy, holds promise for improved outcomes. The rational design of combination regimens aims to enhance treatment effectiveness and overcome resistance mechanisms. Personalized medicine focuses on tailoring nanoparticle-based treatments to specific cancer types or individual patient requirements. This approach considers factors such as biomarkers, genomic profiling, and the unique characteristics of each patient’s tumor, allowing for personalized and optimized treatment strategies.

The application of polymer-based nanoparticles in targeted cancer therapy offers a personalized and effective approach to the treatment of various cancers. The designated principles, fabrication methods, targeting strategies, and recent advancements are discussed in this review emphasizing the potential of polymer-based nanoparticles maximize treatment efficacy while minimizing adverse effects. Further research and clinical studies are necessary to fully explore the capabilities of these nanoparticles and optimize their use in personalized cancer treatments. Continued advancements in the field of targeted cancer therapy using polymer-based nanoparticles hold great promise for improving patient outcomes and revolutionizing the field of oncology.

CONCLUSION

In conclusion, polymer-based nanoparticles have arisen as a promising tool in targeted cancer therapy. These nanoparticles offer tunable physicochemical properties, high drug-loading capacity, extended circulation time, and active targeting capabilities. Their design principles, fabrication methods, and surface modification techniques contribute to their efficacy in delivering therapeutic agents to cancer cells while minimizing harm to healthy tissues. Controlled drug release mechanisms further enhance their effectiveness by ensuring precise and gradual drug delivery at the tumor site. Recent advances in preclinical and clinical studies have demonstrated the potential of polymer-based nanoparticles in improving cancer treatment outcomes. The combination of targeted therapies, personalized medicine, and optimized treatment strategies holds promise for further advancements in the field. In summary, the application of polymer-based nanoparticles in targeted cancer therapy offers a personalized and effective approach to the treatment of various cancers. These nanoparticles can be precisely engineered to deliver therapeutic agents to specific tumor sites, minimizing side effects and maximizing treatment efficacy. Continued research and clinical studies are needed to fully explore their capabilities and optimize their use in personalized cancer treatments. With further advancements, polymer-based nanoparticles have the potential to revolutionize cancer therapy, providing patients with more effective and tailored treatments.

AUTHOR CONTRIBUTIONS

All authors made substantial contributions to the conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agreed to be accountable for all aspects of the work. All the authors are eligible to be an author as per the International Committee of Medical Journal Editors (ICMJE) requirements/guidelines.

FINANCIAL SUPPORT

This work was supported by Research Excellence and Innovation Grant (Project Code: REIG-FPS-2023/041) under the Centre of Excellence in Research, Value Innovation and Entrepreneurship (CERVIE), UCSI University, Malaysia.

CONFLICTS OF INTEREST

The authors report no financial or any other conflicts of interest in this work.

ETHICAL APPROVALS

This study does not involve experiments on animals or human subjects.

DATA AVAILABILITY

All data generated and analyzed are included in this research article.

USE OF ARTIFICIAL INTELLIGENCE (AI)-ASSISTED TECHNOLOGY

The authors declares that they have not used artificial intelligence (AI)-tools for writing and editing of the manuscript, and no images were manipulated using AI.

PUBLISHER’S NOTE

All claims expressed in this article are solely those of the authors and do not necessarily represent those of the publisher, the editors and the reviewers. This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES

45. Nair PR. Delivering combination chemotherapies and targeting oncogenic pathways via polymeric drug delivery systems. Polymers [Internet]. 2019 Apr 5;11(4):630. doi: https://doi.org/10.3390/polym11040630

