Phenolics profile and antioxidant activities of in vitro propagules and field-raised plant organs of Curculigo latifolia

Abdul Halim Umar Diah Ratnadewi Mohamad Rafi Yohana Caecilia Sulistyaningsih Hamim Hamim   

Open Access   

Published:  Dec 13, 2022

DOI: 10.7324/JAPS.2023.55995
Abstract

Curculigo latifolia is traditionally used in herbal medication. We determined the total phenolics profile, antioxidant capacity, and metabolomics of in vitro propagules compared to the mother plant organs, intending to disclose the prospective of in vitro cultured propagules as an alternative source of the essential metabolites of this species. Phenolic content was investigated by colorimetry. Antioxidant activities were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric reducing/antioxidant power (FRAP) assays. Ultrahigh-performance liquid chromatography-quadrupole-orbital ion trap analyzer-high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) and chemometrics were exploited for comparative analyses of the metabolite’s composition. Total phenolic contents varied from 152.19 to 457.80 gallic acid equivalent g–1. The lowest DPPH and ABTS radical scavenging activities with the IC50 values were obtained from the rhizome, and FRAP-reducing power activities were found in the leaves. UHPLC-Q-Orbitrap HRMS data and multivariate analysis classified and differentiated the compounds in the callus, plantlet leaves, rhizomes, petioles, and leaves. The marker compounds discriminating the in vitro propagules from the mother plant organs are orcinol glucoside, nyasicoside, and vanillin. This information would be valuable for the pharmaceutical industry, herbalists, or herbal medicine producers in using the plant organs as well as the in vitro callus.


Keyword:     Callus chemometrics Hypoxidaceae metabolomics secondary metabolite UHPLC-Q-Orbitrap HRMS


Citation:

Umar AH, Ratnadewi D, Rafi M, Sulistyaningsih YC, Hamim H. Phenolics profile and antioxidant activities of in vitro propagules and field-raised plant organs of Curculigo latifolia. J Appl Pharm Sci, 2022. https://doi.org/10.7324/JAPS.2023.55995

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Babich O, Sukhikh S, Pungin A, Astahova L, Chupakhin E, Belova D, Prosekov A, Ivanova S. Evaluation of the conditions for the cultivation of callus cultures of Hyssopus officinalis regarding the yield of polyphenolic compounds. Plants, 2021; 10:915. https://doi.org/10.3390/plants10050915

Bai Y, Jian J, Liu D, Zhao X. Synthesis, characterization and application of a new biomass-based antioxidant derived from vanillin and methyl ethyl ketone. J Clean Prod, 2021; 316:128315. https://doi.org/10.1016/j.jclepro.2021.128315

Baschieri A, Amorati R. Methods to determine chain-breaking antioxidant activity of nanomaterials beyond DPPH: a review. Antioxidants, 2021; 10:1551. https://doi.org/10.3390/antiox10101551

Bertol G, Cobre AF, Pontarolo R. Differentiation of Mikania glomerata and Mikania laevigata species through mid-infrared spectroscopy and chemometrics guided by HPLC-DAD analyses. Rev Bras Farmacogn, 2021; 31:442-52. https://doi.org/10.1007/s43450-021-00170-5

Butkeviciute A, Petrikaite V, Jurgaityte V, Liaudanskas M, Janulis V. Antioxidant, anti-inflammatory, and cytotoxic activity of extracts from some commercial apple cultivars in two colorectal and glioblastoma human cell lines. Antioxidants, 2021; 10:1098. https://doi.org/10.3390/antiox10071098

Cabañas-García E, Areche C, Gómez-Aguirre YA, Borquez J, Muñoz R, Cruz-Sosa F, Balch EPM. Biomass production and secondary metabolite identification in callus cultures of Coryphantha macromeris (Engelm.) Britton & Rose (Cactaceae), a traditional medicinal plant. S Afr J Bot, 2021; 137:1-9; doi:10.1016/j.sajb.2020.10.002 https://doi.org/10.1016/j.sajb.2020.10.002

Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics, 2019; 68:e86. https://doi.org/10.1002/cpbi.86

de Castro TC, Simões-Gurgel C, Gayer CR, Coelho MGP, Albarello N. Micropropagation of Cleome dendroides (Cleomaceae), an endemic Brazilian species, as a source of glucosinolates. Plant Biosyst, 2021; 155:281-90. https://doi.org/10.1080/11263504.2020.1739161

Deng X, Xiong Y, Li J, Yang D, Liu J, Sun H, Song H, Wang Y, Ma J, Liu Y, Yang M. The establishment of an efficient callus induction system for lotus (Nelumbo nucifera). Plants, 2020; 9:1436. https://doi.org/10.3390/plants9111436

