A systematic review of medicinal plants and compounds for restoring pancreatic β-cell mass and function in the management of diabetes mellitus

Neha Deora Krishnan Venkataraman   

Open Access   

Published:  Apr 04, 2023

DOI: 10.7324/JAPS.2023.130422

Diabetes mellitus is among the most challenging public health problems worldwide due to its increasing prevalence and its associated complications, affecting individuals, healthcare systems, and economies. Insulin, a crucial hormone for maintaining glucose homeostasis, is secreted by pancreatic β-cells. The progression of both type 1 (T1D) and type 2 (T2D) diabetes is aided by dysfunction/reduced functional β-cell mass, which results in decreased insulin secretion and long-term complications. There has been a surge in interest in drug discovery programs targeted at augmenting both the quality and quantity of pancreatic islets. Several small-molecule drugs and biologics have already been proposed, and newer entities are being investigated. Importantly, plant and plant-derived compounds have a high potential for increasing the number, volume, and functionality of pancreatic islet cells. An update on the current research on the capacity of Aloe vera, Momordica charantia, Tinospora cordifolia, Gymnema Sylvestre, Panax Ginseng, and plant-derived compounds including geniposide, berberine, phenylpropenoic acid glucoside, genistein, naringenin, baicalein, and apigenin to restore β-cell mass and function is given in this systematic review. Since β-cell deficiency is a defining feature of both T1D and T2D, it is critical to comprehend the role of some of these natural products in restoring pancreatic β-cell functionality.

Keyword:     Aloe vera β-cell restoration diabetes mellitus Gymnema Sylvestre Momordica charantia neogenesis Panax Ginseng plant-derived compounds Tinospora cordifolia trans-differentiation


Deora N, Venkatraman K. A systematic review of medicinal plants and compounds for restoring pancreatic ß-cell mass and function in the management of diabetes mellitus. J Appl Pharm Sci, 2023. https://doi.org/10.7324/JAPS.2023.130422

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text


Abdollahi M, Zuki ABZ, Goh YM, Rezaeizadeh A, Noordin MM. Effects of Momordica charantia on pancreatic histopathological changes associated with streptozotocin-induced diabetes in neonatal rats. Histol Histopathol, 2011; 26(1):13-21.

Agarwal OP. Prevention of atheromatous heart disease. Angiology, 1985; 36(8):485-92. https://doi.org/10.1177/000331978503600801

Aguayo-Mazzucato C, Bonner-Weir S. Pancreatic β cell regeneration as a possible therapy for diabetes. Cell Metab, 2018; 27(1):57-67. https://doi.org/10.1016/j.cmet.2017.08.007

Ahmed I, Adeghate E, Cummings E, Sharma AK, Singh J. Beneficial effects and mechanism of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat. Mol Cell Biochem, 2004; 261(1-2):63-70. https://doi.org/10.1023/B:MCBI.0000028738.95518.90

Ahmed ABA, Rao AS, Rao MV. In vitro callus and in vivo leaf extract of Gymnema sylvestre stimulate β-cells regeneration and anti-diabetic activity in Wistar rats. Phytomedicine, 2010; 17(13):1033-9. https://doi.org/10.1016/j.phymed.2010.03.019

Alinejad-Mofrad S, Foadoddini M, Saadatjoo SA, Shayesteh M. Improvement of glucose and lipid profile status with Aloe vera in pre-diabetic subjects: a randomized controlled-trial. J Diabetes Metab Disord, 2015; 14:22. https://doi.org/10.1186/s40200-015-0137-2

Almarzooq M, Moussa EA. Hypoglycemic effect of Momordica charantia (karela) on normal and alloxan diabetic albino mice. Egypt J Exp Biol (Zoology), 2009; 5:487-93.

Al-Romaiyan A, Liu B, Asare-Anane H, Maity CR, Chatterjee SK, Koley N, Biswas T, Chatterji AK, Huang GC, Amiel SA, Persaud SJ, Jones PM. A novel Gymnema sylvestre extract stimulates insulin secretion from human islets in vivo and in vitro. Phytother Res, 2010; 24(9):1370-6. https://doi.org/10.1002/ptr.3125

Al-Romaiyan A, Liu B, Persaud S, Jones P. A novel Gymnema sylvestre extract protects pancreatic beta-cells from cytokine-induced apoptosis. Phytother Res, 2020; 34(1):161-72. https://doi.org/10.1002/ptr.6512

Aralelimath VR, Bhise SB. Anti-diabetic effects of Gymnema sylvester extract on streptozotocin induced diabetic rats and possible b-cell protective and regenerative evaluations. Dig J Nanomater Biostructures, 2012; 7(1):135-42.

Atanu FO, Avwioroko OJ, Momoh S. Anti-diabetic effect of combined treatment with Aloe vera gel and metformin on alloxan-induced diabetic rats. J Ayu Her Med, 2018; 4(1):1-5. https://doi.org/10.31254/jahm.2018.4101

Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol, 1999; 58(11):1685- 93. https://doi.org/10.1016/S0006-2952(99)00212-9

Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes, 2002; 51(6):1851-8. https://doi.org/10.2337/diabetes.51.6.1851

Babu SN, Govindarajan S, Vijayalakshmi MA, Noor A. Role of zonulin and GLP-1/DPP-IV in alleviation of diabetes mellitus by peptide/ polypeptide fraction of Aloe vera in streptozotocin- induced diabetic wistar rats. J Ethnopharmacol, 2021; 272:113949. https://doi.org/10.1016/j.jep.2021.113949

Bang H, Kwak JH, Ahn HY, Shin DY, Lee JH. Korean red ginseng improves glucose control in subjects with impaired fasting glucose, impaired glucose tolerance, or newly diagnosed type 2 diabetes mellitus. J Med Food, 2014; 17(1):128-34. https://doi.org/10.1089/jmf.2013.2889

Basile G, Kulkarni RN, Morgan NG. How, when, and where do human β-cells regenerate? Curr Diab Rep, 2019; 19(8):48. https://doi.org/10.1007/s11892-019-1176-8

Baskaran K, Kizar Ahamath B, Radha Shanmugasundaram K, Shanmugasundaram ER. Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. J Ethnopharmacol, 1990; 30(3):295-300. https://doi.org/10.1016/0378-8741(90)90108-6

Belgardt BF, Lammert E. DYRK1A: a promising drug target for islet transplant-based diabetes therapies diabetes. Diabetes, 2016; 65(6):1496-8. https://doi.org/10.2337/dbi16-0013

Benthuysen JR, Carrano AC, Sander M. Advances in β cell replacement and regeneration strategies for treating diabetes. J Clin Invest, 2016; 126(10):3651-60. https://doi.org/10.1172/JCI87439

Beppu H, Shimpo K, Chihara T, Kaneko T, Tamai I, Yamaji S, Ozaki S, Kuzuya H, Sonoda S. Antidiabetic effects of dietary administration of Aloe arborescens miller components on multiple low-dose streptozotocin-induced diabetes in mice: investigation on hypoglycemic action and systemic absorption dynamics of aloe components. J Ethnopharmacol, 2006; 103(3):468-77. Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, Benvenisti-Zarum L, Meivar-Levy I, Ferber S. Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem, 2003; 278(34):31950-7. https://doi.org/10.1016/j.jep.2005.10.034

