The rising prevalence of type 2 diabetes mellitus (T2DM) and the side effects of synthetic hypoglycemic agents underscore the need for new antidiabetic compounds. Corn silk (CS) is known for its antidiabetic properties, but its mechanism remains unclear. This study explored the potential of CS constituents in modulating six key enzymes linked to T2DM and its complications: alpha-amylase (AA), alpha-glucosidase (AG), aldose reductase (AR), dipeptidyl peptidase-4 (DPP-4), protein tyrosine phosphatase 1B (PTP1B), and sorbitol dehydrogenase (SDH), using computational techniques. Ultra-performance liquid chromatography-mass spectrometry identified 128 metabolites across three CS extracts (aqueous, hydro-ethanol, and ethanol) from premature and mature developmental stages. Mature CS had a higher metabolite abundance, particularly in the hydro-ethanolic extract. An insight into the structural interaction and binding energy calculations over a 120-ns molecular dynamics simulation identified R-7-butyl-6,8-dihydroxy-3-[(3E)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one (−40.30 kcal/mol), 1-O-vanilloyl-beta-D-glucose (−34.17 kcal/mol), (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside (−44.13 kcal/mol), p-coumaroyl malic acid (−34.40 kcal/mol), 2-hydroxydecanedioic acid (−19.71 kcal/mol), and (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside (−36.61 kcal/mol) with the highest negative binding free energy against AA, AG, AR, DPP-4, PTP1B, and SDH, respectively. Post-MD simulation confirmed the formation of more thermodynamically stable CS metabolites-enzyme complexes in comparison to the respective reference standard-enzyme complexes. Evidence from this study shows that CS metabolites possess potential inhibitory effects on the investigated targets and suggest that CS and its metabolites could be a potential alternative for managing T2DM.
Akoonjee A, Lukman HY, Lanrewaju AA, Aladodo RA, Sabiu S. Metabolomics and cheminformatics bioprospection of corn silk against key enzymes implicated in type 2 diabetes mellitus and its complications. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.249308
1. Pheiffer C, Pillay-van Wyk V, Joubert JD, Levitt N, Nglazi MD, Bradshaw D. The prevalence of type 2 diabetes in South Africa: a systematic review protocol. BMJ Open. 2018;8(7):e021029. doi: https://doi.org/10.1136/bmjopen-2017-021029
2. Yagasaki K, Muller CJF. The effect of phytochemicals and food bioactive compounds on diabetes. Int J Mol Sci. 2022;23(14):7765. doi: https://doi.org/10.3390/ijms23147765
3. Xiao E, Luo L. Alternative therapies for diabetes: a comparison of western and Traditional Chinese medicine (TCM) approaches. Curr Diabetes Rev. 2018;14(6):487–96. doi: https://doi.org/10.2174/1573399813666170519103230
4. Kharroubi AT, Darwish HM. Diabetes mellitus: the epidemic of the century. World J Diabetes. 2015;6(6):850–67. doi: https://doi.org/10.4239/wjd.v6.i6.850
5. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):14790. doi: https://doi.org/10.1038/s41598-020-71908-9
6. Animaw W, Seyoum Y. Increasing prevalence of diabetes mellitus in a developing country and its related factors. PLoS One. 2017;12(11):e0187670. doi: https://doi.org/10.1371/journal.pone.0187670
7. International Diabetes Federation (IDF) 2023. [cited 2023 August 05] Available from: https://idf.org/about-diabetes/type-2-diabetes/
8. Sabiu S, Balogun FO, Amoo SO. Phenolics profiling of Carpobrotus edulis (L.) N.E.Br. and insights into molecular dynamics of their significance in type 2 diabetes therapy and its retinopathy complication. Molecules. 2021;26(16):4867. doi: https://doi.org/10.3390/molecules26164867
