Marine resources compound with melanogenic regulatory properties: Especially seagrass, seaweed, and marine sponges as an anti-melanogenic activity

Diah Tri Utami Erna Prawita Setyowati Yosi Bayu Murti Edy Meiyanto   

Open Access   

Published:  May 07, 2024

DOI: 10.7324/JAPS.2024.168569
Abstract

Tyrosinase is a rate-limiting enzyme that is essential for the synthesis of melanin and controls pigmentation in the skin. The most common strategy in cosmeceutical products for skin lightening is the suppression of tyrosinase. Marine substances contain a variety of unique chemical compounds that have the potential to develop into new bioactive compounds as future medications for skin hyperpigmentation therapy. In this review, we summarize 55 compounds from marine resources that have been identified as active in inhibiting tyrosinase enzyme activity from research studies published up to April 2023. Those substances are classified to be very strong, strong, and moderate inhibit tyrosinase activity and melanin biosynthesis. Based on the IC50 value, there are 12 compounds that act as potential anti-melanogenic agents. 7-phloroeckol isolated from Ecklonia cava has the highest tyrosinase enzyme inhibitory activity with an IC50 value of 0.85 μM, while Arenarol isolated from Dysidea arenaria has the most active properties in reducing the synthesis of melanin with an IC50 value of <3 μM on B16 melanoma cells. We propose to present a new perspective on the discovery of metabolites from seagrasses, seaweeds, and marine sponges that can be applied as lead compounds in developing medications for anti-hyperpigmentation therapy through this review.


Keyword:     Marine resources melanin inhibitor tyrosinase bioactive compound depigmentation skin lightening agent


Citation:

Utami DT, Setyowati EP, Murti YB, Meiyanto E. Marine resources compound with melanogenic regulatory properties: Especially seagrass, seaweed, and marine sponge as an anti-melanogenic activity. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.168569

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 2003;16(5):523–31. doi: https://doi.org/10.1034/j.1600-0749.2003.00072.x

2. Low E, Alimohammadiha G, Smith LA, Costello LF, Przyborski SA, von Zglinicki T, et al. How good is the evidence that cellular senescence causes skin ageing? Ageing Res Rev. 2021 Nov 1;71:101456. doi: https://doi.org/10.1016/j.arr.2021.101456

3. Sugumaran M, Barek H. Critical analysis of the melanogenic pathway in insects and higher animals. Int J Mol Sci. 2016 Oct;17(10):1753. doi: https://doi.org/10.3390/ijms17101753

4. Rzepka Z, Buszman E, Beberok A, Wrze?niok D. From tyrosine to melanin: signaling pathways and factors regulating melanogenesis. Adv Hyg Exp Med. 2016 Jun 30;70(0):695–708. doi: https://doi.org/10.5604/17322693.1208033

5. Kurpejovi? E, Wendisch VF, Sariyar Akbulut B. Tyrosinase-based production of l-DOPA by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2021 Dec 1;105(24):9103–11. doi: https://doi.org/10.1007/s00253-021-11681-5

6. Min K, Park K, Park DH, Yoo YJ. Overview on the biotechnological production of l-DOPA. Appl Microbiol Biotechnol. 2015 [cited 2023 Mar 3];99:575–84. Available from: https://link.springer.com/article/10.1007/s00253-014-6215-4

7. Rathee P, Kumar S, Kumar D, Kumari B, Yadav SS. Skin hyperpigmentation and its treatment with herbs: an alternative method. Futur J Pharm Sci. 2021 [cited 2023 Mar 3];7:132. Available from: https://link.springer.com/article/10.1186/s43094-021-00284-6

8. Srisayam M, Weerapreeyakul N, Kanokmedhakul K. Inhibition of two stages of melanin synthesis by sesamol, sesamin and sesamolin. Asian Pac J Trop Biomed. 2017 Oct 1;7(10):886–95. doi: https://doi.org/10.1016/j.apjtb.2017.09.013

9. Qian W, Liu W, Zhu D, Cao Y, Tang A, Gong G, et al. Natural skin-whitening compounds for the treatment of melanogenesis (Review). Exp Ther Med. 2020 Jul 1;20(1):173–85. doi: https://doi.org/10.3892/etm.2020.8687

