Ethnobotany, total phenolic and flavonoid content in the species Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson

Juan Ernesto Valdiviezo-Campos Karyn Alicia Olascuaga-Castillo Segundo Guillermo Ruiz-Reyes   

Open Access   

Published:  May 08, 2024

DOI: 10.7324/JAPS.2024.172838
Abstract

After the emergence of COVID-19, respiratory sequelae persisted, and one alternative worth reconsideration is Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson. The objective is to determine the ethnobotany and the total phenolic and flavonoid content of C. citriodora. The ethnobotanical information was gathered using a semi-structured questionnaire from herbalists in markets in the city of Trujillo, La Libertad, Peru. Corymbia citriodora was collected in Agallpampa, Otuzco, and identified in the Herbarium Truxillense. Three extracts were prepared and evaluated (infuse, decoct, and hydroethanolic). The total phenols were quantified using the Folin Ciocalteau method, and total flavonoids were quantified using the aluminum chloride method. Corymbia citriodora reported a higher medicinal use in bronchitis (39.1%), in the preparation of a frequent infusion, made from leaves, often in combination with Piper aduncum (35.7%). Total phenols and flavonoids were reported as 118.65 mg GAE and 33.95 mg QCE per gram of dried drug, with the hydroethanolic extract standing out. The high presence of phenolic and flavonoid bioactives is directly related to anti-inflammatory activity, suggesting that C. citriodora remains a viable option and demonstrates efficacy in a traditional context for improving respiratory conditions.


Keyword:     Corymbia citriodora ethnobotany flavonoids herbalists phenols respiratory conditions


Citation:

Valdiviezo-Campos JE, Olascuaga-Castillo KA, Ruiz-Reyes SG. Ethnobotany, total phenolic and flavonoid content in the species Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.172838

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Valdiviezo-Campos JE, Blanco-Olano CM, Olascuaga-Castillo KA, Rubio-Guevara SDR. Uncaria tomentosa (Willd.) DC. (Rubiaceae): native species of Peru, herbal medicine recognized by traditional medicine. Ethnobot Res Appl. 2020;19:1–15. Available from: https://ethnobotanyjournal.org/index.php/era/article/view/1795

2. Ejidike IP, Mtunzi FM, Ledwaba I, Phele MJ, Ejidike OM, Ogunleye O, et al. Combretum species around Africa as alternative medicine: ethnopharmacological and ethnobotanical importance. J App Pharm Sci. 2023;13(8):12–29. doi: http://dx.doi.org/10.7324/JAPS.2023.20644

3. Souilah N, Miara MD, Bendif H, Medjroubi K, Snorek J. Traditional ethnobotanical knowledge on medicinal plants used by the populations in central Russikada (Northeastern Algeria). J Herbs Spices Med Plants. 2022;28(1):15–35. doi: https://doi.org/10.1080/10496475.2021.1961180

4. Ganesan K, Xu B. Ethnobotanical studies on folkloric medicinal plants in Nainamalai, Namakkal District, Tamil Nadu, India. Trends Phytochem Res. 2017;1(3):153–68.

5. Kumar A, Kumar S, Komal, Ramchiary N, Singh P. Role of traditional ethnobotanical knowledge and indigenous communities in achieving sustainable development goals. Sustainability. 2021;13(6):3062. doi: https://doi.org/10.3390/su13063062

6. Turreira-García N, Argyriou D, Phourin C, Srisanga P, Theilade I. Ethnobotanical knowledge of the Kuy and Khmer people in Prey Lang, Cambodia. Cambodian J Nat Hist. 2017;2017:76–101.

