Spray-dried self-nanoemulsifying drug delivery systems as carriers for the oral delivery of piperine: Characterization and in vitro evaluation

Nindya Kusumorini Akhmad Kharis Nugroho Suwijiyo Pramono Ronny Martien   

Open Access   

Published:  Jun 22, 2022

Abstract

Piperine is the primary alkaloid compound of white pepper, which has many therapeutic benefits. However, piperine has limitations, including low bioavailability, being photosensitive, and being unstable in liquid preparations. This study aims to increase the dissolution rate and stability of isolated piperine in solid preparations using the solid- selfnanoemulsifying drug delivery systems (S-SNEDDS) formulation approach. The S-SNEDDS formulation was made with Miglyol 812 N, PEG400, and Cremophor RH40 as oil, cosurfactant, and surfactant with a ratio of 2.25:2.60:5.15, respectively. The S-SNEDDS solidification process used mesoporous mannitol as an inert adsorbent. It implemented the spray drying method. S-SNEDDS characterization was performed through droplet size distribution, vibration spectroscopy, morphological characteristics, thermal analysis, X-ray diffraction, and in vitro drug release. The characterization results showed no observed crystallization and interaction of isolated piperine with pore carriers in the S-SNEDDS formulation. It was confirmed by vibrational spectroscopy and thermal analysis. S-SNEDDS morphology results showed liquid-SNEDDS contained in mesoporous mannitol pore carriers. In addition, S-SNEDDS increased the dissolution rate of isolated piperine up to 10 times compared to pure isolated piperine. The S-SNEDDS formulation is helpful for dealing with active substances with low solubility and is photosensitive because of their ease of handling and flexibility for further formulation.


Keyword:     Piperine SNEDDS S-SNEDDS D-mannitol mesoporous mannitol.


Citation:

Kusumorini N, Nugroho AK, Pramono S, Martien R. Spraydried self-nanoemulsifying drug delivery systems as carriers for the oral delivery of piperine: Characterization and in vitro evaluation. J Appl Pharm Sci, 2022. Online First.

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

Ahmad J, Mir SR, Kohli K, Chuttani K, Mishra AK, Panda AK, Amin S. Solid-nanoemulsion preconcentrate for oral delivery of paclitaxel: formulation design, biodistribution, and γ scintigraphy imaging. BioMed Res Int, 2014; 2014:1-12. https://doi.org/10.1155/2014/984756

Ameeduzzafar EI, Alruwaili NK, Elkomy MH, Ahmad J, Afzal M, Ahmad N, Elmowafy M, Alharbi KS, Md SA. Development of novel dapagliflozin loaded solid self-nanoemulsifying oral delivery system: physiochemical characterization and in vivo antidiabetic activity. J Drug Deliv Sci Technol, 2019; 54:101279. https://doi.org/10.1016/j.jddst.2019.101279

Ashour EA, Majumdar S, Alsheteli A, Alshehri S, Alsulays B, Feng X, Gryczke A, Kolter K, Langley N, Repka MA. Hot melt extrusion as an approach to improve solubility, permeability and oral absorption of a psychoactive natural product, piperine. J Pharm Pharmacol, 2016; 68(8):989- 98. https://doi.org/10.1111/jphp.12579

Aukunuru JV, Bonepally CR. Optimization of encapsulation efficiency of piperine in soya- lecithin multilamellar vesicles. Int JChemTech Res, 2017; 7:723-9.

Badran MM, Taha EI, Tayel MM, Al-Suwayeh SA. Ultra-fine self nanoemulsifying drug delivery system for transdermal delivery of meloxicam: dependency on the type of surfactants. J Mol Liq, 2014; 190:16-22. https://doi.org/10.1016/j.molliq.2013.10.015

Bajad S, Khajuria RK, Suri OP, Bedi KL. Characterisation of a new minor urinary metabolite of piperine, an omnipresent food component, by LC-MS/MS. J Sep Sci, 2003; 26(9-10):943-6. https://doi.org/10.1002/jssc.200301511

Bari A, Chella N, Sanka K, Shastri NR, Diwan PV. Improved anti-diabetic activity of glibenclamide using oral self nano emulsifying powder. J Microencapsulation, 2015; 32(1):54-60. https://doi.org/10.3109/02652048.2014.944950

Bhalekar MR, Madgulkar AR, Desale PS, Marium, G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev Indus Pharm, 2017; 43(6):1003-10. https://doi.org/10.1080/03639045.2017.1291666

Bhat BG, Chandrasekhara N. Metabolic disposition of piperine in the rat. Toxicology, 1987; 44(1):99-106. https://doi.org/10.1016/0300-483X(87)90049-7

Brittain HG. X-ray diffraction III: pharmaceutical applications. Spectroscopy, 2001; 16(14):5.