10. Chen J, Li S, Li C. Mechanisms of melanocyte death in vitiligo. Med Res Rev [Internet]. 2020 [cited 2023 Mar 3];41(2):1138–66. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/med.21754

11. Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 2006;19(6):550–71. doi: https://doi.org/10.1111/j.1600-0749.2006.00334.x

12. Briganti S, Camera E, Picardo M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 2003;16(2):101–10. doi: https://doi.org/10.1034/j.1600-0749.2003.00029.x

13. Nautiyal A, Wairkar S. Management of hyperpigmentation: current treatments and emerging therapies. Pigment Cell Melanoma Res. 2021;34(6):1000–14. doi: https://doi.org/10.1111/pcmr.12986

14. Enaru B, Dre?canu G, Pop TD, St?nil? A, Diaconeasa Z. Anthocyanins: factors affecting their stability and degradation. Antioxidants. 2021 Dec;10(12):1967. doi: https://doi.org/10.3390/antiox10121967

15. Ferreira AM, de Souza AA, Koga RD, Sena ID, Matos MD, Tomazi R, et al. Anti-melanogenic potential of natural and synthetic substances: application in Zebrafish model. Molecules. 2023 Jan;28(3):1053. doi: https://doi.org/10.3390/molecules28031053

16. Kalaivani D, Arun V. Anti-melanogenic potential of Acalypha indica ethyl acetate fraction on Zebra fish embryos. Curr Trends Biotechnol Pharm. 2022 Feb 11;16(1):23–34. doi: https://doi.org/10.5530/ctbp.2022.1.3

17. Jin S, Hyun TK. Ectopic expression of production of anthocyanin pigment 1 (PAP1) improves the antioxidant and anti-melanogenic properties of ginseng (Panax ginseng C.A. Meyer) Hairy roots. Antioxidants. 2020 Oct;9(10):922. doi: https://doi.org/10.3390/antiox9100922

18. Vijayakumar R, Raja S. Secondary metabolites: trends and reviews [Internet]. London, UK: IntechOpen; 2022. 312 p. doi: http://dx.doi.org/10.5772/intechopen.98129

19. El-Nashar HAS, El-Din MIG, Hritcu L, Eldahshan OA. Insights on the inhibitory power of flavonoids on tyrosinase activity: a survey from 2016 to 2021. Molecules. 2021 Jan;26(24):7546. doi: https://doi.org/10.3390/molecules26247546

20. Chaita E, Lambrinidis G, Cheimonidi C, Agalou A, Beis D, Trougakos I, et al. Anti-melanogenic properties of greek plants. A novel depigmenting agent from Morus alba Wood. Molecules. 2017 Apr;22(4):514. doi: https://doi.org/10.3390/molecules22040514

21. Blunt J, Copp B, Keyzers R, Munro MH, Prinsep M. Marine natural products. Nat Prod Rep [Internet]. 2015 [cited 2024 Jan 3];32(2):116– 211. doi: https://doi.org/10.1039/C4NP00144C

22. Jimeno J, Faircloth G, Sousa-Faro JF, Scheuer P, Rinehart K. New marine derived anticancer therapeutics—a journey from the sea to clinical trials. Mar Drugs. 2004 Mar;2(1):14–29. doi: https://doi.org/10.3390/md201014

23. Samirana PO, Jenie RI, Murti YB, Setyowati EP Application of metabolomics on marine sponges and sponge-associated microorganisms: a review. J Appl Pharm Sci. 2022;12:18–33. doi: https://doi.org/10.7324/JAPS.2022.120702

24. Vincenti LD, Glasenapp Y, Cattò C, Villa F, Cappitelli F, Papenbrock J. Hindering the formation and promoting the dispersion of medical biofilms: non-lethal effects of seagrass extracts. BMC Complement Med Ther. 2018 [cited 2023 Jul 2];18(1):1–7. doi: https://doi.org/10.1186/s12906-018-2232-7

25. Kim DH, Mahomoodally MF, Sadeer NB, Seok PG, Zengin G, Palaniveloo K, et al. Nutritional and bioactive potential of seagrasses: a review. S Afr J Bot. 2021 Mar 1;137:216–27. doi: https://doi.org/10.1016/j.sajb.2020.10.018

26. Ali MS, Ravikumar S, Beula JM. Bioactivity of seagrass against the dengue fever mosquito Aedes aegypti larvae. Asian Pac J Trop Biomed. 2012 Jul 1;2(7):570–3. doi: https://doi.org/10.1016/S2221-1691(12)60099-9