7. Neha K, Haider MR, Pathak A, Yar MS. Medicinal prospects of antioxidants: a review. Eur J Med Chem. 2019;178:687–704. doi: https://doi.org/10.1016/j.ejmech.2019.06.010

8. Brawner J, Meder R, Dieters M, Lee D. Selection of Corymbia citriodora for pulp productivity. Southern Forests. 2012;74(2):121–31. doi: https://doi.org/10.2989/20702620.2012.701418

9. Tambarussi EV, Pereira FB, da Silva PHM, Lee D, Bush D. Are tree breeders properly predicting genetic gain? A case study involving Corymbia species. Euphytica. 2018;214(8):150. doi: https://doi.org/10.1007/s10681-018-2229-9

10. da Costa MM, de Bittencourt RC, Nogueira TAPC, Silva LS, da Silva WHM, Valverde SR, et al. Technical evaluation of hybrid clones of Corymbia spp. to produce market pulp. Pap Biomater. 2022;7(3):1–6. doi: https://doi.org/10.1213/j.issn.2096-2355.2022.03.001

11. Hung TD, Brawner JT, Lee DJ, Meder R, Dieters MJ. Genetic variation in growth and wood-quality traits of Corymbia citriodora subsp. variegata across three sites in south-east Queensland, Australia. Southern Forests. 2016;78(3):225–39. doi: https://doi.org/10.2989/20702620.2016.1183095

12. Torres PC. Medicina tradicional china en la COVID-19: análisis bibliométrico. Med Natur. 2021;15(1):27–31. https://dialnet.unirioja.es/servlet/articulo?codigo=7747847

13. Lin L, Chen W, Li C, Cui H. Enhancing stability of Eucalyptus citriodora essential oil by solid nanoliposomes encapsulation. Ind Crops Prod. 2019;140:111615. doi: https://doi.org/10.1016/j.indcrop.2019.111615

14. Mohareb ASO, Elashmawy MAA, Nawar MEM, Abdelrahman AK, Ahmed FM, Hassona AEA, et al. Chemical compositions and antifungal activity of Corymbia citriodora, Cupressus macrocarpa, and Syzygium cumini extracts: GC–MS and HPLC analysis of essential oils and phenolic compounds. Biomass Conv Bioref. 2023. doi: https://doi.org/10.1007/s13399-023-05106-8

15. Perry MJ, Wangchuk P. The ethnopharmacology, phytochemistry and bioactivities of the Corymbia genus (Myrtaceae). Plants. 2023;12(21):3686. Available from: https://www.mdpi.com/2223-7747/12/21/3686

16. García IR, Rodríguez VJ, Lora LMG. Plantas medicinales antivirales: una revisión enfocada en el COVID-19. Med Nat. 2021;15(1):38–45. https://dialnet.unirioja.es/servlet/articulo?codigo=7747849

17. Barbosa LCA, Filomeno CA, Teixeira RR. Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules. 2016;21(12):1671. doi: https://doi.org/10.3390/molecules21121671

18. Miguel MG, Gago C, Antunes MD, Lagoas S, Faleiro ML, Megías C, et al. Antibacterial, antioxidant, and antiproliferative activities of Corymbia citriodora and the essential oils of eight Eucalyptus species. Medicines. 2018;5(3):61. doi: https://doi.org/10.3390/medicines5030061

19. Weckerle CS, de Boer HJ, Puri RK, van Andel T, Bussmann RW, Leonti M. Recommended standards for conducting and reporting ethnopharmacological field studies. J Ethnopharmacol. 2018;210:125–32. doi: https://doi.org/10.1016/j.jep.2017.08.018

20. Bhat MN, Singh B, Surmal O, Singh B, Shivgotra V, Musarella CM. Ethnobotany of the Himalayas: Safeguarding medical practices and traditional uses of Kashmir regions. Biology. 2021;10(9):851. doi: https://doi.org/10.3390/biology10090851

21. Venegas CEA, Gómez AAM, Chávez LAN, Valdiviezo CJE, Ormeño LlM, Vásquez CE. Evaluación fitoquímica preliminar del extracto metanólico y etanólico de las flores de Cordia lutea Lam. (Boraginaceae) y su capacidad antioxidante. Arnaldoa. 2019;26(1):359–66. doi: http://dx.doi.org/10.22497/arnaldoa.261.26117

