Alfaro ADT, Fonseca GG, Balbinot E, Machado A, Prentice C. Physical and chemical properties of wami tilapia skin gelatin. Food Sci Technol, 2013; 33:592-5; doi:org/10.1590/s0101-20612013005000069 https://doi.org/10.1590/S0101-20612013005000069 |
|
Arshad ZIM, Amid A, Yusof F, Jaswir I, Ahmad K, Loke SP. Bromelain: an overview of industrial application and purification strategies. Appl Microbiol Biotechnol, 2014; 98:7283-97; doi:org/10.1007/s00253- 014-5889-y https://doi.org/10.1007/s00253-014-5889-y | |
|
Bala M, Ismail NA, Mel M, Saedi M, Salleh H, Salleh A, Amid A. Bromelain production: current trends and perspective. Arch Des Sci, 2012; 65:1464-661. | |
|
Bos JD, Meinardi MMHM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol, 2000; 9:165- 9; doi:org/10.1034/j.1600-0625.2000.009003165.x https://doi.org/10.1034/j.1600-0625.2000.009003165.x | |
|
Caley MP, Martins VLC, OToole EA. Metalloproteinases and wound healing. Adv Wound Care, 2015; 4:225-34; doi:org/10.1089/ wound.2014.0581. https://doi.org/10.1089/wound.2014.0581 | |
|
Cheung IWY, Li-Chan ECY. Enzymatic production of protein hydrolysates from steelhead (Oncorhynchus mykiss) skin gelatin as inhibitors of dipeptidyl-peptidase IV and angiotensin-I converting enzyme. J Funct Foods, 2017; 28:254-64; doi:org/10.1016/j.jff.2016.10.030 https://doi.org/10.1016/j.jff.2016.10.030 | |
|
Choonpicharn S, Tateing S, Jaturasitha S, Rakariyatham N, Suree N, Niamsup H. Identification of bioactive peptide from Oreochromis niloticus skin gelatin. J Food Sci Technol, 2015; 53:1222-9; doi:org/10.1007/ s13197-015-2091-x https://doi.org/10.1007/s13197-015-2091-x | |
|
Cissell DD, Link JM, Hu JC, Athanasiou KA. A modified hydroxyproline assay based on hydrochloric acid in ehrlichs solution accurately measures tissue collagen content. Tissue Eng Part C: Methods, 2017;23:243-50; doi:org/10.1089/ten.tec.2017.0018 https://doi.org/10.1089/ten.tec.2017.0018 | |
|
Costa BA, Júnior EML, de Moraes Filho MO, Fechine FV, de Moraes MEA, Júnior FRS, do Nascimento Soares MFA, Rocha MBS. Use of tilapia skin as a xenograft for pediatric burn treatment: a case report. J Burn Care Res, 2019; 40:714-7; doi:org/10.1093/jbcr/irz085 https://doi.org/10.1093/jbcr/irz085 | |
|
Das S, Amin SA, Jha T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem, 2021; 223:113623; doi: 10.1016/j.ejmech.2021.113623 https://doi.org/10.1016/j.ejmech.2021.113623 | |
|
Das S, Amin SA, Jha T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem, 2021; 223:113623; doi: 10.1016/j.ejmech.2021.113623 https://doi.org/10.1016/j.ejmech.2021.113623 | |
|
de Oliveira Gonzalez AC, Costa TF, de Araújo Andrade Z, Medrado ARAP. Wound healing - a literature review. An Bras Dermatol, 2016; 91:614-20; doi:org/10.1590/abd1806-4841.20164741 https://doi.org/10.1590/abd1806-4841.20164741 | |
|
Elbialy ZI, Atiba A, Abdelnaby A, Al-Hawary II, Elsheshtawy A, El-Serehy HA, Abdel-Daim MA, Fadl SE, Assar DH. Collagen extract obtained from Nile tilapia (Oreochromis niloticus L.) skin accelerates wound healing in rat model via up regulating VEGF, bFGF, and α-SMA genes expression. BMC Vet Res, 2020; 16:352; doi:org/10.1186/s12917-020-02566-2. https://doi.org/10.1186/s12917-020-02566-2 | |
|
Fields GB. Mechanisms of Action of Novel Drugs Targeting Angiogenesis-Promoting Matrix Metalloproteinases. Frontiers in Immunology, 2019; doi: 10.3389/fimmu.2019.0127 https://doi.org/10.3389/fimmu.2019.01278 | |
|
Fields GB. Mechanisms of action of novel drugs targeting angiogenesis-promoting matrix metalloproteinases. Front Immunol, 2019; doi: 10.3389/fimmu.2019.0127 https://doi.org/10.3389/fimmu.2019.01278 | |
|
Giraldo-Rios DE, Rios LA, Zapata-Montoya JE. Kinetic modeling of the alkaline deproteinization of Nile tilapia skin for the production of collagen. Heliyon, 2020; 6:e03854; doi:org/10.1016/j. heliyon.2020.e03854 https://doi.org/10.1016/j.heliyon.2020.e03854 | |