Boban PT, Nambisan B, Sudhakaran PR. Hypolipidaemic effect of chemically different mucilages in rats: a comparative study. Br J Nutr, 2006; 96(6):1021-9. https://doi.org/10.1017/BJN20061944

Bonner-Weir S, Toschi E, Inada A, Reitz P, Fonseca SY, Aye T, Sharma A. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes, 2004; 5(Suppl 2):16-22. https://doi.org/10.1111/j.1399-543X.2004.00075.x

Boudreau MD, Beland FA. An evaluation of the biological and toxicological properties of Aloe barbadensis (miller), Aloe vera. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2006; 24(1):103-54. https://doi.org/10.1080/10590500600614303

Bruno M, Piozzi F, Rosselli S. Natural and hemisynthetic neoclerodane diterpenoids from scutellaria and their antifeedant activity. Nat Prod Rep, 2002; 19(3):357-78. https://doi.org/10.1039/b111150g

Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003; 52(1):102-10. https://doi.org/10.2337/diabetes.52.1.102

Cano DA, Rulifson IC, Heiser PW, Swigart LB, Pelengaris S, German M, Evan GI, Bluestone JA, Hebrok M. Regulated beta-cell regeneration in the adult mouse pancreas. Diabetes, 2008; 57(4):958-66. https://doi.org/10.2337/db07-0913

Ceylan-Isik AF, Fliethman RM, Wold LE, Ren J. Herbal and traditional Chinese medicine for the treatment of cardiovascular complications in diabetes mellitus. Curr Diabetes Rev, 2008; 4(4):320-8. https://doi.org/10.2174/157339908786241142

Chang-Chen KJ, Mullur R, Bernal-Mizrachi E. Beta-cell failure as a complication of diabetes. Rev Endocr Metab Disord, 2008; 9(4):329- 43. https://doi.org/10.1007/s11154-008-9101-5

Chattopadhyay RR. Possible mechanism of antihyperglycemic effect of Gymnema sylvestre leaf extract, part I. Gen Pharmacol, 1998; 31(3):495-6. https://doi.org/10.1016/S0306-3623(97)00450-3

Chaturvedi P. Role of Momordica charantia in maintaining the normal levels of lipids and glucose in diabetic rats fed a high-fat and low-carbohydrate diet. Br J Biomed Sci, 2005; 62(3):124-6. https://doi.org/10.1080/09674845.2005.11732698

Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S. Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab, 2017; 6(9):943-57. https://doi.org/10.1016/j.molmet.2017.06.019

Chen YJ, Finkbeiner SR, Weinblatt D, Emmett MJ, Tameire F, Yousefi M, Yang C, Maehr R, Zhou Q, Shemer R, Dor Y, Li C, Spence JR, Stanger BZ. De novo formation of insulin-producing "neo-β cell islets" from intestinal crypts. Cell Rep, 2014; 6(6):1046-58. https://doi.org/10.1016/j.celrep.2014.02.013

Choi HS, Kim S, Kim MJ, Kim MS, Kim J, Park CW, Seo D, Shin SS, Oh SW. Efficacy and safety of Panax ginseng berry extract on glycemic control: a 12-wk randomized, double-blind, and placebo-controlled clinical trial. J Ginseng Res, 2018; 42(1):90-7. https://doi.org/10.1016/j.jgr.2017.01.003

Choi HC, Kim SJ, Son KY, Oh BJ, Cho BL. Metabolic effects of Aloe vera gel complex in obese prediabetes and early non-treated diabetic patients: randomized controlled trial. Nutrition, 2013; 29(9):1110-4. https://doi.org/10.1016/j.nut.2013.02.015

Choudhury H, Pandey M, Hua CK, Mun CS, Jing JK, Kong L, Ern LY, Ashraf NA, Kit SW, Yee TS, Pichika MR, Gorain B, Kesharwani P. An update on natural compounds in the remedy of diabetes mellitus: a systematic review. J Tradit Complement Med, 2018; 8(3):361-76. https://doi.org/10.1016/j.jtcme.2017.08.012

Collier JJ, Fueger PT, Hohmeier HE, Newgard CB. Pro-and antiapoptotic proteins regulate apoptosis but do not protect against cytokine-mediated cytotoxicity in rat islets and beta-cell lines. Diabetes, 2006; 55(5):1398-406. https://doi.org/10.2337/db05-1000

Cortez-Navarrete M, Martínez-Abundis E, Pérez-Rubio KG, González-Ortiz M, Méndez-Del Villar M. Momordica charantia administration improves insulin secretion in type 2 diabetes mellitus. J Med Food, 2018; 21(7):672-7. https://doi.org/10.1089/jmf.2017.0114

Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA. Scutellariae radix and coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and mapk/pi3k/akt signaling pathway. Int J Mol Sci, 2018; 19(11):3634. https://doi.org/10.3390/ijms19113634

Daisy P, Eliza J, Mohamed Farook KAM. A novel dihydroxy gymnemic triacetate isolated from Gymnema sylvestre possessing normoglycemic and hypolipidemic activity on STZ-induced diabetic rats. J Ethnopharmacol, 2009; 126(2):339-44. https://doi.org/10.1016/j.jep.2009.08.018

Dalle S, Quoyer J, Varin E, Costes S. Roles and regulation of the transcription factor CREB in pancreatic β -cells. Curr Mol Pharmacol, 2011; 4(3):187-95. https://doi.org/10.2174/1874467211104030187

D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol, 2006; 24(11):1392-401. https://doi.org/10.1038/nbt1259

da Silva Xavier G, Loder MK, McDonald A, Tarasov AI, Carzaniga R, Kronenberger K, Barg S, Rutter GA. TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes, 2009; 58(4):894-905. https://doi.org/10.2337/db08-1187

Deora N, Sunitha MM, Satyavani M, Harishankar N, Vijayalakshmi MA, Venkataraman K, Venkateshan V. Alleviation of diabetes mellitus through the restoration of β-cell function and lipid metabolism by Aloe vera (L.) Burm. f. extract in obesogenic WNIN/GR-Ob rats. J Ethnopharmacol, 2021; 272:113921. https://doi.org/10.1016/j.jep.2021.113921

Desgraz R, Bonal C, Herrera PL. β-cell regeneration: the pancreatic intrinsic faculty. Trends Endocrinol Metab, 2011; 22(1):34-43. https://doi.org/10.1016/j.tem.2010.09.004

Devaraj S, Yimam M, Brownell LA, Jialal I, Singh S, Jia Q. Effects of Aloe vera supplementation in subjects with prediabetes/metabolic syndrome. Metab Syndr Relat Disord, 2013; 11(1):35-40. https://doi.org/10.1089/met.2012.0066

Dey L, Attele AS, Yuan CS. Alternative therapies for type 2 diabetes. Altern Med Rev, 2002; 7(1):45-58.