22. Rafi M, Febriany S, Wulandari P, Suparto IH, Ridwan T, Rahayu S, et al. Total phenolics, flavonoids, and anthocyanin contents of six Vireya Rhododendron from Indonesia and evaluation of their antioxidant activities. J App Pharm Sci. 2018;8(9):49–54.

http://dx.doi.org/10.7324/JAPS.2018.8908

23. Rojas-Ocampo E, Torrejón-Valqui L, Muñóz-Astecker LD, Medina-Mendoza M, Mori-Mestanza D, Castro-Alayo EM. Antioxidant capacity, total phenolic content and phenolic compounds of pulp and bagasse of four Peruvian berries. Heliyon 2021;7(8):e07787. doi: https://doi.org/10.1016/j.heliyon.2021.e07787

24. Chen XQ, Li ZH, Liu LL, Wang H, Yang SH, Zhang JS, et al. Green extraction using deep eutectic solvents and antioxidant activities of flavonoids from two fruits of Rubia species. LWT. 2021;148:111708. doi: https://doi.org/10.1016/j.lwt.2021.111708

25. Hou M, Hu W, Wang A, Xiu Z, Shi Y, Hao K, et al. Ultrasound-assisted extraction of total flavonoids from Pteris cretica L.: process optimization, HPLC analysis, and evaluation of antioxidant activity. Antioxidants. 2019;8(10):425. doi: https://doi.org/10.3390/antiox8100425

26. Mohamadi N, Sharififar F, Koohpayeh A, Daneshpajouh M. Traditional and ethnobotanical uses of medicinal plants by ancient populations in Khabr and Rouchon of Iran. J Appl Pharm Sci. 2023;5(11):101–7. doi: http://dx.doi.org/10.7324/JAPS.2015.501117

27. Abba A, Dogara AM. Ethnomedicinal survey of plants used for management of inflammatory diseases in Ringim Local Government, Jigawa State, Nigeria. Ethnobot Res Appl. 2023;22:1–27. Available from: https://ethnobotanyjournal.org/index.php/era/article/view/3127

28. Abdulrahman MD, Bradosty SW, Hamad SW, Ibrahim MT, Lema AA, Sunusi N, et al. Traditional methods for treatment and management of measles in Northern Nigeria: medicinal plants and their molecular docking. Ethnobot Res Appl. 2022;23:1–18. Available from: https://ethnobotanyjournal.org/index.php/era/article/view/3595

29. Magalhães K do N, Guarniz WAS, Sá KM, Freire AB, Monteiro MP, Nojosa RT, et al. Medicinal plants of the Caatinga, northeastern Brazil: ethnopharmacopeia (1980–1990) of the late professor Francisco José de Abreu Matos. J Ethnopharmacol. 2019;237:314–53. doi: https://doi.org/10.1016/j.jep.2019.03.032

30. Paniagua-Zambrana NY, Bussmann RW, Romero C. Eucalyptus citriodora Hook. Eucalyptus globulus Labill. Myrtaceae. In: Paniagua-Zambrana NY, Bussmann RW, editors. Ethnobotany of the Andes. Cham, Switzerland: Springer International Publishing; 2020. pp 829–36.

31. Abbass H. Eucalyptus essential oil; an off-label use to protect the world from COVID-19 pandemic: review-based hypotheses. Univers J Pharm Res. 2020;5:57–60.

https://doi.org/10.22270/ujpr.v5i4.440

32. Sharifi-Rad J, Sureda A, Tenore GC, Daglia M, Sharifi-Rad M, Valussi M, et al. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules. 2017;22(1):70. doi: https://doi.org/10.3390/molecules22010070

33. Brezáni V, Leláková V, Hassan STS, Berchová-Bímová K, Nový P, Klou?ek P, et al. Anti-infectivity against herpes simplex virus and selected microbes and anti-inflammatory activities of compounds isolated from Eucalyptus globulus Labill. Viruses. 2018;10(7):360. doi: https://doi.org/10.3390/v10070360