Denizli N, Horo I, Gülcemal D, Masullo M, Festa M, Capasso A, Koz Ö, Piacente S, Alanku?-Çal??kan Ö. Cycloartane glycosides from Astragalus plumosus var. krugianus and evaluation of their antioxidant potential. Fitoterapia, 2014; 92:211-8. https://doi.org/10.1016/j.fitote.2013.10.018

Dinan L, Dioh W, Veillet S, Lafont R. 20-Hydroxyecdysone, from plant extracts to clinical use: therapeutic potential for the treatment of neuromuscular, cardio-metabolic and respiratory diseases. Biomedicines, 2021; 9:492. https://doi.org/10.3390/biomedicines9050492

Farzinebrahimi R, Mat Taha R, Rashid KA, Ali Ahmed B, Danaee M, Rozali SE. Preliminary screening of antioxidant and antibacterial activities and establishment of an efficient callus induction in Curculigo latifolia Dryand (Lemba). Evid Based Complement Alternat Med, 2016; 2016:e6429652. https://doi.org/10.1155/2016/6429652

Ferdausi A, Chang X, Jones M. Enhancement of galanthamine production through elicitation and NMR-based metabolite profiling in Narcissus pseudonarcissus cv. Carlton in vitro callus cultures. In Vitro Cell Dev Biol-Plant, 2021; 57:435-46. https://doi.org/10.1007/s11627-020-10139-z

Han J, Wan M, Ma Z, Hu C, Yi H. Prediction of targets of Curculigoside A in osteoporosis and rheumatoid arthritis using network pharmacology and experimental verification. Drug Des Devel Ther, 2020; 14:5235-50. https://doi.org/10.2147/DDDT.S282112

Hashim AM, Alharbi BM, Abdulmajeed AM, Elkelish A, Hozzein WN, Hassan HM. Oxidative stress responses of some endemic plants to high altitudes by intensifying antioxidants and secondary metabolites content. Plants, 2020; 9:869. https://doi.org/10.3390/plants9070869

Hejazi II, Khanam R, Mehdi SH, Bhat AR, Rizvi MMA, Thakur SC, Athar F. Antioxidative and anti-proliferative potential of Curculigo orchioides Gaertn in oxidative stress induced cytotoxicity: in vivo, ex vivo and in silico studies. Food Chem Toxicol, 2018; 115:244-59. https://doi.org/10.1016/j.fct.2018.03.013

Hoque MdA, Ahmad S, Chakrabarty N, Khan MF, Hafez Kabir MS, Brishti A, Raihan MdO, Alam AHMK, Haque Md. Anwarul, Nasrin MstS, Haque Md. Areeful, Reza ASMA. Antioxidative role of palm grass rhizome ameliorates anxiety and depression in experimental rodents and computer-aided model. Heliyo, 2021; 7:e08199. https://doi.org/10.1016/j.heliyon.2021.e08199

Huang D, Ming R, Yao S, Li L, Huang R, Tan Y. Identification of anthocyanins in the fruits of Kadsura coccinea using UPLC-MS/MS-based metabolomics. Biochem Syst Ecol, 2021; 98:104324. https://doi.org/10.1016/j.bse.2021.104324

Inyai C, Yusakul G, Komaikul J, Kitisripanya T, Likhitwitayawuid K, Sritularak B, Putalun W. Improvement of stilbene production by mulberry Morus alba root culture via precursor feeding and co-elicitation. Bioprocess Biosyst Eng, 2021; 44:653-60. https://doi.org/10.1007/s00449-020-02474-7

Jagie??o-Kubiec K, Nowakowska K, ?ukaszewska AJ, Pacholczak A. Morpho-anatomical and biochemical changes associated with rooting of micropropagated ninebark cuttings. Plant Cell Tiss Organ Cult, 2021; 147:229-37. https://doi.org/10.1007/s11240-021-02119-x

Kim WS, Seo JH, Lee JI, Ko ES, Cho SM, Kang JR, Jeong JH, Jeong YJ, Kim CY, Cha JD, Ryu YB. The metabolite profile in culture supernatant of Aster yomena callus and its anti-photoaging effect in skin cells exposed to UVB. Plants, 2021; 10:659. https://doi.org/10.3390/plants10040659

Kumar D, Punetha A, Verma PPS, Padalia RC. Micronutrient based approach to increase yield and quality of essential oil in aromatic crops. J Appl Res Med Aromat Plants, 2022; 26:100361. https://doi.org/10.1016/j.jarmap.2021.100361

Kushalan S, Yathisha UG, Khyahrii SA, Hegde S. Phytochemical and anti-oxidant evaluation of in vitro and in vivo propagated plants of Curculigo orchioides. In Vitro Cell Dev Biol-Plant, 2022; 58:382-91. https://doi.org/10.1007/s11627-021-10246-5