27. Lee HY, Jang EJ, Bae SY, Jeon J, Park HJ, Shin J, et al. Antimelanogenic activity of Gagunin D, a highly oxygenated diterpenoid from the marine sponge Phorbas sp., via modulating tyrosinase expression and degradation. Mar Drugs. 2016 Nov;14(11):212.

https://doi.org/10.3390/md14110212

28. Cheung FWK, Guo J, Ling YH, Che CT, Liu WK. Anti-melanogenic property of Geoditin A in murine B16 melanoma cells. Mar Drugs. 2012 Feb;10(2):465–76. doi: https://doi.org/10.3390/md10020465

29. Hu YG, Gao ZP, Zheng YY, Hu CM, Lin J, Wu XZ, et al. Synthesis and biological activity evaluation of 2-cyanopyrrole derivatives as potential tyrosinase inhibitors. Front Chem. 2022 Jun 17;10:914944. doi: https://doi.org/10.3389/fchem.2022.914944

30. Kim CS, Noh SG, Park Y, Kang D, Chun P, Chung HY, et al. A potent tyrosinase inhibitor, (E)-3-(2,4-Dihydroxyphenyl)-1-(thiophen-2-yl) prop-2-en-1-one, with anti-melanogenesis properties in α-MSH and IBMX-induced B16F10 melanoma cells. Molecules. 2018 Oct;23(10):2725.

https://doi.org/10.3390/molecules23102725

31. Alizadeh N, Hossein Sayahi M, Iraji A, Yazzaf R, Moazzam A, Mobaraki K, et al. Evaluating the effects of disubstituted 3-hydroxy1H-pyrrol-2(5H)-one analog as novel tyrosinase inhibitors. Bioorg Chem. 2022 Sep 1;126:105876. doi: https://doi.org/10.1016/j. bioorg.2022.105876

32. Park SY, Kim YH, Kim YH, Park GT, Lee SJ. Beta-carboline alkaloids harmaline and harmalol induce melanogenesis through p38 mitogen-activated protein kinase in B16F10 mouse melanoma cells. BMB Rep. 2010 Dec 31;43(12):824–9. doi: https://doi.org/10.5483/MBRep.2010.43.12.824

33. Ryu IY, Choi I, Jung HJ, Ullah S, Choi H, Al-Amin M, et al. In vitro anti-melanogenic effects of chimeric compounds, 2-(substituted benzylidene)-1,3-indanedione derivatives with a β-phenyl-α, β -unsaturated dicarbonyl scaffold. Bioorg Chem. 2021 Apr 1;109:104688. doi: https://doi.org/10.1016/j.bioorg.2021.104688

34. Lee J, Jeong Y, Jin Jung H, Ullah S, Ko J, Young Kim G, et al. Antityrosinase flavone derivatives and their anti-melanogenic activities: importance of the β-phenyl-α,β-unsaturated carbonyl scaffold. Bioorg Chem. 2023 Jun 1;135:106504. doi: https://doi.org/10.1016/j. bioorg.2023.106504

35. Rengasamy KRR, Sadeer NB, Zengin G, Mahomoodally MF, Cziáky Z, Jek? J, et al. Biopharmaceutical potential, chemical profile and in silico study of the seagrass—Syringodium isoetifolium (Asch.) Dandy. S Afr J Bot. 2019;127:167–75. doi: https://doi.org/10.1016/j. sajb.2019.08.043

36. Papenbrock J. Highlights in seagrasses’ phylogeny, physiology, and metabolism: what makes them special? ISRN Bot. 2012 Dec 10;2012:1–15. doi: https://doi.org/10.5402/2012/103892

37. Reynolds PL, Knowlton N. Seagrass and seagrass beds. Smithsonian Ocean Portal. 2018 Mar 22; 2018:116. Available from: http://ocean.si.edu/seagrass-and-seagrass-beds

38. Hartog C den, Kuo J. Taxonomy and biogeography of seagrasses. In: Larkum AWD, Orth RJ, Duarte CM, editors. Seagrasses: biology, ecologyand conservation [Internet]. Dordrecht, The Netherlands: Springer; 2006 [cited 2023 Jun 26]. pp 1–23. doi: https://doi.org/10.1007/978-1-4020-2983-7_1