34. Goodine T, Oelgemöller M. Corymbia citriodora: a valuable resource from Australian flora for the production of fragrances, repellents, and bioactive compounds. ChemBioEng Rev. 2020;7(6):170–92. doi: https://doi.org/10.1002/cben.202000013

35. Sarma N, Gogoi R, Loying R, Begum T, Munda S, Pandey S, et al. Phytochemical composition and biological activities of essential oils extracted from leaves and flower parts of Corymbia citriodora (Hook.) J Environ Biol. 2021;42:552–562. doi: https://doi.org/10.22438/eb/42/2(SI)/SI-285

36. Tolba H, Moghrani H, Aboun A, Maachi R. Essential oil of Algerian Eucalyptus citriodora: chemical composition, antioxidant and antimicrobial activities. Rev Nat Technol. 2018;10(01):105–11. doi: https://doi.org/10.1016/j.mycmed.2015.10.009

37. Salehi B, Sharifi-Rad J, Quispe C, Llaique H, Villalobos M, Smeriglio A, et al. Insights into Eucalyptus genus chemical constituents, biological activities and health-promoting effects. Trends Food Sci Technol. 2019;91:609–24. doi: https://doi.org/10.1016/j.tifs.2019.08.003

38. Bermúdez del Sol A, Gallegos A, Sánchez MJG, Andi GDD, Bravo SLR. Etnobotánica cuantitativa de las plantas medicinales en el cantón Penipe, provincia de Chimborazo, Ecuador. La Técnica. 2022;12(2):42–50. https://dialnet.unirioja.es/servlet/articulo?codigo=8736650

39. Mani JS, Johnson JB, Hosking H, Ashwath N, Walsh KB, Neilsen PM, et al. Antioxidative and therapeutic potential of selected Australian plants: a review. J Ethnopharmacol. 2021;268:113580. doi: https://doi.org/10.1016/j.jep.2020.113580

40. Samoisy AK, Mahomoodally F. Ethnopharmacological appraisal of culturally important medicinal plants and polyherbal formulas used against communicable diseases in Rodrigues Island. J Ethnopharmacol. 2016;194:803–18. doi: https://doi.org/10.1016/j.jep.2016.10.041

41. Gbekley HE, Katawa G, Karou SD, Anani K, Tchadjobo T, Ameyapoh Y, et al. Ethnobotanical study of plants used to treat asthma in the maritime region in Togo. Afr J Tradit Complement Altern Med. 2017;14(1):196–212. doi: https://doi.org/10.21010/ajtcam.v14i1.22

42. Afolayan F, Sulaiman K, Okunade W, Garrido G. Ethnobotanical survey of plants used in cancer therapy in Iwo and Ibadan, South-Western of Nigeria. J Pharm Pharmacogn Res. 2020;8:346–67.

43. de Lobo RA AM, Lobo ACBNM, de Oliveira AFM, de Andrade LHC. La etnobotánica como parámetro para el estudio del mimetismo cultural entre el pueblo gitano. Bol Latinoam Caribe Plantas Med Aromáticas. 2022;21(4):530–47. doi: https://doi.org/10.37360/blacpma.22.21.4.32

44. Bibi F, Abbas Z, Harun N, Perveen B, Bussmann RW. Indigenous knowledge and quantitative ethnobotany of the Tanawal area, Lesser Western Himalayas, Pakistan. PLoS One. 2022;17(2):e0263604. doi: https://doi.org/10.1371/journal.pone.0263604

45. Mejía GSY, Estela GAM. Uso empírico de Eucalyptus globulus y Piper aduncum para tratar la COVID-19 en los pobladores de Barrios Altos. Available from: http://hdl.handle.net/20.500.14140/1148

46. Delgado-Paredes EG, Delgado-Rojas RP, Rojas-Idrogo C. Peruvian medicinal plants and cosmopolitan plants with potential use in the treatment of respiratory diseases and COVID-19. Int J Plant Anim Environ Sci. 2021;11(02):295–321. doi: http://dx.doi.org/10.26502/ijpaes.202107