Dirice E, De Jesus DF, Kahraman S, Basile G, Ng RW, El Ouaamari A, Teo AKK, Bhatt S, Hu J, Kulkarni RN. Human duct cells contribute to β cell compensation in insulin resistance. JCI Insight, 2019; 4(8):e99576. https://doi.org/10.1172/jci.insight.99576

Dirice E, Walpita D, Vetere A, Meier BC, Kahraman S, Hu J, Dan?ík V, Burns SM, Gilbert TJ, Olson DE, Clemons PA, Kulkarni RN, Wagner BK. Inhibition of DYRK1A stimulates human β-cell proliferation. Diabetes, 2016; 65(6):1660-71. https://doi.org/10.2337/db15-1127

Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature, 2004; 429(6987):41-6. https://doi.org/10.1038/nature02520

Elghazi L, Rachdi L, Weiss AJ, Cras-Méneur C, Bernal-Mizrachi E. Regulation of beta-cell mass and function by the Akt/protein kinase B signalling pathway. Diabetes Obes Metab, 2007; 9(Suppl 2):147-57. https://doi.org/10.1111/j.1463-1326.2007.00783.x

Elliott J, Scarpello JH, Morgan NG. Effects of tyrosine kinase inhibitors on cell death induced by sodium fluoride and pertussis toxin in the pancreatic beta-cell line, RINm5F. Br J Pharmacol, 2001; 132(1):119-26. https://doi.org/10.1038/sj.bjp.0703783

Elliott J, Scarpello JHB, Morgan NG. Differential effects of genistein on apoptosis induced by fluoride and pertussis toxin in human and rat pancreatic islets and RINm5F cells. J Endocrinol, 2002; 172(1):137-43. https://doi.org/10.1677/joe.0.1720137

Elmarakby AA, Ibrahim AS, Faulkner J, Mozaffari MS, Liou GI, Abdelsayed R. Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vascul Pharmacol, 2011; 55(5-6):149-56. https://doi.org/10.1016/j.vph.2011.07.007

Fatima N. Immunohistochemical evidence of pancreatic beta-cell regeneration in streptozotocin-induced type 2 diabetic rats treated with Gymnema sylvestre extract. J Cytol Histol, 2015; 06(04) :1. https://doi.org/10.4172/2157-7099.1000342

Figeac F, Uzan B, Faro M, Chelali N, Portha B, Movassat J. Neonatal growth and regeneration of beta-cells are regulated by the Wnt/ beta-catenin signaling in normal and diabetic rats. Am J Physiol Endocrinol Metab, 2010; 298(2):E245-56. https://doi.org/10.1152/ajpendo.00538.2009

Fischbach GD, Fischbach RL. Stem cells: science, policy, and ethics. J Clin Invest, 2004; 114(10):1364-70. https://doi.org/10.1172/JCI200423549

Flier JS. The missing link with obesity? Nature, 2001; 409(6818):292-3. https://doi.org/10.1038/35053251

Fu Y, Luo J, Jia Z, Zhen W, Zhou K, Gilbert E, Liu D. Baicalein protects against type 2 diabetes via promoting islet β-cell function in obese diabetic mice. Int J Endocrinol, 2014; 2014:846742. https://doi.org/10.1155/2014/846742

Fu Z, Zhang W, Zhen W, Lum H, Nadler J, Bassaganya-Riera J, Jia Z, Wang Y, Misra H, Liu D. Genistein induces pancreatic beta-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology, 2010; 151(7):3026-37. Fuangchan A, Ingkaninan K. Retrospective study on the use of bitter melon for type 2 diabetes at Dansai Crown Prince Hospital, Thailand. Srinagarind Med J, 2009; 24(4):332-8. https://doi.org/10.1210/en.2009-1294

Fuangchan A, Sonthisombat P, Seubnukarn T, Chanouan R, Chotchaisuwat P, Sirigulsatien V, Ingkaninan K, Plianbangchang P, Haines ST. Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. J Ethnopharmacol, 2011; 134(2):422-8. https://doi.org/10.1016/j.jep.2010.12.045

Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, Hosokawa S, Elbahrawy A, Soeda T, Koizumi M, Masui T, Kawaguchi M, Takaori K, Doi R, Nishi E, Kakinoki R, Deng JM, Behringer RR, Nakamura T, Uemoto S. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet, 2011; 43(1):34-41. https://doi.org/10.1038/ng.722

Gadang V, Gilbert W, Hettiararchchy N, Horax R, Katwa L, Devareddy L. Dietary bitter melon seed increases peroxisome proliferator-activated receptor-γ gene expression in adipose tissue, down-regulates the nuclear factor-κB expression, and alleviates the symptoms associated with metabolic syndrome. J Med Food, 2011; 14(1-2):86-93. https://doi.org/10.1089/jmf.2010.0010

Gao Y, Yang MF, Su YP, Jiang HM, You XJ, Yang YJ, Zhang HL. Ginsenoside re reduces insulin resistance through activation of PPAR-γ pathway and inhibition of TNF-α production. J Ethnopharmacol, 2013; 147(2):509-16. https://doi.org/10.1016/j.jep.2013.03.057

Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function. Food Funct, 2013; 4(2):200-12. https://doi.org/10.1039/C2FO30199G

Gilbert MP, Pratley RE. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: review of head-to-head clinical trials. Front Endocrinol (Lausanne), 2020; 11:178. https://doi.org/10.3389/fendo.2020.00178

Halban PA, German MS, Kahn SE, Weir GC. Current status of islet cell replacement and regeneration therapy. J Clin Endocrinol Metab, 2010; 95(3):1034-43. https://doi.org/10.1210/jc.2009-1819

Han DH, Kim SH, Higashida K, Jung SR, Polonsky KS, Klein S, Holloszy JO. Ginsenoside re rapidly reverses insulin resistance in muscles of high-fat diet fed rats. Metab Clin Exp, 2012; 61(11):1615-21. https://doi.org/10.1016/j.metabol.2012.04.008

Hancock AS, Du A, Liu J, Miller M, May CL. Glucagon deficiency reduces hepatic glucose production and improves glucose tolerance in adult mice. Mol Endocrinol, 2010; 24(8):1605-14. https://doi.org/10.1210/me.2010-0120

Himpe E, Cunha DA, Song I, Bugliani M, Marchetti P, Cnop M, Bouwens L. Phenylpropenoic acid glucoside from rooibos protects pancreatic beta cells against cell death induced by acute injury. PLoS One, 2016; 11(6):e0157604. https://doi.org/10.1371/journal.pone.0157604

Hossain MA, Pervin R. Current antidiabetic drugs. Nutritional and therapeutic interventions for diabetes and metabolic syndrome. Elsevier, Amsterdam, The Netherlands, pp 455-73, 2018. https://doi.org/10.1016/B978-0-12-812019-4.00034-9

Hou JP. The chemical constituents of ginseng plants. Comp Med East West, 1977; 5(2):123-45. https://doi.org/10.1142/S0147291777000209

Huseini HF, Kianbakht S, Hajiaghaee R, Dabaghian FH. Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Planta Med, 2012; 78(4):311-6. https://doi.org/10.1055/s-0031-1280474

Jain A, Gupta Y, Jain SK. Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J Pharm Pharm Sci, 2007; 10(1):86-128.

