Diabetic kidney disease (DKD) is a long-term complication of diabetes mellitus that significantly contributes to morbidity and mortality. In the multifactorial pathogenesis of DKD, NADPH oxidase (Nox) has recently been identified as a pivotal player in both the initiation and progression of disease. Nox enzymes are key producers of reactive oxygen species, perpetuating oxidative stress, which serves as a major trigger for renal cell injury. Thus, it is imperative to assess the precise role of Nox-mediated oxidative stress and the distinct Nox isoforms involved in DKD. Our review provides insights into the intricate mechanisms through which Nox and its subtypes contribute to the pathogenesis of DKD, emphasizing its involvement in glomerular (podocyte, mesangial, and endothelial) and tubular injury, as well as subsequent interstitial inflammation and fibrosis. In addition, we have summarized emerging therapeutic strategies targeting Nox inhibition to mitigate the progression of DKD, which offer focused clinical interventions for improved patient outcomes.
Swaminathan SM, Nagaraju SP, Bhojaraja MV, Rao IR, Attur RP, Rangaswamy D, Shenoy SV, Gupta A, Ballala K, Laxminarayana SLK. The role of NADPH oxidase in diabetic kidney disease: Mechanisms, isoforms, and therapeutic opportunities. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.270714
1. Atlas D. International diabetes federation. IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation. 2015;33(2):1–297.
2. Heerspink HJ, Stefansson B, Correa-Rotter R. Microvascular complications and foot care. Diabetes are. 2021;44(9):2186–7. doi: https://doi.org/10.2337/dc21-ad09b
3. Sugahara M, Pak WLW, Tanaka T, Tang SCW, Nangaku M. Update on diagnosis, pathophysiology, and management of diabetic kidney disease. Nephrology. 2021;26(6):491–500. doi: https://doi.org/10.1111/nep.13860
4. Zhang XG, Zhang YQ, Cheng QP, Cao Y, Sun JM, Lv XF. The impact of insulin pump therapy to oxidative stress in patients with diabetic nephropathy. Eur J Med Res. 2018;23(1):7. doi: https://doi.org/10.1186/s40001-018-0304-2
5. Matoba K, Takeda Y, Nagai Y, Kawanami D, Utsunomiya K, Nishimura R. Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. Int J Mol Sci. 2019;20(14):3393. doi: https://doi.org/10.3390/ijms20143393
6. Gruden G, Perin P, Camussi G. Insight on the pathogenesis of diabetic nephropathy from the study of podocyte and mesangial cell biology. Curr Diabetes Rev. 2005;1(1):27–40. doi: https://doi.org/10.2174/1573399052952622
7. Petrovic V, Whiteman A, Peach M, Kim S, Malkov VA, Budas G, et al. Plasma proteome signatures of ASK1 inhibition by selonsertib associate with efficacy in the MOSAIC randomized trial for diabetic kidney disease. BMC Nephrol. 2025;26(1):244. doi: https://doi.org/10.1186/s12882-025-04166-4
8. Jaafarinia A, Kafami B, Sahebnasagh A, Saghafi F. Evaluation of therapeutic effects of crocin in attenuating the progression of diabetic nephropathy: a preliminary randomized triple-blind placebo-controlled trial. BMC Complem Med Ther. 2022;22(1):262. doi: https://doi.org/10.1186/s12906-022-03744-5
9. Zitouni K, Lyka E, Kelly FJ, Cook P, Ster IC, Earle KA. Derepression of glomerular filtration, renal blood flow and antioxidant defense in patients with type 2 diabetes at high-risk of cardiorenal disease. Free Radical Biol Med. 2020;161:283–9. doi: https://doi.org/10.1016/j.freeradbiomed.2020.10.005
10. Kashihara N, Haruna Y, K. Kondeti V, S. Kanwar Y. Oxidative stress in diabetic nephropathy. Curr MedChem. 2010;17(34):4256–69. doi: https://doi.org/10.2174/092986710793348581
