Phytochemicals detected in Lysiphyllum strychnifolium (Craib) A. Schmitz stem extracts and their log-patterns of ABTS radical scavenging activities

Netiya Karaket Kanoktip Pansuksan   

Open Access   

Published:  May 15, 2024

DOI: 10.7324/JAPS.2024.156279

Lysiphyllum strychnifolium (W. G. Craib) A. Schmitz is a plant with various medicinal properties, including antioxidant activity and detoxification. In this study, we initially screened the phytochemical compounds in methanolic (MeOH) extract by gas chromatography-mass spectrometry (GC-MS) technique and blasted them with NIST17 library. After screening, some bioactive compounds, such as 1,2-Benzenediol (3.68%); 1,2,3-Benzenetriol (12.16%); 1,3,5-Benzenetriol (24.30%); 13-Docosenamide, (Z)-(3.41%); and D-allose (24.46%) with reported antioxidant properties were identified; Then, the next analysis of phytochemicals; including catechin and quercetin in MeOH, ethanolic (EtOH), and aqueous extracts by the high performance liquid chromatography (HPLC). The results revealed that catechin contents in all extracts fell within the range of 3.46–9.55 mg/g DW. However, quercetin is figured out in all extracts except in the EtOH extract, which may be due to its low content and the limitation of detection. Subsequently, we tested the free radical scavenging activities of all extracts using the ABTS method. It is noteworthy that all extracts exhibited significant antioxidant activities, showing a logarithmic pattern when plotting the graph of decolorization versus concentrations, unlike the linear pattern observed with the standard Trolox. Our study confirms that L. strychnifolium extracts have excellent antioxidant activities and represents a potential candidate for alternative source of antioxidant agents in medicinal application.

Keyword:     Lysiphyllum strychnifolium phytochemical GC-MS antioxidant ABTS


Karaket N, Pansuksan K. Phytochemicals detected in Lysiphyllum strychnifolium (Craib) A. Schmitz stem extracts and their log-patterns of ABTS radical scavenging activities. J Appl Pharm Sci. 2024. Online First.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text


1. Sampaopan Y, Kitprapiumpon N, Kongkiatpaiboon S, Duangdee N, Wongyai S. Isolation and HPLC Analysis of Astilbin in Lysiphyllum strychnifolium (syn. Bauhinia strychnifolia) Stems. Sci Technology Asia. 2021; 26(1): 208-15.

2. Sampaopan Y, Suksaeree J. Formulation Development and pharmaceutical evaluation of lysiphyllum strychnifolium topical patches for their anti-inflammatory potential. AAPS Pharm Sci Tech. 2022;23(5):116.

3. Sukprasert S, Pansuksan K, Sriyakul K. Lysiphyllum strychnifolium (Craib) A. Schmitz extract, a novel neuraminidase inhibitor of avian influenza virus subtype H5N1. J Herb Med, 2020a;20:100330.

4. Goli AS, Sato VH, Sato H, Chewchinda S, Leanpolchareanchai J, Nontakham J, Yahuafai J, Thilavech T, Meesawatsom P, Maitree M. Antihyperglycemic effects of Lysiphyllum strychnifolium leaf extract in vitro and in vivo. Pharm Biol. 2023;61(1):189-200.

5. Sato V, Chewchinda S, Nuamnaichati N, Mangmool S, Bunleu S, Lertsatitthanakorn P, Ohta S, Sato H. Pharmacological mechanisms of the water leaves extract of Lysiphyllum strychnifolium for its anti-inflammatory and anti-hyperuricemic actions for gout treatment. Pharmacogn Mag, 2019;15(60):98-106.

6. Noonong K, Pranweerapaiboon K, Chaithirayanon K, Rurayarn K, Ditracha P, Changklungmoa N, Kueakhai P, Hiransai1 P, Bunluepuech K. Antidiabetic potential of Lysiphyllum strychnifolium (Craib) A. Schmitz compounds in human intestinal epithelial Caco-2 cells and molecular docking-based approaches. BMC Complement Med Ther, 202222:235.

7. Kuendee N, Naladta A, Kulsirirat T, Yimsoo T, Yingmema W, Pansuksan K, Sathirakul K, Sukprasert S. Lysiphyllum strychnifolium (Craib) A. Schmitz extracts moderate the expression of drug-metabolizing enzymes: In Vivo study to clinical propose. Pharmaceuticals. 2023;16(2):237.

8. Ayoka TO, Ezema1 BO, Eze CN, Nnadi CO. Antioxidants for the prevention and treatment of non-communicable diseases. J Explor Res Pharmacol. 2022;7(3):178-88.

9. Pereira DM, Valentão P, Pereira JA, Andrade PB. Phenolics: from chemistry to biology. Molecules, 2009;14(6):2202-11.

10. Rizvi S, Raza ST, Ahmed F, Ahmad A, Abbas S, Mahdi F. The role of vitamin e in human health and some diseases. Sultan Qaboos Univ Med J. 2014;14(2):e157-65.

11. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2(12):1231-46.

12. Michalak M. Plant-derived antioxidants: significance in skin health and the ageing process. Int J Mol Sci, 2022;23(2):585.