Burger A, Henck JO, Hetz S, Rollinger JM, Weissnicht AA, Stöttner H. Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. J Pharm Sci, 2000; 89(4):457-68. https://doi.org/10.1002/(SICI)1520-6017(200004)89:4<457::AID-JPS3>3.0.CO;2-G

Cavallari C, Rodriguez L, Albertini B, Passerini N, Rosetti F, Fini A. Thermal and fractal analysis of diclofenac/Gelucire 50/13 microparticles obtained by ultrasound-assisted atomization. J Pharm Sci, 2005; 94(5):1124-34. https://doi.org/10.1002/jps.20337

Chatterjee B, Hamed AS, Ahmed MDA, Mandal UK, Sengupta P. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv, 2016; 23(9):3639-52. https://doi.org/10.1080/10717544.2016.1214990

Chavan RB, Modi SR, Bansal AK. Role of solid carriers in pharmaceutical performance of solid supersaturable SEDDS of celecoxib. Int J Pharm, 2015; 495(1):374-84. https://doi.org/10.1016/j.ijpharm.2015.09.011

Cheng G, Hu R, Ye L. Preparation and in vitro/in vivo evaluation of puerarin solid self-microemulsifying drug delivery system by spherical crystallization technique. AAPS PharmSciTech, 2015; 1-11:1336-46. https://doi.org/10.1208/s12249-015-0469-8

Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Exp Opin Drug Deliv, 2015; 12(7):1121-33. https://doi.org/10.1517/17425247.2015.999038

Cole ET, Cadé D, Benameur H. Challenges and opportunities in the encapsulation of liquid and semi-solid formulations into capsules for oral administration. Adv Drug Deliv Rev, 2008; 60(6):747-56. https://doi.org/10.1016/j.addr.2007.09.009

Dutta S, Bhattacharjee P. Nanoliposomal encapsulates of piperine-rich black pepper extract obtained by enzyme-assisted supercritical carbon dioxide extraction. J Food Eng, 2017; 201:49-56. https://doi.org/10.1016/j.jfoodeng.2017.01.006

Ee GCL, Lim CM, Rahmani M, Shaari K, Bong CFJ. Pellitorine, a potential anti-cancer lead compound against HL6 and MCT-7 cell lines and microbial transformation of piperine from Piper Nigrum. Molecules (Basel, Switzerland), 2010; 15(4):2398-404. https://doi.org/10.3390/molecules15042398

Etman SM, Elnaggar YSR, Abdelmonsif DA, Abdallah OY. Oral brain-targeted microemulsion for enhanced piperine delivery in Alzheimer's disease therapy: in vitro appraisal, in vivo activity, and nanotoxicity. AAPS PharmSciTech, 2018; 19(8):3698-711. https://doi.org/10.1208/s12249-018-1180-3

Ezawa T, Inoue Y, Murata I, Takao K, Sugita Y, Kanamoto I. Characterization of the dissolution behavior of piperine/cyclodextrins inclusion complexes. AAPS PharmSciTech, 2018; 19(2):923-33. https://doi.org/10.1208/s12249-017-0908-9

Ezawa T, Inoue Y, Tunvichien S, Suzuki R, Kanamoto I. Changes in the physicochemical properties of piperine/β-cyclodextrin due to the formation of inclusion complexes. Int J Med Chem, 2016:1-9. https://doi.org/10.1155/2016/8723139

Garg B, Katare OP, Beg S, Lohan S, Singh B. Systematic development of solid self-nanoemulsifying oily formulations (S-SNEOFs) for enhancing the oral bioavailability and intestinal lymphatic uptake of lopinavir. Colloids Surf B, 2016; 141:611-22. https://doi.org/10.1016/j.colsurfb.2016.02.012

