Molecular studies of bioactive peptides of Nile tilapia (Oreochromis niloticus) skin protein hydrolysate DLBS3D33 as MMP-2 inhibitor

Shelyn P. Wijaya Puji Rahayu Maggy T. Suhartono Raymond Tjandrawinata   

Open Access   

Published:  Nov 30, 2022

DOI: 10.7324/JAPS.2023.53543
Abstract

Proteins of the Nile tilapia skin have long been known to possess wound-healing activity even though the mechanism underlying this effect is still unclear. There are indications that the timely decrease of matrix metalloproteinase-2 (MMP-2) concentration after the inflammation-triggered increase is one of the important factors affecting the progression of wound healing. Thus, in this study, the MMP-2 inhibitory ability of Nile tilapia skin protein hydrolysate DLBS3D33 was assessed with in vitro reverse gelatin zymography. The molecular weight distribution and secondary structure of DLBS3D33 were characterized with size exclusion chromatography and Fourier transform infrared spectroscopy whereas each peptide species was isolated with thin-layer chromatography. The result suggested that DLBS3D33 had six different peptides, with ~60% of the peptides sized below 600 Da and in an α-helix or coiled structure. These peptides showed an MMP-2 inhibitory effect, with 50% inhibition of 1 μg MMP-2 achieved with 35.3–41.2 mg of the DLBS3D33 protein. Hence, the hydrolysis of Nile tilapia skin successfully produced bioactive peptides with MMP-2 inhibitory activity.


Keyword:     Bioactive peptides Nile tilapia (Oreochromis niloticus) MMP-2 inhibitor protein characterization and identification wound healing enzymatic hydrolysis


Citation:

Wijaya SP, Rahayu P, Suhartono MT, Tjandrawinata R. Molecular studies of bioactive peptides of Nile tilapia (Oreochromis niloticus) skin protein hydrolysate DLBS3D33 as MMP-2 inhibitor. J Appl Pharm Sci, 2022. https://doi.org/10.7324/JAPS.2023.53543

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Alfaro ADT, Fonseca GG, Balbinot E, Machado A, Prentice C. Physical and chemical properties of wami tilapia skin gelatin. Food Sci Technol, 2013; 33:592-5; doi:org/10.1590/s0101-20612013005000069 https://doi.org/10.1590/S0101-20612013005000069

Arshad ZIM, Amid A, Yusof F, Jaswir I, Ahmad K, Loke SP. Bromelain: an overview of industrial application and purification strategies. Appl Microbiol Biotechnol, 2014; 98:7283-97; doi:org/10.1007/s00253- 014-5889-y https://doi.org/10.1007/s00253-014-5889-y

Bala M, Ismail NA, Mel M, Saedi M, Salleh H, Salleh A, Amid A. Bromelain production: current trends and perspective. Arch Des Sci, 2012; 65:1464-661.

Bos JD, Meinardi MMHM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol, 2000; 9:165- 9; doi:org/10.1034/j.1600-0625.2000.009003165.x https://doi.org/10.1034/j.1600-0625.2000.009003165.x

Caley MP, Martins VLC, OToole EA. Metalloproteinases and wound healing. Adv Wound Care, 2015; 4:225-34; doi:org/10.1089/ wound.2014.0581. https://doi.org/10.1089/wound.2014.0581

Cheung IWY, Li-Chan ECY. Enzymatic production of protein hydrolysates from steelhead (Oncorhynchus mykiss) skin gelatin as inhibitors of dipeptidyl-peptidase IV and angiotensin-I converting enzyme. J Funct Foods, 2017; 28:254-64; doi:org/10.1016/j.jff.2016.10.030 https://doi.org/10.1016/j.jff.2016.10.030

Choonpicharn S, Tateing S, Jaturasitha S, Rakariyatham N, Suree N, Niamsup H. Identification of bioactive peptide from Oreochromis niloticus skin gelatin. J Food Sci Technol, 2015; 53:1222-9; doi:org/10.1007/ s13197-015-2091-x https://doi.org/10.1007/s13197-015-2091-x