39. Cullen-Unsworth L, Unsworth R. Seagrass meadows, ecosystem services, and sustainability. Environ Sci Policy Sustain Dev. 2013 May 1;55(3):14–28. doi: https://doi.org/10.1080/00139157.2013.785864

40. Li X, Zhou Z. Phylogenetic studies of the core Alismatales inferred from morphology and rbcL sequences. Prog Nat Sci. 2009 Aug 10;19(8):931–45. doi: https://doi.org/10.1016/j.pnsc.2008.09.008

41. Cornara L, Pastorino G, Borghesi B, Salis A, Clericuzio M, Marchetti C, et al. Posidonia oceanica (L.) Delile ethanolic extract modulates cell activities with skin health applications. Mar Drugs. 2018 Jan 10;16(1):21. doi: https://doi.org/10.3390/md16010021

42. Kwak JY, Seok JK, Suh HJ, Choi YH, Hong SS, Kim DS, et al. Antimelanogenic effects of luteolin 7-sulfate isolated from Phyllospadix iwatensis Makino. Br J Dermatol. 2016 Sep 1;175(3):501–11. doi: https://doi.org/10.1111/bjd.14496

43. Wang ZJ, Xu W, Liang JW, Wang CS, Kang Y. Effect of fucoidan on B16 murine melanoma cell melanin formation and apoptosis. Afr J Tradit Complement Altern Med. 2017 Aug 4;14(4):149–55. doi: https://doi.org/10.21010/ajtcam.v14i4.18

44. Choosuwan P, Praiboon J, Boonpisuttinant K, Klomjit A, Muangmai N, Ruangchuay R, et al. Inhibitory effects of Caulerpa racemosa, Ulva intestinalis, and Lobophora challengeriae on tyrosinase activity and α-MSH-induced melanogenesis in B16F10 melanoma cells. Life. 2023 Apr;13(4):934. doi: https://doi.org/10.3390/life13040934

45. Shimoda H, Tanaka J, Shan SJ, Maoka T. Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J Pharm Pharmacol. 2010 Sep 1;62(9):1137– 45. doi: https://doi.org/10.1111/j.2042-7158.2010.01139.x

46. Arguelles EDLR. Evaluation of antioxidant capacity, tyrosinase inhibition, and antibacterial activities of brown seaweed, Sargassum ilicifolium (Turner) C. Agardh 1820 for cosmeceutical application. J Fish Environ. 2021 Feb 1;45(1):64–77. Available from: https://li01.Tcithaijo.org/index.php/JFE/article/view/242157

47. Takashi H. Cosmetic potential of boiled water of Hijiki (Sargassum fusiforme) grown in the ocean in Okinawa, Japan [Internet]. Preprints. 2021 [cited 2023 Sep 5]. doi: https://doi.org/10.21203/rs.3.rs-278127/v1

48. Namjooyan F, Farasat M, Alishahi M, Jahangiri A, Mousavi H. The anti-melanogenesis activities of some selected brown macroalgae from Northern Coasts of the Persian Gulf. Braz Arch Biol Technol. 2019 Jun 13;62:e19180198. doi: https://doi.org/10.1590/1678-4324- 2019180198

49. Cha SH, Ko SC, Kim D, Jeon YJ. Screening of marine algae for potential tyrosinase inhibitor: those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. J Dermatol. 2011;38(4):354–63. doi: https://doi.org/10.1111/j.1346-8138.2010.00983.x

50. Dolorosa MT, Nurjanah, Purwaningsih S, Anwar E, Hidayat T. Tyrosinase inhibitory activity of Sargassum plagyophyllum and Eucheuma cottonii methanol extracts. IOP Conf Ser Earth Environ Sci. 2019 May;278(1):012020. doi: https://doi.org/10.1088/1755- 1315/278/1/012020

51. Arguelles E, Sapin A. Bioprospecting of Turbinaria ornata (Fucales, phaeophyceae) for cosmetic application: antioxidant, tyrosinase inhibition and antibacterial activities. J Int Soc Southeast Asian Agric Sci. 2020 Dec 1;26:30–41.