11. Gorin Y, Block K. Nox as a target for diabetic complications. Clin Sci. 2013;125(8):361–82. doi: https://doi.org/10.2174/092986710793348581
12. Jha JC, Banal C, Chow BSM, Cooper ME, Jandeleit-Dahm K. Diabetes and Kidney Disease: role of Oxidative Stress. Antioxid Redox Signal. 2016;25(12):657–84. doi: https://doi.org/10.1089/ars.2016.6664
13. Opitz N, Drummond GR, Selemidis S, Meurer S, Schmidt HHHW. The ‘A’s and ‘O’s of NADPH oxidase regulation: a commentary on “Subcellular localization and function of alternatively spliced Noxo1 isoforms”. Free Radical Biol Med. 2007;42(2):175–9. doi: https://doi.org/10.1016/j.freeradbiomed.2006.11.003
14. Babior BM. NADPH oxidase: an update. Blood J Am Soc Hematol. 1999;93(5):1464–76. doi: https://doi.org/10.1182/blood.V93.5.1464
15. Bánfi B, Clark RA, Steger K, Krause KH. Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem. 2003;278(6):3510–3. doi: https://doi.org/10.1074/jbc.C200613200
16. Wang D, Chen Y, Chabrashvili T, Aslam S, Borrego Conde LJ, Umans JG, et al. Role of oxidative stress in endothelial dysfunction and enhanced responses to angiotensin II of afferent arterioles from rabbits infused with angiotensin II. J Am Soc Nephrol. 2003;14(11):2783–9. doi: https://doi.org/10.1097/01.asn.0000090747.59919.d2
17. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12(1):5–23. doi: https://doi.org/10.1038/cmi.2014.89
18. Lapouge K, Smith SJ, Groemping Y, Rittinger K. Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase: a central role for p67phox. J Biol Chem. 2002;277(12):10121–28. doi: https://doi.org/10.1074/jbc.M112065200
19. Waghela BN, Vaidya FU, Agrawal Y, Santra MK, Mishra V, Pathak C. Molecular insights of NADPH oxidases and its pathological consequences. Cell Biochem Function. 2021;39(2):218–34. doi: https://doi.org/10.1002/cbf.3589
20. Jones SA, Hancock JT, Jones OT, Neubauer A, Topley N. The expression of NADPH oxidase components in human glomerular mesangial cells: detection of protein and mRNA for p47phox, p67phox, and p22phox. J Am Soc Nephrol. 1995;5(7):1483–91. doi: https://doi.org/10.1681/ASN.V571483
21. Greiber S, Münzel T, Kästner S, Müller B, Schollmeyer P, Pavenstädt H. NADPH oxidase activity in cultured human podocytes: effects of adenosine triphosphate. Kidney Int. 1998;53(3):654–3. doi: https://doi.org/10.1046/j.1523-1755.1998.00796.x
22. Geiszt M, Kopp JB, Várnai P, Leto TL. Identification of renox, an NADPH oxidase in kidney. Proc Nat Acad Sci. 2000;97(14):8010–4. doi: https://doi.org/10.1073/pnas.130135897
23. Akira S, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S, et al. A novel superoxide-producing NADPH oxidase in kidney. J Biol Chem. 2001;276(2):1417–23. doi: https://doi.org/10.1074/jbc.M007597200
24. García JG, Ansorena E, Izal I, Zalba G, De Miguel C, Milagro FI. Structure, regulation, and physiological functions of NADPH oxidase 5 (NOX5). J Physiol Biochem. 2023;79(2):383–95. doi: https://doi.org/10.1007/s13105-023-00955-3
25. Welch WJ, Blau J, Xie H, Chabrashvili T, Wilcox CS. Angiotensin-induced defects in renal oxygenation: role of oxidative stress. Am J Physiol-Heart Circ Physiol. 2005;288(1):H22–8. doi: https://doi.org/10.1152/ajpheart.00626.2004
26. Chabrashvili T, Kitiyakara C, Blau J, Karber A, Aslam S, Welch WJ, et al. Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression. Am J Physiol-Regul Integr Comp Physiol. 2003;285(1):R117–124. doi: https://doi.org/10.1152/ajpregu.00476.2002