9. Gilbert MP, Pratley RE. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: review of head-to-head clinical trials. Front Endocrinol (Lausanne). 2020;11:178. doi: https://doi.org/10.3389/fendo.2020.00178
10. Thareja S, Aggarwal S, Bhardwaj TR, Kumar M. Protein tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach for the management of diabetes mellitus. Med Res Rev. 2012;32(3):459– 517. doi: https://doi.org/10.1002/med.20219
11. Balogun FO, Singh K, Rampadarath A, Akoonjee A, Naidoo K, Sabiu S. Cheminformatics identification of modulators of key carbohydrate-metabolizing enzymes from C. cujete for type-2 diabetes mellitus intervention. J Diabetes Metab Disord. 2023;22(2):1299–317. doi: https://doi.org/10.1007/s40200-023-01249-7
12. Ramana KV. ALDOSE REDUCTASE: new insights for an old enzyme. Biomol Concepts. 2011;2(1–2):103–14. doi: https://doi.org/10.1515/BMC.2011.002
13. Moemen LA, Abdel Hamid MA, Wahab SA, Kenawy MKM, Abuelela MH, Hassanin OA, et al. Role of advanced glycation end products and sorbitol dehydrogenase in the pathogenesis of diabetic retinopathy. Bull Nat Res Centre. 2020;44:1–11. doi: https://doi.org/10.1186/s42269-020-00304-0
14. Sabiu S, O’Neill FH, Ashafa AOT. Toxicopathological evaluation of a 28-day repeated dose administration of Zea mays L. (Poaceae), Stigma maydis aqueous extract on key metabolic markers of Wistar rats. Trans R Soc S Afr. 2017;72:225–33. doi: https://doi.org/10.1080/0035919X.2017.1342713
15. Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol. 2012;3:87. doi: https://doi.org/10.3389/fphar.2012.00087
16. Omotosho IO, Obisesan OB, Oluleye O. Sorbitol dehydrogenase activity in diabetes mellitus and cataract patients. J Appl Med Sci. 2014;3:61.
17. Oboh G, Isaac AT, Akinyemi AJ, Ajani RA. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats’ pancreas by phenolic extracts of avocado pear leaves and fruit. Int J Biomed Sci. 2014;10(3):208–16.
18. Sharma P, Joshi T, Joshi T, Chandra S, Tamta S. Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. J Biomol Struct Dyn. 2021;39(17):6524–38. doi: https://doi.org/10.1080/07391102.2020.1801507
19. Sharma P, Singh S, Thakur V, Sharma N, Grewal AS. Novel and emerging therapeutic drug targets for management of type 2 diabetes mellitus. Obes Med. 2021;23:100329. doi: https://doi.org/10.1016/j.obmed.2021.100329
20. Thakur S, Gupta SK, Ali V, Singh P, Verma M. Aldose reductase: a cause and a potential target for the treatment of diabetic complications. Arch Pharm Res. 2021;44(7):655–67. doi: https://doi.org/10.1007/s12272-021-01343-5
21. Lukman HY, Aribisala J, Akoonjee A, Sulyman A, Wudil A, Sabiu S. Modulation of dipeptidyl peptidase by Rooibos tea metabolites towards type 2 diabetes care: evidence from molecular dynamics simulation and density functional theory. Sci Afr. 2024;2024:e02173. doi: https://doi.org/10.1016/j.sciaf.2024.e02173
22. Zhong Z, Chen Z, Liu J, Hirad AH, Sun J.In silico studies, anti-oxidant properties, antisorbitol dehydrogenase, anti-alpha amylase and anti-gastrointestinal cancer potential of violanthin as a natural compound. J Oleo Sci. 2023;72(11):1015–26. doi: https://doi.org/10.5650/jos.ess23078
23. Su J, Luo Y, Hu S, Tang L, Ouyang S. Advances in research on type 2 diabetes mellitus targets and therapeutic agents. Int J Mol Sci. 2023;24(17):13381. doi: https://doi.org/10.3390/ijms241713381