52. Yoon NY, Eom TK, Kim MM, Kim SK. Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. J Agric Food Chem. 2009 May 27;57(10):4124–9. doi: https://doi.org/10.1021/jf900006f

53. Heo SJ, Ko SC, Cha SH, Kang DH, Park HS, Choi YU, et al. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol In Vitro. 2009 Sep 1;23(6):1123–30. doi: https://doi.org/10.1016/j.tiv.2009.05.013

54. Kang HS, Kim HR, Byun DS, Son BW, Nam TJ, Choi JS. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch Pharm Res. 2004 Dec 1;27(12):1226–32. doi: https://doi.org/10.1016/j.tiv.2009.05.013

55. Ohno Y, Kondo S, Tajima K, Shibata T, Itoh T. Effect of phlorotannins isolated from Eisenia bicyclis on melanogenesis in mouse B16 melanoma cells. Nat Prod Commun. 2021 May 1;16(5):1934578X211019264. doi: https://doi.org/10.1177/1934578X211019264

56. Heo SJ, Ko SC, Kang SM, Cha SH, Lee SH, Kang DH, et al. Inhibitory effect of diphlorethohydroxycarmalol on melanogenesis and its protective effect against UV-B radiation-induced cell damage. Food Chem Toxicol. 2010 May 1;48(5):1355–61. doi: https://doi.org/10.1016/j.fct.2010.03.001

57. Kim KBWR, Jeong SM, Kim MJ, Ahn DH. Tyrosinase inhibitory effects of sargachromanol G, sargachromanol I and mojabanchromanol b isolated from Myagropsis myagroides. Indian J Pharm Sci. 2020 Feb 1;82(1):171–4. doi: https://doi.org/10.36468/pharmaceutical-sciences.635

58. Mahomoodally MF, Bibi Sadeer N, Zengin G, Cziáky Z, Jek? J, Diuzheva A, et al. In vitro enzyme inhibitory properties, secondary metabolite profiles and multivariate analysis of five seaweeds. Mar Drugs. 2020 Apr;18(4):198. doi: https://doi.org/10.1034/j.1600- 0749.2003.00072.x

59. Campos PE, Herbette G, Chendo C, Clerc P, Tintillier F, de Voogd NJ, et al. Osirisynes G-I, new long-chain highly oxygenated polyacetylenes from the mayotte marine sponge Haliclona sp. Mar Drugs. 2020 Jul 3;18(7):350. doi: https://doi.org/10.3390/md18070350

60. Choi BK, Cha BY, Fujiwara T, Kanamoto A, Woo JT, Ojika M, et al. Arenarol isolated from a marine sponge abrogates endothelin-1- stimulated melanogenesis by interrupting MEK phosphorylation in normal human melanocytes. Cytotechnology. 2013 Dec;65(6):915– 26. doi: https://doi.org/10.1007/s10616-013-9555-5

61. Townsend E, Moni R, Quinn R, Parsons PG. Reversible depigmentation of human melanoma cells by halistanol trisulphate, a novel marine sterol. Melanoma Res. 1992;1(5–6):349–57. doi: https://doi.org/10.1097/00008390-199201000-00006

62. Zidorn C. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): chemical diversity, bioactivity, and ecological function. Phytochemistry. 2016 Apr 1;124:5–28. doi: https://doi.org/10.1016/j.phytochem.2016.02.004

63. de la Torre-Castro M, Rönnbäck P. Links between humans and seagrasses—an example from tropical East Africa. Ocean Coast Manag. 2004 Jan 1;47(7):361–87. doi: https://doi.org/10.1016/j. ocecoaman.2004.07.005

64. Zulkifli L, Muksin YD, Hartanto P, Desimarlina Y, Idrus AA, Syukur A. Phytochemical profiles and ethnomedicine preliminary studies on seagrass species in the Southern Coast of Lombok Island Indonesia. IOP Conf Ser Earth Environ Sci. 2021 Nov;913(1):012102. doi: https://doi.org/10.1088/1755-1315/913/1/012102

65. Yuvaraj N, Kanmani P, Satishkumar R, Paari A, Pattukumar V, Arul V. Seagrass as a potential source of natural antioxidant and antiinflammatory agents. Pharm Biol. 2012 Apr;50(4):458–67. doi: https://doi.org/10.3109/13880209.2011.611948

66. Klangprapun S, Buranrat B, Caichompoo W, Nualkaew S. Pharmacognostical and physicochemical studies of Enhalus acoroides (L.F.) Royle (Rhizome). Pharmacogn J. 2018;10(6s):s89– 94. doi: http://dx.doi.org/10.5530/pj.2018.6s.17

67. Alino PM, Cajipe GJB, Ganzon-Fortes ET, Licuanan WRY, Montano NE, Tupas LM. The use of marine organisms in folk medicine and horticulture: a preliminary study. SICEN Leafl 1 Suppl SICEN Newsl Univ Philipp. 1990;298:8.