Cissell DD, Link JM, Hu JC, Athanasiou KA. A modified hydroxyproline assay based on hydrochloric acid in ehrlichs solution accurately measures tissue collagen content. Tissue Eng Part C: Methods, 2017;23:243-50; doi:org/10.1089/ten.tec.2017.0018 https://doi.org/10.1089/ten.tec.2017.0018

Costa BA, Júnior EML, de Moraes Filho MO, Fechine FV, de Moraes MEA, Júnior FRS, do Nascimento Soares MFA, Rocha MBS. Use of tilapia skin as a xenograft for pediatric burn treatment: a case report. J Burn Care Res, 2019; 40:714-7; doi:org/10.1093/jbcr/irz085 https://doi.org/10.1093/jbcr/irz085

Das S, Amin SA, Jha T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem, 2021; 223:113623; doi: 10.1016/j.ejmech.2021.113623 https://doi.org/10.1016/j.ejmech.2021.113623

Das S, Amin SA, Jha T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem, 2021; 223:113623; doi: 10.1016/j.ejmech.2021.113623 https://doi.org/10.1016/j.ejmech.2021.113623

de Oliveira Gonzalez AC, Costa TF, de Araújo Andrade Z, Medrado ARAP. Wound healing - a literature review. An Bras Dermatol, 2016; 91:614-20; doi:org/10.1590/abd1806-4841.20164741 https://doi.org/10.1590/abd1806-4841.20164741

Elbialy ZI, Atiba A, Abdelnaby A, Al-Hawary II, Elsheshtawy A, El-Serehy HA, Abdel-Daim MA, Fadl SE, Assar DH. Collagen extract obtained from Nile tilapia (Oreochromis niloticus L.) skin accelerates wound healing in rat model via up regulating VEGF, bFGF, and α-SMA genes expression. BMC Vet Res, 2020; 16:352; doi:org/10.1186/s12917-020-02566-2. https://doi.org/10.1186/s12917-020-02566-2

Fields GB. Mechanisms of Action of Novel Drugs Targeting Angiogenesis-Promoting Matrix Metalloproteinases. Frontiers in Immunology, 2019; doi: 10.3389/fimmu.2019.0127 https://doi.org/10.3389/fimmu.2019.01278

Fields GB. Mechanisms of action of novel drugs targeting angiogenesis-promoting matrix metalloproteinases. Front Immunol, 2019; doi: 10.3389/fimmu.2019.0127 https://doi.org/10.3389/fimmu.2019.01278

Giraldo-Rios DE, Rios LA, Zapata-Montoya JE. Kinetic modeling of the alkaline deproteinization of Nile tilapia skin for the production of collagen. Heliyon, 2020; 6:e03854; doi:org/10.1016/j. heliyon.2020.e03854 https://doi.org/10.1016/j.heliyon.2020.e03854

Hu Z, Yang P, Zhou C, Li S, Hong P. Marine collagen peptides from the skin of Nile tilapia (Oreochromis niloticus): characterization and wound healing evaluation. Mar Drugs, 2017; 15:102; doi:org/10.3390/ md15040102 https://doi.org/10.3390/md15040102

Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, Shavandi A. Fish collagen: extraction, characterization, and applications for biomaterials engineering. Polymers (Basel), 2020; 12:2230; doi:org/10.3390/polym12102230. https://doi.org/10.3390/polym12102230

Jiang S, Liu S, Zhao C, Wu C. Developing protocols of tricine- SDS-PAGE for separation of polypeptides in the mass range 1-30 kDa with minigel electrophoresis system. Int J Electrochem Sci, 2016; 11:640-9.

Júnior EML, de Moraes Filho MO, Forte AJ, Costa BA, Fechine FV, Alves APNN, de Moraes MEA, Rocha MBS, Júnior FRS, do Nascimento Soares MFA, Bezerra AN, Martins CB, Mathor MB. Pediatric burn treatment using tilapia skin as a xenograft for superficial partial-thickness wounds: a pilot study. J Burn Care Res, 2019; doi:org/10.1093/jbcr/irz149

Jutamongkon R, Charoenrein S. Effect of temperature on the stability of fruit bromelain from smooth cayenne pineapple. Kasetsart J Nat Sci, 2010; 44:943-8.