27. Ushiofukai M. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res. 2006;71(2):226–35. doi: https://doi.org/10.1016/j.cardiores.2006.04.015
28. Jaimes EA, Hua P, Tian RX, Raij L. Human glomerular endothelium: interplay among glucose, free fatty acids, angiotensin II, and oxidative stress. Am J Physiol-Renal Physiol. 2010;298(1):F125–132. doi: https://doi.org/10.1152/ajprenal.00248.2009
29. Pacher P, Obrosova IG, Mabley JG, Szabo C. Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Curr MedChem. 2005;12(3):267–75. doi: https://doi.org/10.2174/0929867053363207
30. Youn JY, Gao L, Cai H. The p47phox-and NADPH oxidase organizer 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia. 2012;55(7):2069–79. doi: https://doi.org/10.1007/s00125-012-2557-6
31. Lasseegue B, Sorescu D, Szo?cs K, Yin Q, Akers M, Zhang Y Griendling KK., et al. Novel gp91 phox homologs in vascular smooth muscle cells: nox1 mediates angiotensin II–induced superoxide formation and redox-sensitive signaling pathways. Circulat Res. 2001;88(9):888–94. doi: https://doi.org/10.1161/hh0901.090299
32. Eid AA, Lee DY, Roman LJ, Khazim K, Gorin Y. Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Mol Cellular Biol. 2013;33(17):3439–60. doi: https://doi.org/10.1128/MCB.00217-13
33. Augusto CM, Burger D, Paravicini TM, Chignalia AZ, Yusuf H, Almasri M, et al. Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin dependent, rac-1-independent pathways in human endothelial cells. Circulat Res. 2010;106(8):1363–73. doi: https://doi.org/10.1161/CIRCRESAHA.109.216036
34. Gorin Y, Block K, Hernandez J, Bhandari B, Wagner B, Barnes JL, et al. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem. 2005;280(47):39616–26. doi: https://doi.org/10.1074/jbc.M502412200
35. Gorin Y, Ricono JM, Kim NH, Bhandari B, Choudhury GG, Abboud HE. Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. Am J Physiol-Renal Physiol. 2003;285(2):F219–229. doi: https://doi.org/10.1152/ajprenal.00414.2002
36. Jha JC, Gray SP, Barit D, Okabe J, El-Osta A, Namikoshi T, et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrology. 2014;25(6):1237–54. doi: https://doi.org/10.1681/ASN.2013070810
37. Gao L, Huang W, Li J.NOX1 abet mesangial fibrogenesis via iNOS induction in diabetes. Mol Cellular Biochem. 2013;382:185–91. doi: https://doi.org/10.1007/s11010-013-1733-4
38. Menne J, Shushakova N, Bartels J, Kiyan Y, Laudeley R, Haller H, et al. Dual inhibition of classical protein kinase C-α and protein kinase C-β isoforms protects against experimental murine diabetic nephropathy. Diabetes. 2013;62(4):1167–7. doi: https://doi.org/10.2337/db12-0534
39. Thallas-Bonke V, Jha JC, Gray SP, Barit D, Haller H, Schmidt HHHW, et al. Nox?4 deletion reduces oxidative stress and injury by PKC?α?associated mechanisms in diabetic nephropathy. Physiological Rep. 2014;2(11):e12192. doi: https://doi.org/10.14814/phy2.12192
40. Fu Y, Zhang Y, Wang Z, Wang L, Wei X, Zhang B, et al. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am J Nephrology. 2010;32(6):58. doi: https://doi.org/10.1159/000322105
41. Kim J, Shon E, Kim CS, Kim JS. Renal podocyte injury in a rat model of type 2 diabetes is prevented by metformin. J Diabetes Res. 2012;2012:1–9. doi: https://doi.org/10.1155/2012/210821
42. Ichijo H, Nishida E, Irie K, Dijke PT, Saitoh M, Moriguchi T, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997;275(5296):90–4. doi: https://doi.org/10.1126/science.275.5296.90
43. Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, et al. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial apoptosis in diabetes. J Biol Chem. 2010;285(48):37503–812. doi: https://doi.org/10.1074/jbc.M110.136796