68. Ibañez E, Cifuentes A. Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric. 2013;93(4):703–9. doi: https://doi.org/10.1002/jsfa.6023

69. Kalasariya HS, Patel AK, Suthar RJ, Pereira L. Exploring the skin cosmetic benefits of phenolic compounds and pigments from marine macroalgae: a novel green approach for sustainable beauty solutions [Internet]. Preprints. 2023 [cited 2023 Sep 5]. doi: https://doi.org/10.20944/preprints202307.0739.v1

70. Mhadhebi L, Mhadhebi A, Robert J, Bouraoui A. Antioxidant, antiinflammatory and antiproliferative effects of aqueous extracts of three mediterranean brown seaweeds of the genus Cystoseira. Iran J Pharm Res IJPR. 2014;13(1):207–20.

71. Mirata S, Asnaghi V, Chiantore M, Salis A, Benvenuti M, Damonte G, et al. Photoprotective and anti-aging properties of the apical frond extracts from the mediterranean seaweed Ericaria amentacea. Mar Drugs. 2023 May;21(5):306. doi: https://doi.org/10.3390/md21050306

72. Kim MJ, Hyun KH, Hyun JH, Im S, Sim J, Lee NH. Anti-melanogenic activities of Sargassum muticum via MITF downregulation. Orient J Chem. 2017 Aug 10;33(4):1589–94. doi: http://dx.doi.org/10.13005/ ojc/330401

73. Thiyagarasaiyar K, Mahendra CK, Goh BH, Gew LT, Yow YY. UVB radiation protective effect of brown alga Padina australis: a potential cosmeceutical application of Malaysian seaweed. Cosmetics. 2021 Sep;8(3):58.

https://doi.org/10.3390/cosmetics8030058

74. Mohy El-Din SM, El-Ahwany AMD. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J Taibah Univ Sci. 2016 Jul 1;10(4):471–84. doi: https://doi.org/10.1016/j.jtusci.2015.06.004

75. Sangeetha J, Thangadurai D. Algal genetic resources: cosmeceuticals, nutraceuticals, and pharmaceuticals from algae. Boca Raton, FL: CRC Press; 2022. 398 p. Available from: http://192.168.9.248:8080/ jspui/handle/123456789/430

76. Poulose N, Sajayan A, Ravindran A, Sreechithra T, Vardhan V, Selvin J, et al. Photoprotective effect of nanomelanin-seaweed concentrate in formulated cosmetic cream: with improved antioxidant and wound healing properties. J Photochem Photobiol B. 2020 Apr 1;205:111816. doi: https://doi.org/10.1016/j.jphotobiol.2020.111816

77. Soest RWMV, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, Voogd NJD, et al. Global diversity of sponges (Porifera). PLoS One. 2012 Apr 27;7(4):e35105. doi: https://doi.org/10.1371/journal.pone.0035105

78. Maldonado M, Aguilar R, Bannister R, Bell J, Conway J, Dayton P, et al. Sponge grounds as key marine habitats: a synthetic review of types, structure, functional roles, and conservation concerns [Internet]. Cham, Switzerland: Springer International Publishing; 2017 [cited 2023 Sep 5]. doi: https://doi.org/10.1007/978-3-319-17001-5_24-1

79. Bergé JP, Barnathan G. Fatty acids from lipids of marine organisms: molecular biodiversity, rolesas biomarkers, biologically active compounds, and economical aspects. In: Ulber R, Le Gal Y, editors. Marine biotechnology I [Internet]. Berlin, Heidelberg, Germany: Springer; 2005 [cited 2023 Sep 5]. pp 49–125. doi: https://doi.org/10.1007/b135782

80. Ghosh S, Sarkar T, Pati S, Kari ZA, Edinur HA, Chakraborty R. Novel bioactive compounds from marine sources as a tool for functional food development. Front Mar Sci [Internet]. 2022 [cited 2023 Sep 5];9:832957. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2022.832957