Kahn SE. Clinical review 135: the importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab, 2001; 86(9):4047-58. https://doi.org/10.1210/jcem.86.9.7713

Kaur N, Chaudhary J, Jain A, Kishore L. Stigmasterol: a comprehensive review. Int J Pharm Sci Res, 2011; 2(9):2259-65.

Kim HY, Kim K. Protective effect of ginseng on cytokine-induced apoptosis in pancreatic beta-cells. J Agric Food Chem, 2007; 55(8):2816-23. https://doi.org/10.1021/jf062577r

Kim K, Kim HY. Bitter melon (Momordica charantia) extract suppresses cytokineinduced activation of MAPK and NF-κB in pancreatic β-cells. Food Sci Biotechnol, 2011; 20(2):531-5. https://doi.org/10.1007/s10068-011-0074-x

Kim EK, Kwon KB, Song MY, Han MJ, Lee JH, Lee YR, Lee JH, Ryu DG, Park BH, Park JW. Flavonoids protect against cyçokine-induced pancreatic beta-cell damage through suppression of nuclear factor kappaB activation. Pancreas, 2007; 35(4):e1-9. https://doi.org/10.1097/mpa.0b013e31811ed0d2

Kim HS, Lee MK. β-Cell regeneration through the transdifferentiation of pancreatic cells: pancreatic progenitor cells in the pancreas. J Diabetes Investig, 2016; 7(3):286-96. https://doi.org/10.1111/jdi.12475

Kodama S, Kühtreiber W, Fujimura S, Dale EA, Faustman DL. Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science, 2003; 302(5648):1223-7. https://doi.org/10.1126/science.1088949

Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, Chan L. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med, 2003; 9(5):596-603. https://doi.org/10.1038/nm867

Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, Lowell BB. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest, 2003; 112(12):1831- 42. https://doi.org/10.1172/JCI200319774

Ku HT. Minireview: pancreatic progenitor cells--recent studies. Endocrinology, 2008; 149(9):4312-6. https://doi.org/10.1210/en.2008-0546

Kumar V. Antidyslipidemic and antioxidant activities of Tinospora cordifolia stem extract in alloxan induced diabetic rats. Indian J Clin Biochem, 2015; 30(4):473-8. https://doi.org/10.1007/s12291-015-0485-1

Kumar SN, Mani UV, Mani I. An open label study on the supplementation of Gymnema sylvestre in type 2 diabetics. J Diet Suppl, 2010; 7(3):273-82. https://doi.org/10.3109/19390211.2010.505901

Kumar S, Mittal A, Babu D, Mittal A. Herbal medicines for diabetes management and its secondary complications. Curr Diabetes Rev, 2021; 17(4):437-56. https://doi.org/10.2174/18756417MTExfMTQ1z

Lacher SE, Lee JS, Wang X, Campbell MR, Bell DA, Slattery M. Beyond antioxidant genes in the ancient Nrf2 regulatory network. Free Radic Biol Med, 2015; 88(Pt B):452-65. https://doi.org/10.1016/j.freeradbiomed.2015.06.044

Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes, 2006; 55(8):2256-64. https://doi.org/10.2337/db06-0006

Leng S, Lu F, Xu L. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin, 2004; 25(4):496-502.

Li W, Zhang M, Gu J, Meng Z, Zhao LC, Zheng YN, Chen L, Yang GL. Hypoglycemic effect of protopanaxadiol-type ginsenosides and compound K on type 2 diabetes mice induced by high-fat diet combining with streptozotocin via suppression of hepatic gluconeogenesis. Fitoterapia, 2012; 83(1):192-8. https://doi.org/10.1016/j.fitote.2011.10.011

Liu Z, Li W, Li X, Zhang M, Chen L, Zheng Y, Sun GZ, Ruan CC. Antidiabetic effects of malonyl ginsenosides from Panax ginseng on type 2 diabetic rats induced by high-fat diet and streptozotocin. J Ethnopharmacol, 2013; 145(1):233-40. https://doi.org/10.1016/j.jep.2012.10.058

Liu Y, Mu S, Chen W, Liu S, Cong Y, Liu J, Jia N. Saponins of Momordica charantia increase insulin secretion in INS-1 pancreatic β-cells via the PI3K/Akt/FoxO1 signaling pathway. Endocrinol Diabetes Nutr, 2021; 68(5):329-37. https://doi.org/10.1016/j.endinu.2020.05.005

Liu W, Son DO, Lau HK, Zhou Y, Prud'homme GJ, Jin T, Wang Q. Combined oral administration of GABA and DPP-4 inhibitor prevents beta cell damage and promotes beta cell regeneration in mice. Front Pharmacol, 2017; 8:362. https://doi.org/10.3389/fphar.2017.00362

Liu J, Yin F, Xiao H, Guo L, Gao X. Glucagon-like peptide 1 receptor plays an essential role in geniposide attenuating lipotoxicity-induced β-cell apoptosis. Toxicol In Vitro, 2012; 26(7):1093-7. https://doi.org/10.1016/j.tiv.2012.07.004

Liu D, Zhen W, Yang Z, Carter JD, Si H, Reynolds KA. Genistein acutely stimulates insulin secretion in pancreatic beta-cells through a cAMP-dependent protein kinase pathway. Diabetes, 2006; 55(4):1043-50. https://doi.org/10.2337/diabetes.55.04.06.db05-1089

Li-Weber M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin. Cancer Treat Rev, 2009; 35(1):57-68. https://doi.org/10.1016/j.ctrv.2008.09.005

Lu MC, Ji JA, Jiang ZY, You QD. The keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: an update. Med Res Rev, 2016; 36(5):924-63. https://doi.org/10.1002/med.21396

Lucas EA, Dumancas GG, Smith BJ, Clarke SL, Arjmandi BH. Health benefits of bitter melon (Momordica charantia). Bioactive foods in promoting health. Elsevier, Amsterdam, The Netherlands, pp 525-49, 2010. https://doi.org/10.1016/B978-0-12-374628-3.00035-9

Luo JZ, Luo L. American ginseng stimulates insulin production and prevents apoptosis through regulation of uncoupling protein-2 in cultured beta cells. Evid Based Complement Alternat Med, 2006; 3(3):365- 72. https://doi.org/10.1093/ecam/nel026

Lupi R, Del Guerra S, Marselli L, Bugliani M, Boggi U, Mosca F, Marchetti P, Del Prato S. Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPARgamma2 in the modulation of insulin secretion. Am J Physiol Endocrinol Metab, 2004; 286(4):E560-7. https://doi.org/10.1152/ajpendo.00561.2002

Malekshahi H, Bahrami G, Miraghaee S, Ahmadi SA, Sajadimajd S, Hatami R, Mohammadi B, Keshavarzi S. Momordica charantia reverses type II diabetes in rat. J Food Biochem, 2019; 43(11):e13021. https://doi.org/10.1111/jfbc.13021

Marrano N, Spagnuolo R, Biondi G, Cignarelli A, Perrini S, Vincenti L, Laviola L, Giorgino F, Natalicchio A. Effects of extra virgin olive oil polyphenols on beta-cell function and survival. Plants, 2021; 10(2):286. https://doi.org/10.3390/plants10020286

Mathijs I, Da Cunha DA, Himpe E, Ladriere L, Chellan N, Roux CR, Joubert E, Muller C, Cnop M, Louw J, Bouwens L. Phenylpropenoic acid glucoside augments pancreatic beta cell mass in high-fat diet-fed mice and protects beta cells from ER stress-induced apoptosis. Mol Nutr Food Res, 2014; 58(10):1980-90. https://doi.org/10.1002/mnfr.201400211

Mhaskar KS, Caius JF. A study of Indian medicinal plants. II. Gymnema sylvestre. Br Indian Med Res Memoirs, 1930 (Memoir No. 16):1-49.