Lee JH, Cho YS. Assessment of phenolic profiles from various organs in different species of perilla plant (Perilla frutescens (L.) Britt.) and their antioxidant and enzyme inhibitory potential. Ind Crops Prod, 2021; 171:113914. https://doi.org/10.1016/j.indcrop.2021.113914

Lella SD, Porta NL, Tognetti R, Lombardi F, Nardin T, Larcher R. White rot fungal impact on the evolution of simple phenols during decay of silver fir wood by UHPLC-HQOMS. Phytochem Anal, 2021; 33:170-83. https://doi.org/10.1002/pca.3077

Li L, Li S, Cui Z, Wang Y, Li Y, Kong L, Luo J. Improving sesquiterpenoids production of Sarcandra glabra callus culture. Ind Crops Prod, 2021; 169:113636. https://doi.org/10.1016/j.indcrop.2021.113636

Li N, Li SP, Wang KJ, Yan GQ, Zhu YY. Novel norlignan glucosides from rhizomes of Curculigo sinensis. Carbohydr Res, 2012; 351:64-67. https://doi.org/10.1016/j.carres.2012.01.014

López-Ramírez Y, Cabañas-García E, Areche C, Trejo-Tapia G, Pérez-Molphe-Balch E, Gómez-Aguirre YA. Callus induction and phytochemical profiling of Yucca carnerosana (Trel.) McKelvey obtained from in vitro cultures. Rev Mex Ing Quim, 2021; 20:823-37. https://doi.org/10.24275/rmiq/Bio2209

Mashiane P, Manhivi VE, Shoko T, Slabbert RM, Sultanbawa Y, Sivakumar D. Cooking african pumpkin leaves (Momordica balsamina L.) by stir-frying improved bioactivity and bioaccessibility of metabolites-metabolomic and chemometric approaches. Foods, 2021; 10:2890. https://doi.org/10.3390/foods10112890

Md. Salleh MFRR, Aminuddin A, Hamid AA, Salamt N, Japar Sidik FZ, Ugusman A. Piper sarmentosum Roxb. attenuates vascular endothelial dysfunction in nicotine-induced rats. Front Pharmacol, 2021; 12:667102. https://doi.org/10.3389/fphar.2021.667102

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 1962; 15:473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Okubo S, Terauchi K, Okada S, Saito Y, Yamaura T, Misaka T, Nakajima K, Abe K, Asakura T. De novo transcriptome analysis and comparative expression profiling of genes associated with the taste-modifying protein neoculin in Curculigo latifolia and Curculigo capitulata fruits. BMC Genom, 2021; 22:347. https://doi.org/10.1186/s12864-021-07674-3

R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2018.

Rady MR, Gierczik K, Ibrahem MM, Matter MA, Galiba G. Anticancer compounds production in Catharanthus roseus by methyl jasmonate and UV-B elicitation. S Afr J Bot, 2021; 142:34-41. https://doi.org/10.1016/j.sajb.2021.05.024

Ramabulana AT, Steenkamp PA, Madala NE, Dubery IA. Application of plant growth regulators modulates the profile of chlorogenic acids in cultured Bidens pilosa cells. Plants, 2021; 10:437. https://doi.org/10.3390/plants10030437

Ratnadewi D, Fendiyanto MH, Satrio RD, Miftahudin M, Laily AN. Strictosidine synthase coding gene expression towards quinine biosynthesis and accumulation: inconsistency in cultured cells and fresh tissues of Cinchona ledgeriana. Int J Agric Biol, 2021; 26:131-8. https://doi.org/10.17957/IJAB/15.1817

Shi M, Liao P, Nile SH, Georgiev MI, Kai G. Biotechnological exploration of transformed root culture for value-added products. Trends Biotechnol, 2021; 39:137-49. https://doi.org/10.1016/j.tibtech.2020.06.012

Silalahi M, Nisyawati N. The ethnobotanical study of edible and medicinal plants in the home garden of Batak Karo sub-ethnic in North Sumatra, Indonesia. Biodiversitas, 2018; 19:229-38. https://doi.org/10.13057/biodiv/d190131

Sobeh M, Mamadalieva NZ, Mohamed T, Krstin S, Youssef FS, Ashour ML, Azimova SS, Wink M. Chemical profiling of Phlomis thapsoides (Lamiaceae) and in vitro testing of its biological activities. Med Chem Res, 2016; 25:2304-15. https://doi.org/10.1007/s00044-016-1677-9