Griesser J, Hetényi G, Kadas H, Demarne F, Jannin V, Bernkop-Schnürch A. Self-emulsifying peptide drug delivery systems: how to make them highly mucus permeating. Int J Pharm, 2018; 538(1):159-66. https://doi.org/10.1016/j.ijpharm.2018.01.018

Han Y, Chin TTM, Lim LY. In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression. Toxicol Appl Pharmacol, 2008; 230(3):283-9. https://doi.org/10.1016/j.taap.2008.02.026

Hu X, Lin C, Chen D, Zhang J, Liu Z, Wu W, Song H. Sirolimus solid self-microemulsifying pellets: formulation development, characterization and bioavailability evaluation. Int J Pharm, 2012; 438(1- 2):123-33. https://doi.org/10.1016/j.ijpharm.2012.07.055

Hulse WL, Forbes RT, Bonner MC, Getrost M. The characterization and comparison of spray-dried mannitol samples. Drug Dev Indus Pharm, 2009; 35(6):712-8. https://doi.org/10.1080/03639040802516491

Inugala S, Eedara BB, Sunkavalli S, Dhurke R, Kandadi P, Jukanti R, Bandari S. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: in vitro and in vivo evaluation. Eur J Pharm Sci, 2015; 74:1-10. https://doi.org/10.1016/j.ejps.2015.03.024

Kang JH, Oh DH, Oh YK, Yong CS, Choi HG. Effects of solid carriers on the crystalline properties, dissolution and bioavailability of flurbiprofen in solid self-nanoemulsifying drug delivery system (solid SNEDDS). Eur J Pharm Biopharm, 2012; 80(2):289-97. https://doi.org/10.1016/j.ejpb.2011.11.005

Khajuria A, Thusu N, Zutshi U. Piperine modulates permeability characteristics of intestine by inducing alterations in membrane dynamics: influence on brush border membrane fluidity, ultrastructure and enzyme kinetics. Phytomedicine, 2002; 9(3):224-31. https://doi.org/10.1078/0944-7113-00114

Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Selfnanoemulsifying drug delivery system (SNEDDS) of the poorly watersoluble grapefruit flavonoid Naringenin: design, characterization, in vitro and in vivo evaluation. Drug Deliv, 2015; 22(4):552-61. https://doi.org/10.3109/10717544.2013.878003

Kim DW, Kwon MS, Yousaf AM, Balakrishnan P, Park JH, Kim DS, Lee BJ, Park YJ, Yong CS, Kim JO, Choi HG. Comparison of a solid SMEDDS and solid dispersion for enhanced stability and bioavailability of clopidogrel napadisilate. Carbohydr Polym, 2014; 114:365-74. https://doi.org/10.1016/j.carbpol.2014.08.034

Kim KS, Yang ES, Kim DS, Kim DW, Yoo HH, Yong CS, Youn YS, Oh KT, Jee JP, Kim JO, Jin SG, Choi HG. A novel solid selfnanoemulsifying drug delivery system (S-SNEDDS) for improved stability and oral bioavailability of an oily drug, 1-palmitoyl-2-linoleoyl-3-acetylrac-glycerol. Drug Deliv, 2017; 24(1):1018-25. https://doi.org/10.1080/10717544.2017.1344335

Kotte SCB, Dubey PK, Murali PM. Identification and characterization of stress degradation products of piperine and profiling of a black pepper (Piper nigrum L.) extract using LC/Q-TOF-dual ESI-MS. Anal Methods, 2014; 6(19):8022-9. https://doi.org/10.1039/C4AY01088D

Koul IB, Kapil A. Evaluation of the liver protective potential of piperine, an active principle of black and long peppers. Planta Med, 1993; 59(5):413-7. https://doi.org/10.1055/s-2006-959721

Krsti? M, Medarevi? ?, ?uriš J, Ibri? S. Chapter 12- Self-nanoemulsifying drug delivery systems (SNEDDS) and selfmicroemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. In: Grumezescu AM (ed.). Lipid nanocarriers for drug targeting. William Andrew Publishing, New York, NY, pp 473-508. https://doi.org/10.1016/B978-0-12-813687-4.00012-8