44. Schiffer M, Bitzer M, Roberts ISD, Kopp JB, Ten Dijke P, Mundel P, et al. Apoptosis in podocytes induced by TGF-β and Smad7. J Clin Invest. 2001;108(6):807–16. doi: https://doi.org/10.1172/JCI12367
45. Hatai T, Matsuzawa A, Inoshita S, Mochida Y, Kuroda T, Sakamaki K, et al. Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J Biol Chem. 2000;275(34):26576–81. doi: https://doi.org/10.1074/jbc.M003412200
46. Eid AA, Gorin Y, Fagg BM, Maalouf R, Barnes JL, Block K, et al. Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes. 2009;58(5):1201–11. doi: https://doi.org/10.2337/db08-1536
47. Kanwar YS, Sun L, Xie P, Liu FY, Chen S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol Mech Dis. 2011;6:395–423. doi: https://doi.org/10.1146/annurev.pathol.4.110807.092150
48. Holterman CE, Thibodeau JF, Towaij C, Gutsol A, Montezano AC, Parks RJ, et al. Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression. J Am Soc Nephrology. 2014;25(4) :784–97. doi: https://doi.org/10.1681/ASN.2013040371
49. Ohshiro Y, Ma RC, Yasuda Y, Hiraoka-Yamamoto J, Clermont AC, Isshiki K, et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cβ–null mice. Diabetes. 2006;55(11):3112–20. doi: https://doi.org/10.2337/db06-0895
50. Sedeek M, Callera G, Montezano A, Gutsol A, Heitz F, Szyndralewiez C, et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol-Renal Physiol. 2010;299(6):F1348–1358. doi: https://doi.org/10.1152/ajprenal.00028.2010
51. Chen J, Chen JK, Harris RC. Angiotensin II induces epithelial-to-mesenchymal transition in renal epithelial cells through reactive oxygen species/Src/caveolin-mediated activation of an epidermal growth factor receptor–extracellular signal-regulated kinase signaling pathway. Mol Cellular Biol. 2012;32(5):981–91. doi: https://doi.org/10.1128/MCB.06410-11
52. Hannken T, Schroeder R, Stahl RAK, Wolf G. Angiotensin II-mediated expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals. Kidney Int. 1998;54(6):1923–33. doi: https://doi.org/10.1046/j.1523-1755.1998.00212.x
53. David DN, Block K, Bhandhari B, Gorin Y, Abboud HE. IGF-I increases the expression of fibronectin by Nox4-dependent Akt phosphorylation in renal tubular epithelial cells. Am J Physiol-Cell Physiol. 2012;302(1):C122–130. doi: https://doi.org/10.1152/ajpcell.00141.2011
54. Patrik P, Hansell P, Palm F. NADPH oxidase inhibition reduces tubular sodium transport and improves kidney oxygenation in diabetes. Am J Physiol-Regulatory Integr Comparative Physiol. 2012;302(12):R1443–9. doi: https://doi.org/10.1152/ajpregu.00502.2011
55. Ford BM, Eid AA, Gö?z M, Barnes JL, Gorin YC, Abboud HE. ADAM17 mediates Nox4 expression and NADPH oxidase activity in the kidney cortex of OVE26 mice. Am J Physiol-Renal Physiol. 2013;305(3):F323–332. doi: https://doi.org/10.1152/ajprenal.00522.2012
56. He T, Guan X, Wang S, Xiao T, Yang K, Xu X, et al. Resveratrol prevents high glucose-induced epithelial–mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway. Mol Cellular Endocrinol. 2015;402:13–20. doi: https://doi.org/10.1016/j.mce.2014.12.010
57. Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022;102(2):248–60. doi: https://doi.org/10.1016/j.kint.2022.05.012
58. Jaaban M, Zetoune AB, Hesenow S, Hessenow R. Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as novel risk markers for diabetic nephropathy in patients with type 2 diabetes. Heliyon. 2021;7(7):e07564. doi: https://doi.org/10.1016/j.heliyon.2021.e07564.