Misawa E, Tanaka M, Nomaguchi K, Yamada M, Toida T, Takase M, Iwatsuki K, Kawada T. Administration of phytosterols isolated from Aloe vera gel reduce visceral fat mass and improve hyperglycemia in Zucker diabetic fatty (ZDF) rats. Obes Res Clin Pract, 2008; 2(4):I-II. https://doi.org/10.1016/j.orcp.2008.06.002

Montanya E, Nacher V, Biarnés M, Soler J. Linear correlation between beta-cell mass and body weight throughout the lifespan in Lewis rats: role of beta-cell hyperplasia and hypertrophy. Diabetes, 2000; 49(8):1341-6. https://doi.org/10.2337/diabetes.49.8.1341

Muller CJF, Joubert E, Pheiffer C, Ghoor S, Sanderson M, Chellan N, Fey SJ, Louw J. Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid, an α-hydroxy acid from rooibos (Aspalathus linearis) with hypoglycemic activity. Mol Nutr Food Res, 2013; 57(12):2216-22. https://doi.org/10.1002/mnfr.201300294

Murakami N, Murakami T, Kadoya M, Matsuda H, Yamahara J, Yoshikawa M. New hypoglycemic constituents in "gymnemic acid" from Gymnema sylvestre. Chem Pharm Bull, 1996; 44(2):469-71. https://doi.org/10.1248/cpb.44.469

Ni Y, Turner D, Yates KM, Tizard I. Isolation and characterization of structural components of Aloe vera L. leaf pulp. Int Immunopharmacol, 2004; 4(14):1745-55. https://doi.org/10.1016/j.intimp.2004.07.006

Nie J, Lilley BN, Pan YA, Faruque O, Liu X, Zhang W, Sanes JR, Han X, Shi Y. SAD-A potentiates glucose-stimulated insulin secretion as a mediator of glucagon-like peptide 1 response in pancreatic β cells. Mol Cell Biol, 2013; 33(13):2527-34. https://doi.org/10.1128/MCB.00285-13

Njume C, Donkor O, McAinch AJ. Predisposing factors of type 2 diabetes mellitus and the potential protective role of native plants with functional properties. J Funct Foods, 2019; 53:115-24. https://doi.org/10.1016/j.jff.2018.12.001

Noor A, Gunasekaran S, Manickam AS, Vijayalakshmi MA. Antidiabetic activity of Aloe vera and histology of organs in streptozotocin-induced diabetic rats. Curr Sci, 2008; 94(8):1070-6.

Noor A, Gunasekaran S, Vijayalakshmi MA. Improvement of insulin secretion and pancreatic β-cell function in streptozotocin-induced diabetic rats treated with Aloe vera extract. Pharmacognosy Res, 2017; 9(Suppl 1):S99-104. https://doi.org/10.4103/pr.pr_75_17

Oh MR, Park SH, Kim SY, Back HI, Kim MG, Jeon JY, Ha KC, Na WT, Cha YS, Park BH, Park TS, Chae SW. Postprandial glucose-lowering effects of fermented red ginseng in subjects with impaired fasting glucose or type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. BMC Complement Altern Med, 2014; 14:237. https://doi.org/10.1186/1472-6882-14-237

Ohno T, Kato N, Ishii C, Shimizu M, Ito Y, Tomono S, Kawazu S. Genistein augments cyclic adenosine 3'5'-monophosphate(cAMP) accumulation and insulin release in MIN6 cells. Endocr Res, 1993; 19(4):273-85. https://doi.org/10.1080/07435809309026682

Pamunuwa G, Karunaratne DN, Waisundara VY. Antidiabetic properties, bioactive constituents, and other therapeutic effects of Scoparia dulcis. Evid Based Complement Alternat Med, 2016; 2016:8243215. https://doi.org/10.1155/2016/8243215

Park S, Ahn IS, Kwon DY, Ko BS, Jun WK. Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways. Biosci Biotechnol Biochem, 2008; 72(11):2815-23. https://doi.org/10.1271/bbb.80205

Park EY, Kim HJ, Kim YK, Park SU, Choi JE, Cha JY, Jun HS. Increase in insulin secretion induced by Panax ginseng berry extracts contributes to the amelioration of hyperglycemia in streptozotocininduced diabetic mice. J Ginseng Res, 2012; 36(2):153-60. https://doi.org/10.5142/jgr.2012.36.2.153

Park SH, Oh MR, Choi EK, Kim MG, Ha KC, Lee SK, Kim YG, Park BH, Kim DS, Chae SW. An 8-wk, randomized, double-blind, placebo-controlled clinical trial for the antidiabetic effects of hydrolyzed ginseng extract. J Ginseng Res, 2014; 38(4):239-43. https://doi.org/10.1016/j.jgr.2014.05.006

Patel MB, Mishra S. Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia. Phytomedicine, 2011; 18(12):1045-52. https://doi.org/10.1016/j.phymed.2011.05.006

Persaud SJ, Al-Majed H, Raman A, Jones PM. Gymnema sylvestre stimulates insulin release in vitro by increased membrane permeability. J Endocrinol, 1999a; 163(2):207-12. https://doi.org/10.1677/joe.0.1630207

Persaud SJ, Harris TE, Burns CJ, Jones PM. Tyrosine kinases play a permissive role in glucose-induced insulin secretion from adult rat islets. J Mol Endocrinol, 1999b; 22(1):19-28. https://doi.org/10.1677/jme.0.0220019

Prasannaraja C, Kamalanathan AS, Vijayalakshmi MA, Venkataraman K. A dipyrrole derivative from Aloe vera inhibits an anti-diabetic drug target dipeptidyl peptidase (DPP)-IV in vitro. Prep Biochem Biotechnol, 2020; 50(5):511-20. https://doi.org/10.1080/10826068.2019.1710712

Pu P, Wang XA, Salim M, Zhu LH, Wang L, Chen KJ, Xiao JF, Deng W, Shi HW, Jiang H, Li HL. Baicalein, a natural product, selectively activating AMPKα(2) and ameliorates metabolic disorder in diet-induced mice. Mol Cell Endocrinol, 2012; 362(1-2):128-38. https://doi.org/10.1016/j.mce.2012.06.002