León-López A, Morales-Peñaloza A, Mart\'{\i}nez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed collagen sources and applications. Molecules, 2019; 24:4031; doi:org/10.3390/ molecules24224031 https://doi.org/10.3390/molecules24224031

Lin H, Zheng Z, Yuan J, Zhang C, Cao W, Qin X. Collagen peptides derived from Sipunculus nudus accelerate wound healing. Molecules, 2021; 26:1385; doi:org/10.3390/molecules26051385. https://doi.org/10.3390/molecules26051385

López-Morales CA, Vázquez-Leyva S, Vallejo-Castillo L, Carballo-Uicab G, Muñoz-Garc\'{\i}a L, Herbert-Pucheta JE, Zepeda- Vallejo LG, Velasco-Velázquez M, Pavón L, Pérez-Tapia SM, Medina- Rivero E. Determination of peptide profile consistency and safety of collagen hydrolysates as quality attributes. J Food Sci, 2019; 84:430-9; doi:org/10.1111/1750-3841.14466 https://doi.org/10.1111/1750-3841.14466

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem, 1951; 193:265- 75; doi:org/10.1016/s0021-9258(19)52451-6. https://doi.org/10.1016/S0021-9258(19)52451-6

Ma Q, Liu Q, Yuan L, Zhuang Y. Protective effects of LSGYGP from fish skin gelatin hydrolysates on UVB-induced MEFs by regulation of oxidative stress and matrix metalloproteinase activity. Nutrients, 2018; 10:420; doi:org/10.3390/nu10040420 https://doi.org/10.3390/nu10040420

Mohan V, Talmi-Frank D, Arkadash V, Papo N, Sagi I. Matrix metalloproteinase protein inhibitors: highlighting a new beginning for metalloproteinases in medicine. Metalloproteinases Med, 2016; 3:31-47; doi:org/10.2147/MNM.S65143 https://doi.org/10.2147/MNM.S65143

Ndinguri M, Bhowmick M, Tokmina-Roszyk D, Robichaud T, Fields G. Peptide-based selective inhibitors of matrix metalloproteinase-mediated activities. Molecules, 2012; 17(12):14230-48; doi:org/10.3390/ molecules171214230 https://doi.org/10.3390/molecules171214230

Plepis AMDG, Goissis G, Das-Gupta DK. Dielectric and pyroelectric characterization of anionic and native collagen. Polym Eng Sci, 1996; 36:2932-8; doi:org/10.1002/pen.10694 https://doi.org/10.1002/pen.10694

Rahayu P, Agustina L, Tjandrawinata RR. Tacorin, an extract from Ananas comosus stem, stimulates wound healing by modulating the expression of tumor necrosis factor α, transforming growth factor β and matrix metalloproteinase 2. FEBS Open Bio, 2017; 7:1017-25; doi:org/10.1002/2211-5463.12241 https://doi.org/10.1002/2211-5463.12241

Rahayu P, Marcelline F, Sulistyaningrum E, Suhartono MT, Tjandrawinata RR. Potential effect of striatin (DLBS0333), a bioactive protein fraction isolated from Channa striata for wound treatment. Asian Pac J Trop Biomed, 2016; 6:1001-7; doi:org/10.1016/j. apjtb.2016.10.008 https://doi.org/10.1016/j.apjtb.2016.10.008

Ren Z, Chen J, Khalil RA. Zymography as a research tool in the study of matrix metalloproteinase inhibitors. Zymography. Springer, New York, NY, pp 79-102, 2017; doi:org/10.1007/978-1-4939-7111-4_8 https://doi.org/10.1007/978-1-4939-7111-4_8