13. Sukprasert S, Deenonpoe R, Yimsoo T, Yingmema W, Prasopdee S, Krajang A, Kornthong N, Pattaraarchachai J, Daduang S. Antidote activity and protective effects of Lysiphyllum strychnifolium (Craib) A. Schmitz extract against organophosphate pesticide in omethoate-treated rats. J Tradit Complement Med. 2020b;11(3):189-96.

14. Praparatana R, Maliyam P, Barrows LR, Puttarak P. Flavonoids and phenols, the potential anti-diabetic compounds from Bauhinia strychnifolia Craib. Stem. Molecules. 2022;27(8):2393.

15. Yuangang Zu, Chunying Li, Yujie Fu, Chunjian Zhao. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. J Pharm Biomed Anal, 2006; 41(3): 714-19.

16. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 1999; 26(9-10): 1231- 37.

17. Chong YM, Chang SK, Sia WCM, Yim HS. Antioxidant efficacy of mangosteen (Garcinia mangostana Linn.) peel extracts in sunflower oil during accelerated storage. Food Biosci, 2015;12:18-25.

18. Hashemi SMB, Khaneghah AM, Koubaa M, Lopez-Cervantes J, Yousefabad SHA, Hosseini SF, Karimi M, Motazedian A, Asadifard S. Novel edible oil sources: microwave heating and chemical properties. Food Res Int. 2017;92:147-53.

19. De La Cruz JP, Ruiz-Moreno MI, Guerrero A, López-Villodres JA, Reyes JJ, Espartero JL, Labajos MT, González-Correa JA. Role of the catechol group in the antioxidant and neuroprotective effects of virgin olive oil components in rat brain. J Nutr Biochem. 2015;26(5):549-55..

20. Xie X, Wu F, Tian J, Liu Z, He H, Bao D, Li G, Li H, Chen J, Lai Y, Chen Z, Fan J, Chen G, Lai C. Pyrocatechol alleviates cisplatin-induced acute kidney injury by inhibiting ROS production. Oxid Med Cell Longev. 2022;2022:2158644.

21. Choe E. Roles and action mechanisms of herbs added to the emulsion on its lipid oxidation. Food Sci Biotechnol. 2020;29:1165-79.

22. OECD (2003a). SIDS Initial Assessment Profile (SIAP) on 1,2-Dihydroxybenzene (pyrocatechol, catechol) (120-80-9). Accessed September 2023.

23. Yang C, Wang B, Wang J, Xia S, Wu Y. Effect of pyrogallic acid (1,2,3-benzenetriol) polyphenol-protein covalent conjugation reaction degree on structure and antioxidant properties of pumpkin (Cucurbita sp.) seed protein isolate. LWT-Food Sci Technol. 2019;109:443-49.

24. Baharuddin N. Potential use of Quercus infectoria gall extracts against urinary tract pathogenic bacteria. Int J Res Pharmacol Pharmacother. 2014;3:184-91.

25. Zhang Y, Yang S, Qiu Z, Huang L, Huang L, Liang Y, Liu X, Wang M, Zhou B. Pyrogallol enhances therapeutic effect of human umbilical cord mesenchymal stem cells against LPS-mediated inflammation and lung injury via activation of Nrf2/HO-1 signaling. Free Radic Biol Med, 2022;191:66-81.

26. Finewax Z, de Gouw J, Ziemann P. Products and secondary organic aerosol yields from the OH and NO3 radical-initiated oxidation of resorcinol. ACS Earth Space Chem. 2019;3:1248-59.

27. Jayawardhana HHACK, Jayawardena TU, Sanjeewa KKA, Liyanage NM, Nagahawatta DP, Lee H-G, Kim J-I, Jeon Y-J. Marine algal polyphenols as skin protective agents: current status and future prospectives. Mar Drugs. 2023;21(5):285.

28. Kishida K, Iida T, Yamada T, Toyoda Y. d-Allose is absorbed via sodium-dependent glucose cotransporter 1 (SGLT1) in the rat small intestine. Metabol Open. 2021;11:100112.

29. Ishihara Y, Katayama K, Sakabe M, Kitamura M, Aizawa M, Takara M, Itoh K. Antioxidant properties of rare sugar D-allose: effects on mitochondrial reactive oxygen species production in Neuro2A cells. J Biosci Bioeng. 2011;112(6):638-42. ISSN 1389-1723.

30. Ju J, Hou R, Zhang P. D-allose alleviates ischemia/reperfusion (I/R) injury in skin flap via MKP-1. Mol Med. 2020;26(1):21.

31. Tohi Y, Taoka R, Zhang X, Matsuoka Y, Yoshihara A, Ibuki E, Haba R, Akimitsu K, Izumori K, Kakehi Y, Sugimoto M. Antitumor effects of orally administered rare sugar D-Allose in bladder cancer. Int J Mol Sci. 2022;23(12):6771.

32. Shareef H, Haidar J, Hussein H, Hameed I. Antibacterial effect of ginger (Zingiber officinale) Roscoe and bioactive chemical analysis using gas chromatography mass spectrum. Orient J Chem. 2016;(32):817-37.

33. Kalender Y, Kaya S, Durak D, Uzun FG, Demir F. Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environ Toxicol Pharmacol. 2012;33(2):141-148.

Article Metrics
21 Views 4 Downloads 25 Total



Related Search

By author names