59. Gupta A, Singh K, Fatima S, Ambreen S, Zimmermann S, Younis R, et al. Neutrophil extracellular traps promote NLRP3 inflammasome activation and glomerular endothelial dysfunction in diabetic kidney disease. Nutrients. 2022;14(14):2965. doi: https://doi.org/10.3390/nu14142965
60. Zheng JM, Yao GH, Cheng Z, Wang R, Liu ZH. Pathogenic role of mast cells in the development of diabetic nephropathy: a study of patients at different stages of the disease. Diabetologia. 2012;55(3):801–11. doi: https://doi.org/10.1007/s00125-011-2391-2
61. Belikov AV, Schraven B, Simeoni L. T cells and reactive oxygen species. J Biomed Sci. 2015;22(1):85. doi: https://doi.org/10.1186/s12929-015-0194-3
62. Jha JC, Dai A, Holterman CE, Cooper ME, Touyz RM, Kennedy CR, et al. Endothelial or vascular smooth muscle cell-specific expression of human NOX5 exacerbates renal inflammation, fibrosis and albuminuria in the Akita mouse. Diabetologia. 2019;62(9):1712–26. doi: https://doi.org/10.1007/s00125-019-4924-z
63. Jha JC, Dai A, Garzarella J, Charlton A, Urner S, Østergaard JA, et al. Independent of renox, NOX5 promotes renal inflammation and fibrosis in diabetes by activating ROS-sensitive pathways. Diabetes. 2022;71(6):1282–98. doi: https://doi.org/10.2337/db21-1079
64. Rojas M, Lemtalsi T, Toque H, Xu Z, Fulton D, Caldwell R, et al. NOX2-induced activation of arginase and diabetes-induced retinal endothelial cell senescence. Antioxidants. 2017;6(2):43. doi: https://doi.org/10.3390/antiox6020043
65. Chen Z, Zhou Q, Liu C, Zeng Y, Yuan S. Klotho deficiency aggravates diabetes-induced podocyte injury due to DNA damage caused by mitochondrial dysfunction. Int J Med Sci. 2020;17(17):2763. doi: https://doi.org/10.7150/ijms.49690
66. Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: cu, Zn-SOD in mitochondria. J Biol Chem. 2001;276(42):38388–93. doi: https://doi.org/10.1074/jbc.M105395200
67. Feng J, Chen Z, Ma Y, Yang X, Zhu Z, Zhang Z, et al. AKAP1 contributes to impaired mtDNA replication and mitochondrial dysfunction in podocytes of diabetic kidney disease. Int J Biol Sci. 2022;18(10):4026. doi: https://doi.org/10.7150/ijbs.73493
68. Woo CY, Baek JY, Kim AR, Hong CH, Yoon JE, Kim HS, et al. Inhibition of ceramide accumulation in podocytes by myriocin prevents diabetic nephropathy. Diabetes & Metab J.2020;44(4):581–91. doi: https://doi.org/10.4093/dmj.2019.0063
69. Lee DY, Kim JY, Ahn E, Hyeon JS, Kim GH, Park KJ, et al. Associations between local acidosis induced by renal LDHA and renal fibrosis and mitochondrial abnormalities in patients with diabetic kidney disease. Translational Res. 2022;249:88–109. doi: https://doi.org/10.1016/j.trsl.2022.06.015
70. Peng JJ, Xiong SQ, Ding LX, Peng J, Xia XB. Diabetic retinopathy: focus on NADPH oxidase and its potential as therapeutic target. Eur J Pharmacol. 2019;853:381–7. doi: https://doi.org/10.1016/j.ejphar.2019.04.038
71. Ellis EA, Grant MB, Murray FT, Wachowski MB, Guberski DL, Kubilis PS, et al. Increased NADH oxidase activity in the retina of the BBZ/Wor diabetic rat. Free Radical Biol Med. 1998;24(1):111–20. doi: https://doi.org/10.1016/s0891-5849(97)00202-5
72. Yamagishi SI, Nakamura K, Matsui T, Inagaki Y, Takenaka K, Jinnouchi Y, et al. Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. J Biol Chem. 2006;281(29):20213–20. doi: https://doi.org/10.1074/jbc.M602110200
73. Meng W, Shah KP, Pollack S, Toppila I, Hebert HL, Mccarthy MI, et al. A genome?wide association study suggests new evidence for an association of the NADPH Oxidase 4 (NOX 4) gene with severe diabetic retinopathy in type 2 diabetes. Acta Ophthalmol. 2018;96(7):e811–9. doi: https://doi.org/10.1111/aos.13769