Purwana I, Zheng J, Li X, Deurloo M, Son DO, Zhang Z, Liang C, Shen E, Tadkase A, Feng ZP, Li Y, Hasilo C, Paraskevas S, Bortell R, Greiner DL, Atkinson M, Prud'homme GJ, Wang Q. GABA promotes human β-cell proliferation and modulates glucose homeostasis. Diabetes, 2014; 63(12):4197-205. https://doi.org/10.2337/db14-0153

Qadir MMF, Álvarez-Cubela S, Klein D, Lanzoni G, García- Santana C, Montalvo A, Pláceres-Uray F, Mazza EMC, Ricordi C, Inverardi LA, Pastori RL, Domínguez-Bendala J. P2RY1/ALK3-Expressing cells within the adult human exocrine pancreas are BMP-7 expandable and exhibit progenitor-like characteristics. Cell Rep, 2018; 22(9):2408-20. https://doi.org/10.1016/j.celrep.2018.02.006

Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab, 2008; 10(Suppl 4):32-42. https://doi.org/10.1111/j.1463-1326.2008.00969.x

Rajalakshmi M, Anita R. β-cell regenerative efficacy of a polysaccharide isolated from methanolic extract of Tinospora cordifolia stem on streptozotocin -induced diabetic Wistar rats. Chem Biol Interact, 2016; 243:45-53. https://doi.org/10.1016/j.cbi.2015.11.021

Rajalakshmi M, Eliza J, Priya C, Nirmala A, Daisy P. Anti-diabetic properties of Tinospora cordifolia stem extracts on streptozotocin-induced diabetic rats. Afr J Pharm Pharmacol, 2009; 3(5):171-80.

Rajappa R, Sireesh D, Salai MB, Ramkumar KM, Sarvajayakesavulu S, Madhunapantula SV. Treatment with Naringenin elevates the activity of transcription factor Nrf2 to protect pancreatic β-cells from streptozotocin-induced diabetes in vitro and in vivo. Front Pharmacol, 2018; 9:1562. https://doi.org/10.3389/fphar.2018.01562

Rajasekaran S, Sivagnanam K, Ravi K, Subramanian S. Hypoglycemic effect of Aloe vera gel on streptozotocin-induced diabetes in experimental rats. J Med Food, 2004; 7(1):61-6. https://doi.org/10.1089/109662004322984725

Reeds DN, Patterson BW, Okunade A, Holloszy JO, Polonsky KS, Klein S. Ginseng and ginsenoside re do not improve β-cell function or insulin sensitivity in overweight and obese subjects with impaired glucose tolerance or diabetes. Diabetes Care, 2011; 34(5):1071-6. https://doi.org/10.2337/dc10-2299

Reilly JM, Thompson MP. Dietary fatty acids up-regulate the expression of UCP2 in 3T3-L1 preadipocytes. Biochem Biophys Res Commun, 2000; 277(3):541-5. https://doi.org/10.1006/bbrc.2000.3705

Rizvi SI, Mishra N. Traditional Indian medicines used for the management of diabetes mellitus. J Diabetes Res, 2013; 2013:712092. https://doi.org/10.1155/2013/712092

Sahu PK, Giri DD, Singh R, Pandey P, Gupta S, Shrivastava AK, Kumar A, Dev Pandey K. Therapeutic and medicinal uses of Aloe vera: a review. Pharmacol Pharm, 2013; 04(08):599-610. https://doi.org/10.4236/pp.2013.48086

Salehi B, Ata A, Anil Kumar NV, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Ayatollahi SA, Fokou PVT, Kobarfard F, Zakaria ZA, Iriti M, Taheri Y, Martorell M, Sureda A, Setzer WN, Durazzo A, Lucarini M, Santini A, Capasso R, Ostrander EA, Rahman A, Choudhary MI, Cho WC, Sharifi-Rad J. Antidiabetic potential of medicinal plants and their active components. Biomolecules, 2019a; 9(10):551. https://doi.org/10.3390/biom9100551

Salehi B, Venditti A, Sharifi-Rad M, Kr?giel D, Sharifi-Rad J, Durazzo A, Lucarini M, Santini A, Souto EB, Novellino E, Antolak H, Azzini E, Setzer WN, Martins N. The therapeutic potential of apigenin. Int J Mol Sci, 2019b; 20(6):1305. https://doi.org/10.3390/ijms20061305

Sangeetha MK, Balaji Raghavendran HR, Gayathri V, Vasanthi HR. Tinospora cordifolia attenuates oxidative stress and distorted carbohydrate metabolism in experimentally induced type 2 diabetes in rats. J Nat Med, 2011; 65(3-4):544-50. https://doi.org/10.1007/s11418-011-0538-6

Senthilkumar M. Phytochemical screening and antibacterial activity of Gymnema sylvestre r. br. ex schult. Int J Pharm Sci Res, 2015; 6(6) :2496.

Seo E, Kim S, Lee SJ, Oh BC, Jun HS. Ginseng berry extract supplementation improves age-related decline of insulin signaling in mice. Nutrients, 2015; 7(4):3038-53. https://doi.org/10.3390/nu7043038

Shanmugasundaram ER, Gopinath KL, Radha Shanmugasundaram K, Rajendran VM. Possible regeneration of the islets of Langerhans in streptozotocin-diabetic rats given Gymnema sylvestre leaf extracts. J Ethnopharmacol, 1990a; 30(3):265-79. https://doi.org/10.1016/0378-8741(90)90106-4

Shanmugasundaram ER, Rajeswari G, Baskaran K, Rajesh Kumar BR, Radha Shanmugasundaram K, Kizar Ahmath B. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. J Ethnopharmacol, 1990b; 30(3):281-94. https://doi.org/10.1016/0378-8741(90)90107-5

Sharma R, Amin H, Galib, Prajapati PK. Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: critical appraisal and role in therapy. Asian Pac J Trop Biomed, 2015; 5(1):68-78. https://doi.org/10.1016/S2221-1691(15)30173-8

Sharma BR, Park CM, Kim HA, Kim HJ, Rhyu DY. Tinospora cordifolia preserves pancreatic beta cells and enhances glucose uptake in adipocytes to regulate glucose metabolism in diabetic rats. Phytother Res, 2019; 33(10):2765-74. https://doi.org/10.1002/ptr.6462

Shay J, Elbaz HA, Lee I, Zielske SP, Malek MH, Hüttemann M. Molecular mechanisms and therapeutic effects of (-)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid Med Cell Longev, 2015; 2015:181260. https://doi.org/10.1155/2015/181260

Shen W, Taylor B, Jin Q, Nguyen-Tran V, Meeusen S, Zhang YQ, Kamireddy A, Swafford A, Powers AF, Walker J, Lamb J, Bursalaya B, DiDonato M, Harb G, Qiu M, Filippi CM, Deaton L, Turk CN, Suarez- Pinzon WL, Liu Y, Hao X, Mo T, Yan S, Li J, Herman AE, Hering BJ, Wu T, Seidel HM, McNamara P, Glynne R, Laffitte B. Inhibition of DYRK1A and GSK3B induces human β-cell proliferation. Nat Commun, 2015; 6:8372. https://doi.org/10.1038/ncomms9372