Trinh NTN, Tuan NN, Thang TD, Kuo PC, Thanh NB, Tam LN, Tuoi LH, Nguyen THD, Vu DC, Ho TL, Anh LN, Thuy NTT. Chemical composition analysis and antioxidant activity of Coffea robusta monofloral honeys from Vietnam. Foods, 2022; 11:388. https://doi.org/10.3390/foods11030388

Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, Vander Gheynst J, Fiehn O, Arita M. MS-DIAL: data-independent MS/ MS deconvolution for comprehensive metabolome analysis. Nat Methods, 2015; 12:523-6. https://doi.org/10.1038/nmeth.3393

Umar AH, Ratnadewi D, Rafi M, Sulistyaningsih YC. Untargeted metabolomics analysis using FTIR and UHPLC-Q-Orbitrap HRMS of two Curculigo species and evaluation of their antioxidant and α-glucosidase inhibitory activities. Metabolites, 2021a; 11:42. https://doi.org/10.3390/metabo11010042

Umar AH, Ratnadewi D, Rafi M, Sulistyaningsih YC, Hamim H. Callus of Curculigo latifolia Dryand. ex W.T.Aiton: initiation, regeneration, secretory structure and histochemistry. IOP Conf Ser Earth Environ Sci, 2021b; 948:012051. https://doi.org/10.1088/1755-1315/948/1/012051

Vignesh A, Selvakumar S, Vasanth K. Comparative LC-MS analysis of bioactive compounds, antioxidants and antibacterial activity from leaf and callus extracts of Saraca asoca. Phytomed Plus, 2022; 2:100167. https://doi.org/10.1016/j.phyplu.2021.100167

Wang R, Qin Y, Zhou J, Wang J, Shu H, Zhou S, Peng X. Comprehensive evaluation of Bletilla striata and its substitutes by combining phenotypic characteristic, chemical composition, and anti-melanogenic activity. Phytochemistry, 2022; 195:113059. https://doi.org/10.1016/j.phytochem.2021.113059

Wang Y, Li J, Li N. Phytochemistry and pharmacological activity of plants of genus Curculigo: an updated review since 2013. Molecules, 2021; 26:3396. https://doi.org/10.3390/molecules26113396

Xu YB, Chen GL, Guo MQ. Antioxidant and anti-inflammatory activities of the crude extracts of Moringa oleifera from Kenya and their correlations with flavonoids. Antioxidants, 2019; 8:296. https://doi.org/10.3390/antiox8080296

Yaermaimaiti S, Wu T, Aisa HA. Bioassay-guided isolation of antioxidant, antimicrobial, and antiviral constituents of Cordia dichotoma fruits. Ind Crops Prod, 2021; 172:113977. https://doi.org/10.1016/j.indcrop.2021.113977

Yeshi K, Crayn D, Ritmejeryt? E, Wangchuk P. Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules, 2022; 27:313. Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis. Analyst, 2011; 137:293-300. https://doi.org/10.3390/molecules27010313

Zhang Y, Ge JF, Wang FF, Liu F, Shi C, Li N. Crassifoside H improve the depressive-like behavior of rats under chronic unpredictable mild stress: possible involved mechanisms. Brain Res Bull, 2017; 135:77- 84. https://doi.org/10.1016/j.brainresbull.2017.09.015

Zhao Y, Guo Y, Chen Y, Liu S, Wu N, Jia D. Curculigoside attenuates myocardial ischemia reperfusion injury by inhibiting the opening of the mitochondrial permeability transition pore. Int J Mol Med, 2020; 45:1514-24. https://doi.org/10.3892/ijmm.2020.4513

Zhu L, Liu Z, Ren Y, Wu X, Liu Y, Wang T, Li Y, Cong Y, Guo Y. Neuroprotective effects of salidroside on ageing hippocampal neurons and naturally ageing mice via the PI3K/Akt/TERT pathway. Phytother Res, 2021; 35:5767-80. https://doi.org/10.1002/ptr.7235

Zhu FB, Wang JY, Zhang YL, Quan RF, Yue ZS, Zeng LR, Zheng WJ, Hou Q, Yan SG, Hu YG. Curculigoside regulates proliferation, differentiation, and pro-inflammatory cytokines levels in dexamethasone-induced rat calvarial osteoblasts. Int J Clin Exp Med, 2015a; 8:12337-46.

Zhu MZ, Wu W, Jiao LL, Yang PF, Guo MQ. Analysis of flavonoids in lotus (Nelumbo nucifera) leaves and their antioxidant activity using macroporous resin chromatography coupled with LC-MS/MS and antioxidant biochemical assays. Molecules, 2015b; 20:10553-65. https://doi.org/10.3390/molecules200610553

Article Metrics

1 Absract views 6 PDF Downloads 7 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required