81. Laport MS, Santos OCS, Muricy G. Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol. 2009 Jan 1;10(1):86–105. doi: https://doi.org/10.2174/138920109787048625

82. Baek SH, Cao L, Jeong SJ, Kim HR, Nam TJ, Lee SG. The comparison of total phenolics, total antioxidant, and anti-tyrosinase activities of Korean Sargassum species. J Food Qual. 2021 Jan 18;2021:e6640789. doi: https://doi.org/10.1155/2021/6640789

83. Mapoung S, Semmarath W, Arjsri P, Umsumarng S, Srisawad K, Thippraphan P, et al. Determination of phenolic content, antioxidant activity, and tyrosinase inhibitory effects of functional cosmetic creams available on the Thailand market. Plants. 2021 Jul;10(7):1383. doi: https://doi.org/10.3390/plants10071383

84. Yener I, Kocakaya SO, Ertas A, Erhan B, Kaplaner E, Oral EV, et al. Selective in vitro and in silico enzymes inhibitory activities of phenolic acids and flavonoids of food plants: relations with oxidative stress. Food Chem. 2020 Oct 15;327:127045. doi: https://doi.org/10.1016/j.foodchem.2020.127045

85. Harvey AL. Natural products in drug discovery. Drug Discov Today. 2008 Oct 1;13(19):894–901. doi: https://doi.org/10.1016/j. drudis.2008.07.004

86. Moon JY, Yim EY, Song G, Lee NH, Hyun CG. Screening of elastase and tyrosinase inhibitory activity from Jeju Island plants: Jeju Adasi Bitkilerinde Elastaz ve Tirosinaz Inhibitör Aktivitesinin Incelenmesi Özet. EurAsian J Biosci. 2010 Dec;4:41–53. doi: https://doi.org/10.5053/ejobios.2010.4.0.6

87. López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem. 2009 Jan;9(1):31–59. doi: https://doi.org/10.2174/138955709787001712

88. Bak SS, Sung YK, Kim SK. 7-Phloroeckol promotes hair growth on human follicles in vitro. Naunyn Schmiedebergs Arch Pharmacol. 2014 Aug 1;387(8):789–93.

https://doi.org/10.1007/s00210- 014-0986-0

89. Manandhar B, Wagle A, Seong SH, Paudel P, Kim HR, Jung HA, et al. Phlorotannins with potential anti-tyrosinase and antioxidant activity isolated from the marine seaweed Ecklonia stolonifera. Antioxidants. 2019 Aug;8(8):240. doi: https://doi.org/10.3390/antiox8080240

90. Enerstvedt KH, Jordheim M, Andersen ØM. Isolation and identification of flavonoids found in Zostera marina collected in Norwegian Coastal waters. Am J Plant Sci. 2016 May 10;7(7):1163– 72. doi: https://doi.org/10.4236/ajps.2016.77111

91. Takagi M, Funahashi S, Ohta K, Nakabayashi T. Phyllospadine, a new flavonoidal alkaloid from the sea-grass Phyllosphadix iwatensis. Agric Biol Chem. 1980;44(12):3019–20. doi: https://doi.org/10.1271/bbb1961.44.3019

92. Lee SW, Kim JH, Song H, Seok JK, Hong SS, Boo YC. Luteolin 7-sulfate attenuates melanin synthesis through inhibition of CREBand MITF-mediated tyrosinase expression. Antioxidants. 2019 Apr;8(4):87. doi: https://doi.org/10.3390/antiox8040087

93. Chen BJ, Shi MJ, Cui S, Hao SX, Hider RC, Zhou T. Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation. Int J Biol Macromol. 2016 Nov 1;92:715–22.

https://doi.org/10.1016/j.ijbiomac.2016.07.082

94. Okeke ES, Nweze EJ, Chibuogwu CC, Anaduaka EG, Chukwudozie KI, Ezeorba TPC. Aquatic phlorotannins and human health: bioavailability, toxicity, and future prospects. Nat Prod Commun. 2021 Dec 1;16(12):1934578X211056144. doi: https://doi.org/10.1177/1934578X211056144

Article Metrics
101 Views 18 Downloads 119 Total

Year

Month

Related Search

By author names