Shu L, Matveyenko AV, Kerr-Conte J, Cho JH, McIntosh CHS, Maedler K. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet, 2009; 18(13):2388-99. https://doi.org/10.1093/hmg/ddp178

Shu L, Zien K, Gutjahr G, Oberholzer J, Pattou F, Kerr-Conte J, Maedler K. TCF7L2 promotes beta cell regeneration in human and mouse pancreas. Diabetologia, 2012; 55(12):3296-307. https://doi.org/10.1007/s00125-012-2693-z

Singh N, Gupta M. Regeneration of beta cells in islets of Langerhans of pancreas of alloxan diabetic rats by acetone extract of Momordica charantia (Linn.) (bitter gourd) fruits. Indian J Exp Biol, 2007; 45(12):1055-62.

Singh N, Gupta M, Sirohi P, Varsha. Effects of alcoholic extract of Momordica charantia (Linn.) whole fruit powder on the pancreatic islets of alloxan diabetic albino rats. J Environ Biol, 2008; 29(1):101-6.

Solar M, Cardalda C, Houbracken I, Martín M, Maestro MA, De Medts N, Xu X, Grau V, Heimberg H, Bouwens L, Ferrer J. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell, 2009; 17(6):849-60. https://doi.org/10.1016/j.devcel.2009.11.003

Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, Li Y, Zhang N, Chakrabarti R, Ng T, Jin T, Zhang H, Lu WY, Feng ZP, Prud'homme GJ, Wang Q. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci USA, 2011; 108(28):11692-7. https://doi.org/10.1073/pnas.1102715108

Son DO, Liu W, Li X, Prud'homme GJ, Wang Q. Combined effect of GABA and glucagon-like peptide-1 receptor agonist on cytokine-induced apoptosis in pancreatic β-cell line and isolated human islets. J Diabetes, 2019; 11(7):563-72. https://doi.org/10.1111/1753-0407.12881

Sorenson RL, Brelje TC, Roth C. Effect of tyrosine kinase inhibitors on islets of Langerhans: evidence for tyrosine kinases in the regulation of insulin secretion. Endocrinology, 1994; 134(4):1975-8. https://doi.org/10.1210/endo.134.4.8137766

Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet, 2005; 365(9467):1333-46. https://doi.org/10.1016/S0140-6736(05)61032-X

Sudha P, Zinjarde SS, Bhargava SY, Kumar AR. Potent α-amylase inhibitory activity of Indian ayurvedic medicinal plants. BMC Complement Altern Med, 2011; 11:5. https://doi.org/10.1186/1472-6882-11-5

Sugihara Y, Nojima H, Matsuda H, Murakami T, Yoshikawa M, Kimura I. Antihyperglycemic effects of gymnemic acid IV, a compound derived from Gymnema sylvestre leaves in streptozotocin-diabetic mice. J Asian Nat Prod Res, 2000; 2(4):321-7. https://doi.org/10.1080/10286020008041372

Sumathi R, Tamizharasi S, Sivakumar T. Bio-dynamic activity of Naringenin-a review. Int J Curr Adv Res, 2015; 4(8):234-6.

Surya S, Salam AD, Tomy DV, Carla B, Kumar RA, Sunil C. Diabetes mellitus and medicinal plants-a review. Asian Pac J Trop Dis, 2014; 4(5):337-47. https://doi.org/10.1016/S2222-1808(14)60585-5

Suzuki A, Nakauchi H, Taniguchi H. Glucagon-like peptide 1 (1-37) converts intestinal epithelial cells into insulin-producing cells. Proc Natl Acad Sci USA, 2003; 100(9):5034-9. https://doi.org/10.1073/pnas.0936260100

Tahira S, Hussain F. Antidiabetic evaluation of Momordica charantia L fruit extracts. West Indian Med J, 2014; 63(4):294-9. https://doi.org/10.7727/wimj.2013.180

Tanaka M, Misawa E, Ito Y, Habara N, Nomaguchi K, Yamada M, Toida T, Hayasawa H, Takase M, Inagaki M, Higuchi R. Identification of five phytosterols from Aloe vera gel as anti-diabetic compounds. Biol Pharm Bull, 2006; 29(7):1418-22. https://doi.org/10.1248/bpb.29.1418

Tiwari P, Mishra BN, Sangwan NS. Phytochemical and pharmacological properties of Gymnema sylvestre: an important medicinal plant. Biomed Res Int, 2014; 2014:830285. https://doi.org/10.1155/2014/830285

Tokui Y, Kozawa J, Yamagata K, Zhang J, Ohmoto H, Tochino Y, Okita K, Iwahashi H, Namba M, Shimomura I, Miyagawa J. Neogenesis and proliferation of beta-cells induced by human betacellulin gene transduction via retrograde pancreatic duct injection of an adenovirus vector. Biochem Biophys Res Commun, 2006; 350(4):987-93. https://doi.org/10.1016/j.bbrc.2006.09.154

Tomita T. Apoptosis in pancreatic β-islet cells in type 2 diabetes. Bosn J Basic Med Sci, 2016; 16(3):162-79. https://doi.org/10.17305/bjbms.2016.919

Tripathi UN, Chandra D. Anti-hyperglycemic and anti-oxidative effect of aqueous extract of Momordica charantia pulp and Trigonella foenum graecum seed in alloxan-induced diabetic rats. Indian J Biochem Biophys, 2010; 47(4):227-33.

Upadhyay AK, Kumar K, Kumar A, Mishra HS. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res, 2010; 1(2):112-21. https://doi.org/10.4103/0974-7788.64405

Venkatesan V, Gopurappilly R, Goteti SK, Dorisetty RK, Bhonde RR. Pancreatic progenitors: the shortest route to restore islet cell mass. Islets, 2011; 3(6):295-301. https://doi.org/10.4161/isl.3.6.17704

Von Eckardstein A, Sibler RA. Possible contributions of lipoproteins and cholesterol to the pathogenesis of diabetes mellitus type 2. Curr Opin Lipidol, 2011; 22(1):26-32. https://doi.org/10.1097/MOL.0b013e3283412279

Vuksan V, Sievenpiper JL, Koo VY, Francis T, Beljan- Zdravkovic U, Xu Z, Vidgen E. American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus. Arch Intern Med, 2000; 160(7):1009-13. https://doi.org/10.1001/archinte.160.7.1009

Vuksan V, Sung MK, Sievenpiper JL, Stavro PM, Jenkins AL, Di Buono M, Lee KS, Leiter LA, Nam KY, Arnason JT, Choi M, Naeem A. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr Metab Cardiovasc Dis, 2008; 18(1):46-56. https://doi.org/10.1016/j.numecd.2006.04.003