Robert M, Zatylny-Gaudin C, Fournier V, Corre E, Le Corguillé G, Bernay B, Henry J. Molecular characterization of peptide fractions of a tilapia (Oreochromis niloticus) by-product hydrolysate and in vitro evaluation of antibacterial activity. Proc Biochem, 2015; 50:487-92; doi:org/10.1016/j.procbio.2014.12.022 https://doi.org/10.1016/j.procbio.2014.12.022

Robinson PK. Enzymes: principles and biotechnological applications. Essays Biochem, 2015; 59:1-41; doi:org/10.1042/bse0590001 https://doi.org/10.1042/bse0590001

Sabino F, auf dem Keller U. Matrix metalloproteinases in impaired wound healing. Metalloproteinases Med, 2015; 1; doi:org/10.2147/ mnm.s68420 https://doi.org/10.2147/MNM.S68420

Sary C, de Paris LD, Bernardi DM, Lewandowiski V, Signor A, Boscolo WR. Tilapia by-product hydrolysate powder in diets for Nile tilapia larvae. Acta Sci Anim Sci, 2017; 39:1; doi:org/10.4025/actascianimsci. v39i1.32805 https://doi.org/10.4025/actascianimsci.v39i1.32805

Sierra-Lopera LM, Zapata-Montoya JE. Optimization of enzymatic hydrolysis of red tilapia scales (Oreochromis sp.) to obtain bioactive peptides. Biotechnol Rep, 2021; 30:e00611; doi:org/10.1016/j. btre.2021.e00611 https://doi.org/10.1016/j.btre.2021.e00611

Song Z, Liu H, Chen Liwen, Chen L, Zhou C, Hong P, Deng C. Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment. Food Chem, 2021; 340:128139; doi:org/10.1016/j.foodchem.2020.128139 https://doi.org/10.1016/j.foodchem.2020.128139

Tatulian SA. FTIR analysis of proteins and protein membrane interactions. Methods in molecular biology. Springer, New York, NY, pp 281-325, 2019; doi:org/10.1007/978-1-4939-9512-7_13 https://doi.org/10.1007/978-1-4939-9512-7_13

Tian J, Wang Y, Zhu Z, Zeng Q, Xin M. Recovery of tilapia (Oreochromis niloticus) protein isolate by high-intensity ultrasound-aided alkaline isoelectric solubilization/precipitation process. Food Bioproc Technol, 2014; 8:758-69; doi:org/10.1007/s11947-014-1431-6 https://doi.org/10.1007/s11947-014-1431-6

van Doren SR. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol, 2015; 44-46:224-31; doi:org/10.1016/j. matbio.2015.01.005 https://doi.org/10.1016/j.matbio.2015.01.005

Xiao Z, Liang P, Chen J, Chen M-F, Gong F, Li C, Zhou C, Hong P, Yang P, Qian Z-J. A peptide YGDEY from tilapia gelatin hydrolysates inhibits UVB-mediated skin photoaging by regulating MMP-1 and MMP- 9 expression in HaCaT cells. Photochem Photobiol, 2019; 95:1424-32; doi:org/10.1111/php.13135 https://doi.org/10.1111/php.13135

Yang G, Wu M, Yi H, Wang J. Biosynthesis and characterization of a non-repetitive polypeptide derived from silk fibroin heavy chain. Mater Sci Eng: C, 2016; 59:278-85; doi:org/10.1016/j.msec.2015.10.023 https://doi.org/10.1016/j.msec.2015.10.023

Yang H, Yang S, Kong J, Dong A, Yu S. Obtaining information about protein secondary structures in aqueous solution using fourier transform IR spectroscopy. Nat Protoc, 2015; 10:382-96; doi:org/10.1038/ nprot.2015.024 https://doi.org/10.1038/nprot.2015.024

Zhang Y, Tu D, Shen Q, Dai Z. Fish scale valorization by hydrothermal pretreatment followed by enzymatic hydrolysis for gelatin hydrolysate production. Molecules, 2019; 24:2998; doi:org/10.3390/ molecules24162998 https://doi.org/10.3390/molecules24162998

Article Metrics

0 Absract views 2 PDF Downloads 2 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required