Kuncahyo I, Choiri S, Fudholi A, Rohman A, Martien R. Understanding the effect of lipid formulation loading and ethanol as a diluent on solidification of pitavastatin super-saturable SNEDDS using factorial design approach. Res Pharm Sci, 2019; 14(5):378-90. https://doi.org/10.4103/1735-5362.268198

Kusumorini N, Nugroho AK, Pramono S, Martien R. Application of D-Optimal design for the optimization of isolated piperine from Piper nigrum L-loaded self-nanoemulsifying drug delivery systems (SNEDDS). Acta Poloniae Pharm Drug Res, 2021a; 78(3):415-23. https://doi.org/10.32383/appdr/138865

Kusumorini N, Nugroho AK, Pramono S, Martien R. Development of new isolation and quantification method of Piperine from white pepper seeds (Piper nigrum L) using a validated HPLC. Indones J Pharm, 2021b; 32(2):158-65. https://doi.org/10.22146/ijp.866

Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev, 2000; 45(1):89-121. https://doi.org/10.1016/S0169-409X(00)00103-4

Li S, Wang C, Wang M, Li W, Matsumoto K, Tang Y. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci, 2007; 80(15):1373-81. https://doi.org/10.1016/j.lfs.2006.12.027

Marasini N, Yan YD, Poudel BK, Choi HG, Yong CS, Kim JO. Development and optimization of self-nanoemulsifying drug delivery system with enhanced bioavailability by Box-Behnken design and desirability function. J Pharm Sci, 2012; 101(12):4584-96. https://doi.org/10.1002/jps.23333

Millqvist-Fureby A, Larsson A, Jarn M, Speets E, Ahniyaz A, Macakova L. Chapter 15. Mesoporous solid carrier particles in controlled delivery and releas. In: Gaonkar AG, Vasisht N, Khare AR, Sobel R (eds.). Microencapsulation in the food industry, Academic Press, San Diego, CA, pp 299-319, 2014. https://doi.org/10.1016/B978-0-12-404568-2.00025-X

Mohd AB, Sanka K, Bandi S, Diwan PV, Shastri N. Solid selfnanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of glimepiride: development and antidiabetic activity in albino rabbits. Drug Deliv, 2015; 22(4):499-508. https://doi.org/10.3109/10717544.2013.879753

Mujumdar AM, Dhuley JN, Deshmukh VK, Raman PH, Naik SR. Anti-inflammatory activity of piperine. Jpn J Med Sci Biol, 1990; 43(3):95-100. https://doi.org/10.7883/yoken1952.43.95

Mustapha O, Kim KS, Shafique S, Kim DS, Jin SG, Seo YG, Youn YS, Oh KT, Lee BJ, Park YJ, Yong CS, Kim JO, Choi HG. Development of novel cilostazol-loaded solid SNEDDS using a SPG membrane emulsification technique: physicochemical characterization and in vivo evaluation. Colloids Surf B, 2017; 150:216-22. https://doi.org/10.1016/j.colsurfb.2016.11.039

Nazzal S, Khan MA. Controlled release of a self-emulsifying formulation from a tablet dosage form: stability assessment and optimization of some processing parameters. Int J Pharm, 2006; 315(1-2):110-21. https://doi.org/10.1016/j.ijpharm.2006.02.019

Oh DH, Kang JH, Kim DW, Lee BJ, Kim, JO, Yong CS, Choi HG. Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier. Int J Pharm, 2011; 420(2):412-8. https://doi.org/10.1016/j.ijpharm.2011.09.007

Pachauri M, Gupta ED, Ghosh PC. Piperine loaded PEG-PLGA nanoparticles: preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy. J Drug Deliv Sci Technol, 2015; 29:269-82. https://doi.org/10.1016/j.jddst.2015.08.009

Parmar N, Singla N, Amin S, Kohli K. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf B, 2011; 86(2):327-38. https://doi.org/10.1016/j.colsurfb.2011.04.016

Passerini N, Albertini B, Perissutti B, Rodriguez L. Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. Int J Pharm, 2006; 318(1-2):92-102. https://doi.org/10.1016/j.ijpharm.2006.03.028

Peng T, Zhang X, Huang Y, Zhao Z, Liao Q, Xu J, Huang Z, Zhang J, Wu C, Pan X, Wu C. Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation. Sci Rep, 2017; 7(1):46517. https://doi.org/10.1038/srep46517