47. Caballero-Serrano V, McLaren B, Carrasco JC, Alday JG, Fiallos L, Amigo J, et al. Traditional ecological knowledge and medicinal plant diversity in Ecuadorian Amazon home gardens. Glob Ecol Conserv. 2019;17:e00524. doi: https://doi.org/10.1016/j.gecco.2019.e00524

48. Lozada M, Ladio A, Weigandt M. Cultural transmission of ethnobotanical knowledge in a rural community of northwestern Patagonia, Argentina. Econ Bot. 2006;60(4):374–85. doi: https://doi.org/10.1663/0013-0001(2006)60[374:CTOEKI]2.0.CO;2

49. Cárdenas JAL, López JMM, Saldarriaga JY, Mamani CMC, Manrique RFC, Soto FGC, et al. Use of medicinal herbs to relieve symptoms of respiratory conditions and COVID-19. Vive Rev Salud. 2022;5(15):738–49. doi: https://doi.org/10.33996/revistavive.v5i15.184

50. Mgbeahuruike EE, Yrjönen T, Vuorela H, Holm Y. Bioactive compounds from medicinal plants: focus on Piper species. South Afr J Bot. 2017;112:54–69. doi: https://doi.org/10.1016/j.sajb.2017.05.007

51. Villena-Tejada M, Vera-Ferchau I, Cardona-Rivero A, Zamalloa-Cornejo R, Quispe-Florez M, Frisancho-Triveño Z, et al. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: a cross-sectional survey. PLoS One. 2021;16(9):e0257165. doi: https://doi.org/10.1371/journal.pone.0257165

52. Hassan A, Abu Hafsa SH, Elghandour MMY, Kanth Reddy PR, Salem MZM, Anele UY, et al. Influence of Corymbia citriodora leaf extract on growth performance, ruminal fermentation, nutrient digestibility, plasma antioxidant activity and faecal bacteria in young calves. Anim Feed Sci Technol. 2020;261:114394. doi: https://doi.org/10.1016/j.anifeedsci.2020.114394

53. Idris MM, Yelwa AM, Muhammad A. Phytochemical screening, cytotoxicity and antioxidant activities of leaves extracts from Eucalyptus citriodora. J Trop Pharm Chem. 2021;5(3):165–73. doi: http://dx.doi.org/10.25026/jtpc.v5i3.280

54. Gonçalves JPZ, Seraglio J, Macuvele DLP, Padoin N, Soares C, Riella HG. Green synthesis of manganese based nanoparticles mediated by Eucalyptus robusta and Corymbia citriodora for agricultural applications. Colloids Surf Physicochem Eng Asp. 2022;636:128180. doi: https://doi.org/10.1016/j.colsurfa.2021.128180

55. Toumi MN, Benyamina A, Bouzidi MA, Semmak A, Bellebna Y, Toumi F, et al. Intensification of the extraction yield of Eucalyptus globulus phenolic compounds with pulsed electric field. Appl Sci. 2022;12(19):9455. doi: https://doi.org/10.3390/app12199455

56. Dey B, Mitra A, Katakam P, Singla RK. Exploration of natural enzyme inhibitors with hypoglycemic potentials amongst Eucalyptus Spp. by in vitro assays. World J Diabetes. 2014;5(2):209–18. doi: https://doi.org/10.4239%2Fwjd.v5.i2.209

57. Rienth M, Vigneron N, Darriet P, Sweetman C, Burbidge C, Bonghi C, et al. Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario—a review. Front Plant Sci. 2021;12:643258. doi: https://doi.org/10.3389/fpls.2021.643258

58. Das PR, Darwish AG, Ismail A, Haikal AM, Gajjar P, Balasubramani SP, et al. Diversity in blueberry genotypes and developmental stages enables discrepancy in the bioactive compounds, metabolites, and cytotoxicity. Food Chem. 2022;374:131632. doi: https://doi.org/10.1016/j.foodchem.2021.13163

Article Metrics
31 Views 5 Downloads 36 Total

Year

Month

Related Search

By author names