Waisundara VY, Hsu A, Tan BKH, Huang D. Baicalin reduces mitochondrial damage in streptozotocin-induced diabetic Wistar rats. Diabetes Metab Res Rev, 2009; 25(7):671-7. https://doi.org/10.1002/dmrr.1005

Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, Watanabe TK, Tanigami A. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology, 2003; 42(1):162-5. https://doi.org/10.1093/rheumatology/keg024

Wållberg M, Cooke A. Immune mechanisms in type 1 diabetes. Trends Immunol, 2013; 34(12):583-91. https://doi.org/10.1016/j.it.2013.08.005

Wang N, Yi WJ, Tan L, Zhang JH, Xu J, Chen Y, Qin M, Yu S, Guan J, Zhang R. Apigenin attenuates streptozotocin-induced pancreatic β cell damage by its protective effects on cellular antioxidant defense. In Vitro Cell Dev Biol Anim, 2017; 53(6):554-63. https://doi.org/10.1007/s11626-017-0135-4

Watson RR, Preedy VR. Bioactive food as dietary interventions for diabetes: bioactive foods in chronic disease states. Academic Press,Cambridge, MA, 2012.

Wei S, Li W, Yu Y, Yao F, Lixiang A, Lan X, Guan F, Zhang M, Chen L. Ginsenoside compound K suppresses the hepatic gluconeogenesis via activating adenosine-5'monophosphate kinase: a study in vitro and in vivo. Life Sci, 2015; 139:8-15. https://doi.org/10.1016/j.lfs.2015.07.032

Weir GC. Glucolipotoxicity, β-cells, and diabetes: the emperor has no clothes. Diabetes, 2020; 69(3):273-8. https://doi.org/10.2337/db19-0138

Xiang L, Huang X, Chen L, Rao P, Ke L. The reparative effects of Momordica Charantia Linn. extract on HIT-T15 pancreatic beta-cells. Asia Pac J Clin Nutr, 2007; 16(Suppl 1):249-52.

Xu M, Sun B, Li D, Mao R, Li H, Li Y, Wang J. Beneficial effects of small molecule oligopeptides isolated from Panax ginseng meyer on pancreatic beta-cell dysfunction and death in diabetic rats. Nutrients, 2017; 9(10):1061. https://doi.org/10.3390/nu9101061

Yagi A, Hamano S, Tanaka T, Kaneo Y, Fujioka T, Mihashi K. Biodisposition of FITC-labeled aloemannan in mice. Planta Med, 2001; 67(4):297-300. https://doi.org/10.1055/s-2001-14314

Yagi A, Hegazy S, Kabbash A, Wahab EAE. Possible hypoglycemic effect of Aloe vera L. high molecular weight fractions on type 2 diabetic patients. Saudi Pharm J, 2009; 17(3):209-15. https://doi.org/10.1016/j.jsps.2009.08.007

Yamamoto K, Miyagawa J, Waguri M, Sasada R, Igarashi K, Li M, Nammo T, Moriwaki M, Imagawa A, Yamagata K, Nakajima H, Namba M, Tochino Y, Hanafusa T, Matsuzawa Y. Recombinant human betacellulin promotes the neogenesis of beta-cells and ameliorates glucose intolerance in mice with diabetes induced by selective alloxan perfusion. Diabetes, 2000; 49(12):2021-7. https://doi.org/10.2337/diabetes.49.12.2021

Yang Z, Huang W, Zhang J, Xie M, Wang X. Baicalein improves glucose metabolism in insulin resistant HepG2 cells. Eur J Pharmacol, 2019; 854:187-93. https://doi.org/10.1016/j.ejphar.2019.04.005

Yang MS, Wu MY. Chinese ginseng. Nutraceuticals. Elsevier, Amsterdam, The Netherlands, pp 693-705, 2016. https://doi.org/10.1016/B978-0-12-802147-7.00050-4

Yao DD, Yang L, Wang Y, Liu C, Wei YJ, Jia XB, Yin W, Shu L. Geniposide promotes beta-cell regeneration and survival through regulating β-catenin/TCF7L2 pathway. Cell Death Dis, 2015; 6:e1746. https://doi.org/10.1038/cddis.2015.107

Yin J, Zhang H, Ye J. Traditional Chinese medicine in treatment of metabolic syndrome. Endocr Metab Immune Disord Drug Targets, 2008; 8(2):99-111. https://doi.org/10.2174/187153008784534330

Yoon JW, Kang SM, Vassy JL, Shin H, Lee YH, Ahn HY, Choi SH, Park KS, Jang HC, Lim S. Efficacy and safety of ginsam, a vinegar extract from Panax ginseng, in type 2 diabetic patients: results of a double-blind, placebo-controlled study. J Diabetes Investig, 2012; 3(3):309-17. https://doi.org/10.1111/j.2040-1124.2011.00185.x

Yongchaiyudha S, Rungpitarangsi V, Bunyapraphatsara N, Chokechaijaroenporn O. Antidiabetic activity of Aloe vera L. juice. I. Clinical trial in new cases of diabetes mellitus. Phytomedicine, 1996; 3(3):241-3. https://doi.org/10.1016/S0944-7113(96)80060-2

Zanker KS, Mang B, Wolters M, Hahn A. Personalized diabetes and cancer medicine: a rationale for anti-diabetic nutrition (Bitter Melon) in a supportive setting. Curr Cancer Ther Rev, 2012; 8(1):66-77. https://doi.org/10.2174/157339412799462521

Zhang Z, Hu Y, Xu N, Zhou W, Yang L, Chen R, Yang R, Sun J, Chen H. A new way for beta cell neogenesis: transdifferentiation from alpha cells induced by glucagon-like peptide 1. J Diabetes Res, 2019; 2019:2583047. https://doi.org/10.1155/2019/2583047

Zhang Y, Liu W, Liu D, Zhao T, Tian H. Efficacy of Aloe Vera supplementation on prediabetes and early non-treated diabetic patients: a systematic review and meta-analysis of randomized controlled trials. Nutrients, 2016; 8(7):388. https://doi.org/10.3390/nu8070388

Zhang D, Shen M, Mikita A, Zhang W, Liu Y, Liu Q, Dai Y, Zhang C, Zheng S, Zheng XX. Targeting uncoupling protein-2 improves islet graft function. Cell Transplant, 2011; 20(3):421-9. https://doi.org/10.3727/096368910X522243

Zhou L, Wang X, Shao L, Yang Y, Shang W, Yuan G, Jiang B, Li F, Tang J, Jing H, Chen M. Berberine acutely inhibits insulin secretion from beta-cells through 3',5'-cyclic adenosine 5'-monophosphate signaling pathway. Endocrinology, 2008; 149(9):4510-8. https://doi.org/10.1210/en.2007-1752

Zhou J, Zhou S, Tang J, Zhang K, Guang L, Huang Y, Xu Y, Ying Y, Zhang L, Li D. Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats. Eur J Pharmacol, 2009; 606(1-3):262-8. https://doi.org/10.1016/j.ejphar.2008.12.056

Article Metrics

0 Absract views 3 PDF Downloads 3 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required