Pentak D. In vitro spectroscopic study of piperine-encapsulated nanosize liposomes. Eur Biophys J, 2016; 45(2):175-86. https://doi.org/10.1007/s00249-015-1086-x

Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev, 2008; 60(6):625-37. https://doi.org/10.1016/j.addr.2007.10.010

Priprem A, Chonpathompikunlert P, Sutthiparinyanont S, Wattanathorn J. Antidepressant and cognitive activities of intranasal piperine-encapsulated liposomes. Adv Biosci Biotechnol, 2011; 02(02):108-16. https://doi.org/10.4236/abb.2011.22017

Rashid R, Kim DW, Din FU, Mustapha O, Yousaf AM, Park JH, Kim JO, Yong CS, Choi, HG. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion. Carbohydr Poly, 2015; 130:26-31. https://doi.org/10.1016/j.carbpol.2015.04.071

Salem HF, Kharshoum RM, Sayed OM, Abdel HLF. Formulation development of self-nanoemulsifying drug delivery system of celecoxib for the management of oral cavity inflammation. J Liposome Res, 2019; 29(2):195-205. https://doi.org/10.1080/08982104.2018.1524484

Seo YG, Kim DH, Ramasamy T, Kim JH, Marasini N, Oh YK, Kim DW, Kim JK, Yong CS, Kim JO, Choi HG. Development of docetaxelloaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect. Int J Pharm, 2013; 452(1-2):412-20. https://doi.org/10.1016/j.ijpharm.2013.05.034

Seo YG, Kim DW, Yousaf AM, Park JH, Chang PS, Baek HH, Lim SJ, Kim JO, Yong CS, Choi HG. Solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability of poorly water-soluble tacrolimus: physicochemical characterisation and pharmacokinetics. J Microencapsulation, 2015; 32(5):503-10. https://doi.org/10.3109/02652048.2015.1057252

Shao B, Cui C, Ji H, Tang J, Wang Z, Liu H, Qin M, L X, Wu L. Enhanced oral bioavailability of piperine by self-emulsifying drug delivery systems: in vitro, in vivo and in situ intestinal permeability studies. Drug Deliv, 2015; 22(6):740-7. https://doi.org/10.3109/10717544.2014.898109

Song H, Moon C, Lee BJ, Oh E. Mesoporous pravastatin solid dispersion granules incorporable into orally disintegrating tablets. J Pharm Sci, 2018; 107(7):1886-95. https://doi.org/10.1016/j.xphs.2018.03.003

Srinivasan K. Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr, 2007; 47(8):735-48. https://doi.org/10.1080/10408390601062054

Suresh D, Srinivasan K. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J Med Res, 2010; 131:682-91.

Tang B, Cheng G, Gu JC, Xu CH. Development of solid selfemulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discovery Today, 2008; 13(13-14):606-12. https://doi.org/10.1016/j.drudis.2008.04.006

Thenmozhi K, Yoo YJ. Enhanced solubility of piperine using hydrophilic carrier-based potent solid dispersion systems. Drug Dev Indus Pharm, 2017; 43(9):1501-9. https://doi.org/10.1080/03639045.2017.1321658

Thomas N, Müllertz A, Graf A, Rades T. Influence of lipid composition and drug load on the In Vitro performance of selfnanoemulsifying drug delivery systems. J Pharm Sci, 2012; 101(5):1721-31. https://doi.org/10.1002/jps.23054

Vu GTT, Phan NT, Nguyen HT, Nguyen HC, Tran T, Pham TB, Nguyen LT, Nguyen HD. Application of the artificial neural network to optimize the formulation of self-nanoemulsifying drug delivery system containing rosuvastatin. J Appl Pharm Sci, 2020; 10(09):001-11.

Wang L, Dong J, Chen J, Eastoe J, Li X. Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sc, 2009; 330(2):443-8. https://doi.org/10.1016/j.jcis.2008.10.077

Wu Z, Xia X, Huang X. Determination of equilibrium solubility and apparent oil/water partition coefficient of piperine. J Jinan Univ, 2012; 33:473-6.

Article Metrics

1 Absract views 0 PDF Downloads 1 Total views

   Abstract      Pdf Download

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required