|
Hu Z, Yang P, Zhou C, Li S, Hong P. Marine collagen peptides from the skin of Nile tilapia (Oreochromis niloticus): characterization and wound healing evaluation. Mar Drugs, 2017; 15:102; doi:org/10.3390/ md15040102 https://doi.org/10.3390/md15040102 | |
|
Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, Shavandi A. Fish collagen: extraction, characterization, and applications for biomaterials engineering. Polymers (Basel), 2020; 12:2230; doi:org/10.3390/polym12102230. https://doi.org/10.3390/polym12102230 | |
|
Jiang S, Liu S, Zhao C, Wu C. Developing protocols of tricine- SDS-PAGE for separation of polypeptides in the mass range 1-30 kDa with minigel electrophoresis system. Int J Electrochem Sci, 2016; 11:640-9. | |
|
Júnior EML, de Moraes Filho MO, Forte AJ, Costa BA, Fechine FV, Alves APNN, de Moraes MEA, Rocha MBS, Júnior FRS, do Nascimento Soares MFA, Bezerra AN, Martins CB, Mathor MB. Pediatric burn treatment using tilapia skin as a xenograft for superficial partial-thickness wounds: a pilot study. J Burn Care Res, 2019; doi:org/10.1093/jbcr/irz149 | |
|
Jutamongkon R, Charoenrein S. Effect of temperature on the stability of fruit bromelain from smooth cayenne pineapple. Kasetsart J Nat Sci, 2010; 44:943-8. | |
|
León-López A, Morales-Peñaloza A, Mart\'{\i}nez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed collagen sources and applications. Molecules, 2019; 24:4031; doi:org/10.3390/ molecules24224031 https://doi.org/10.3390/molecules24224031 | |
|
Lin H, Zheng Z, Yuan J, Zhang C, Cao W, Qin X. Collagen peptides derived from Sipunculus nudus accelerate wound healing. Molecules, 2021; 26:1385; doi:org/10.3390/molecules26051385. https://doi.org/10.3390/molecules26051385 | |
|
López-Morales CA, Vázquez-Leyva S, Vallejo-Castillo L, Carballo-Uicab G, Muñoz-Garc\'{\i}a L, Herbert-Pucheta JE, Zepeda- Vallejo LG, Velasco-Velázquez M, Pavón L, Pérez-Tapia SM, Medina- Rivero E. Determination of peptide profile consistency and safety of collagen hydrolysates as quality attributes. J Food Sci, 2019; 84:430-9; doi:org/10.1111/1750-3841.14466 https://doi.org/10.1111/1750-3841.14466 | |
|
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem, 1951; 193:265- 75; doi:org/10.1016/s0021-9258(19)52451-6. https://doi.org/10.1016/S0021-9258(19)52451-6 | |
|
Ma Q, Liu Q, Yuan L, Zhuang Y. Protective effects of LSGYGP from fish skin gelatin hydrolysates on UVB-induced MEFs by regulation of oxidative stress and matrix metalloproteinase activity. Nutrients, 2018; 10:420; doi:org/10.3390/nu10040420 https://doi.org/10.3390/nu10040420 | |
|
Mohan V, Talmi-Frank D, Arkadash V, Papo N, Sagi I. Matrix metalloproteinase protein inhibitors: highlighting a new beginning for metalloproteinases in medicine. Metalloproteinases Med, 2016; 3:31-47; doi:org/10.2147/MNM.S65143 https://doi.org/10.2147/MNM.S65143 | |
|
Ndinguri M, Bhowmick M, Tokmina-Roszyk D, Robichaud T, Fields G. Peptide-based selective inhibitors of matrix metalloproteinase-mediated activities. Molecules, 2012; 17(12):14230-48; doi:org/10.3390/ molecules171214230 https://doi.org/10.3390/molecules171214230 | |
|
Plepis AMDG, Goissis G, Das-Gupta DK. Dielectric and pyroelectric characterization of anionic and native collagen. Polym Eng Sci, 1996; 36:2932-8; doi:org/10.1002/pen.10694 https://doi.org/10.1002/pen.10694 | |
|
Rahayu P, Agustina L, Tjandrawinata RR. Tacorin, an extract from Ananas comosus stem, stimulates wound healing by modulating the expression of tumor necrosis factor α, transforming growth factor β and matrix metalloproteinase 2. FEBS Open Bio, 2017; 7:1017-25; doi:org/10.1002/2211-5463.12241 https://doi.org/10.1002/2211-5463.12241 | |
|