74. Li J, Wang JJ, Zhang SX. NADPH oxidase 4?derived H2O2 promotes aberrant retinal neovascularization via activation of VEGF receptor 2 pathway in oxygen?induced retinopathy. J Diabetes Res. 2015;1(1):963289. doi: https://doi.org/10.1155/2015/963289
75. Judkins CP, Diep H, Broughton BRS, Mast AE, Hooker EU, Miller AA, et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. Am J Physiol-Heart Circ Physiol. 2010;298(1):H24–32. doi: https://doi.org/10.1152/ajpheart.00799.2009
76. Gray SP, Di Marco E, Kennedy K, Chew P, Okabe J, El-Osta A, et al. Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscl Thromb Vasc Biol. 2016;36(2):295–307. doi: https://doi.org/10.1161/ATVBAHA.115.307012
77. Sukumar P, Viswambharan H, Imrie H, Cubbon RM, Yuldasheva N, Gage M, et al. Nox2 NADPH oxidase has a critical role in insulin resistance–related endothelial cell dysfunction. Diabetes. 2013;62(6):2130–4. doi: https://doi.org/10.2337/db12-1294
78. Guzik TJ, Chen W, Gongora MC, Guzik B, Lob HE, Mangalat D, et al. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J Am Coll Cardiol. 2008;52(22):1803–9. doi: https://doi.org/10.1016/j.jacc.2008.07.063
79. Elbatreek MH, Pachado MP, Cuadrado A, Jandeleit-Dahm K, Schmidt HHHW. Reactive oxygen comes of age: mechanism-based therapy of diabetic end-organ damage. Trends Endocrinol Metab. 2019;30(5):312–27. doi: https://doi.org/10.1016/j.tem.2019.02.006
80. Hirano K, Chen WS, Chueng ALW, Dunne AA, Seredenina T, Filippova A, et al. Discovery of GSK2795039, a novel small molecule NADPH oxidase 2 inhibitor. Antioxid Redox Signal. 2015;23(5):358–67. doi: https://doi.org/10.1089/ars.2014.6202
81. Kim JA, Neupane GP, Lee ES, Jeong BS, Park BC, Thapa P. NADPH oxidase inhibitors: a patent review. Expert Opinion Therapeutic Patents. 2011;21(8):1147–58. doi: https://doi.org/10.1517/13543776.2011.584870
82. Cha JJ, Min HS, Kim KT, Kim JE, Ghee JY, Kim HW, et al. APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab Invest. 2017;97(4):419–31.
83. Sedeek M, Gutsol A, Montezano AC, Burger D, Nguyen Dinh Cat A, Kennedy CRJ, et al. Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes. Clin Sci. 2013;124(3):191–202. doi: https://doi.org/10.1042/CS20120330
84. Gorin Y, Cavaglieri RC, Khazim K, Lee DY, Bruno F, Thakur S, et al. Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am J Physiol-Renal Physiol. 2015;308(11):F1276–87. doi: https://doi.org/10.1152/ajprenal.00396.2014
85. Gray SP, Di Marco E, Okabe J, Szyndralewiez C, Heitz F, Montezano AC, et al. NADPH oxidase 1 plays a key role in diabetes mellitus–accelerated atherosclerosis. Circulation. 2013;127(18):1888–902. doi: https://doi.org/10.1161/CIRCULATIONAHA.112.132159
86. Lee SR, An EJ, Kim J, Bae YS. Function of NADPH oxidases in diabetic nephropathy and development of Nox inhibitors. Biomolecules & Therapeutics. 2020;28(1):25. doi: https://doi.org/10.4062/biomolther.2019.188
87. Invernizzi P, Carbone M, Jones D, Levy C, Little N, Wiesel P, et al. Setanaxib, a first?in?class selective NADPH oxidase ¼ inhibitor for primary biliary cholangitis: a randomized, placebo?controlled, phase 2 trial. Liver Int. 2023;43(7):1507–22. doi: https://doi.org/10.1111/liv.15596
88. Elbatreek MH, Mucke H, Schmidt HHHW. NOX Inhibitors: from Bench to Naxibs to Bedside. Handb Exp Pharmacol. 2021;264:145–68. doi: https://doi.org/10.1007/164_2020_387
89. Anvari E, Wikström P, Walum E, Welsh N. The novel NADPH oxidase 4 inhibitor GLX351322 counteracts glucose intolerance in high-fat diet-treated C57BL/6 mice. Free Radic Res. 2015;49(11):1308–18. doi: https://doi.org/10.3109/10715762.2015.1067697
Year
Month