Rahayu P, Marcelline F, Sulistyaningrum E, Suhartono MT, Tjandrawinata RR. Potential effect of striatin (DLBS0333), a bioactive protein fraction isolated from Channa striata for wound treatment. Asian Pac J Trop Biomed, 2016; 6:1001-7; doi:org/10.1016/j. apjtb.2016.10.008 https://doi.org/10.1016/j.apjtb.2016.10.008 | |
|
Ren Z, Chen J, Khalil RA. Zymography as a research tool in the study of matrix metalloproteinase inhibitors. Zymography. Springer, New York, NY, pp 79-102, 2017; doi:org/10.1007/978-1-4939-7111-4_8 https://doi.org/10.1007/978-1-4939-7111-4_8 | |
|
Robert M, Zatylny-Gaudin C, Fournier V, Corre E, Le Corguillé G, Bernay B, Henry J. Molecular characterization of peptide fractions of a tilapia (Oreochromis niloticus) by-product hydrolysate and in vitro evaluation of antibacterial activity. Proc Biochem, 2015; 50:487-92; doi:org/10.1016/j.procbio.2014.12.022 https://doi.org/10.1016/j.procbio.2014.12.022 | |
|
Robinson PK. Enzymes: principles and biotechnological applications. Essays Biochem, 2015; 59:1-41; doi:org/10.1042/bse0590001 https://doi.org/10.1042/bse0590001 | |
|
Sabino F, auf dem Keller U. Matrix metalloproteinases in impaired wound healing. Metalloproteinases Med, 2015; 1; doi:org/10.2147/ mnm.s68420 https://doi.org/10.2147/MNM.S68420 | |
|
Sary C, de Paris LD, Bernardi DM, Lewandowiski V, Signor A, Boscolo WR. Tilapia by-product hydrolysate powder in diets for Nile tilapia larvae. Acta Sci Anim Sci, 2017; 39:1; doi:org/10.4025/actascianimsci. v39i1.32805 https://doi.org/10.4025/actascianimsci.v39i1.32805 | |
|
Sierra-Lopera LM, Zapata-Montoya JE. Optimization of enzymatic hydrolysis of red tilapia scales (Oreochromis sp.) to obtain bioactive peptides. Biotechnol Rep, 2021; 30:e00611; doi:org/10.1016/j. btre.2021.e00611 https://doi.org/10.1016/j.btre.2021.e00611 | |
|
Song Z, Liu H, Chen Liwen, Chen L, Zhou C, Hong P, Deng C. Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment. Food Chem, 2021; 340:128139; doi:org/10.1016/j.foodchem.2020.128139 https://doi.org/10.1016/j.foodchem.2020.128139 | |
|
Tatulian SA. FTIR analysis of proteins and protein membrane interactions. Methods in molecular biology. Springer, New York, NY, pp 281-325, 2019; doi:org/10.1007/978-1-4939-9512-7_13 https://doi.org/10.1007/978-1-4939-9512-7_13 | |
|
Tian J, Wang Y, Zhu Z, Zeng Q, Xin M. Recovery of tilapia (Oreochromis niloticus) protein isolate by high-intensity ultrasound-aided alkaline isoelectric solubilization/precipitation process. Food Bioproc Technol, 2014; 8:758-69; doi:org/10.1007/s11947-014-1431-6 https://doi.org/10.1007/s11947-014-1431-6 | |
|
van Doren SR. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol, 2015; 44-46:224-31; doi:org/10.1016/j. matbio.2015.01.005 https://doi.org/10.1016/j.matbio.2015.01.005 | |
|
Xiao Z, Liang P, Chen J, Chen M-F, Gong F, Li C, Zhou C, Hong P, Yang P, Qian Z-J. A peptide YGDEY from tilapia gelatin hydrolysates inhibits UVB-mediated skin photoaging by regulating MMP-1 and MMP- 9 expression in HaCaT cells. Photochem Photobiol, 2019; 95:1424-32; doi:org/10.1111/php.13135 https://doi.org/10.1111/php.13135 | |
|
Yang G, Wu M, Yi H, Wang J. Biosynthesis and characterization of a non-repetitive polypeptide derived from silk fibroin heavy chain. Mater Sci Eng: C, 2016; 59:278-85; doi:org/10.1016/j.msec.2015.10.023 https://doi.org/10.1016/j.msec.2015.10.023 | |
|
Yang H, Yang S, Kong J, Dong A, Yu S. Obtaining information about protein secondary structures in aqueous solution using fourier transform IR spectroscopy. Nat Protoc, 2015; 10:382-96; doi:org/10.1038/ nprot.2015.024 https://doi.org/10.1038/nprot.2015.024 | |
|
Zhang Y, Tu D, Shen Q, Dai Z. Fish scale valorization by hydrothermal pretreatment followed by enzymatic hydrolysis for gelatin hydrolysate production. Molecules, 2019; 24:2998; doi:org/10.3390/ molecules24162998 https://doi.org/10.3390/molecules24162998 | |