24. Lankatillake C, Huynh T, Dias DA. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods. 2019;15:105. doi: https://doi.org/10.1186/s13007-019-0487-8
25. Singh J, Inbaraj BS, Kaur S, Rasane P, Nanda, V. Phytochemical analysis and characterization of corn silk (Zea mays, G5417). Agronomy. 2022;12:777. doi: https://doi.org/10.3390/agronomy12040777
26. Singh J, Rasane P, Nanda V, Kaur S. Bioactive compounds of corn silk and their role in management of glycaemic response. J Food Sci Technol. 2023;60(6):1695–710. doi: https://doi.org/10.1007/s13197-022-05442-z
27. Sabiu S, Madende M, Ajao AAN, Ogundeji OA, Lekena N, Alayande KA. The scope of phytotherapy in southern African antidiabetic healthcare. Trans R Soc S Afr. 2019;74:1–18. doi: https://doi.org/10.1080/0035919X.2019.1575927
28. Nawaz H, Aslam M. Muntah, ST. Effect of solvent polarity and extraction method on phytochemical composition and antioxidant potential of corn silk. Free Rad Antioxid. 2019;9:5–11. doi: https://doi.org/10.5530/fra.2019.1.2
29. Wang KJ, Zhao JL. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomed Pharmacother. 2019;110:510–7. doi: https://doi.org/10.1016/j.biopha.2018.11.126
30. Shalihah IM, Pamela VY. Kusumasari S. Cornsilk tea extract as antidiabetic: a review. Food Sci Technol J.2020;2(2):66. doi: https://doi.org/10.33512/fsj.v2i2.9647
31. Hasanudin K, Hashim P, Mustafa S. Corn silk (Stigma maydis) in healthcare: a phytochemical and pharmacological review. Molecules. 2012;17(8):9697–715. doi: https://doi.org/10.3390/molecules17089697
32. Kaur P, Singh J, Kaur M, Rasane P, Kaur S, Kaur J, et al. Corn silk as an agricultural waste: a comprehensive review on its nutritional composition and bioactive potential. Waste Biomass Valorisation. 2023;14:1413. doi: https://doi.org/10.1007/s12649-022-02016-0
33. Guo J, Liu T, Han L, Liu Y. The effects of corn silk on glycaemic metabolism. Nutr Metab. 2009;6:47. doi: https://doi.org/10.1186/1743-7075-6-47
34. Zhao W, Yin Y, Yu Z, Liu J, Chen F. Comparison of anti-diabetic effects of polysaccharides from corn silk on normal and hyperglycemia rats. Int J Biol Macromol. 2012;50(4):1133–7. doi: https://doi.org/10.1016/j.ijbiomac.2012.02.004
35. Chang CC, Yuan W, Roan HY, Chang JL, Huang HC, Lee YC, et al. The ethyl acetate fraction of corn silk exhibits dual antioxidant and anti-glycation activities and protects insulin-secreting cells from glucotoxicity. BMC Complement Altern Med. 2016;16(1):432. doi: https://doi.org/10.1186/s12906-016-1382-8
36. Vijitha TP, Saranya D. Corn silk-a medicinal boon. Int J ChemTech Res. 2017;10:129–37.
37. Haldar S, Gan L, Tay SL, Ponnalagu S, Henry CJ.Postprandial glycemic and insulinemic effects of the addition of aqueous extracts of dried corn silk, cumin seed powder or tamarind pulp, in two forms, consumed with high glycemic index rice. Foods. 2019;8:437. doi: https://doi.org/10.3390/foods8100437
38. Xu L, Zhang Y, Zhang P, Dai X, Gao Y, Lv Y, et al. Integrated metabolomics and network pharmacology strategy-driven active traditional Chinese medicine ingredients discovery for the alleviation of cisplatin nephrotoxicity. Chem Res Toxicol. 2019;32(12):2411– 21. doi: https://doi.org/10.1021/acs.chemrestox.9b00180
39. Ran MN, Lee S. The molecular mechanisms of Panax ginseng in treating type 2 diabetes mellitus: network pharmacology analysis and molecular docking validation. Evid Based Complement Alternat Med. 2022;2022:3082109. doi: https://doi.org/10.1155/2022/3082109
40. Tiwari N, Thakur AK, Kumar V, Dey A, Kumar V. Therapeutic targets for diabetes mellitus: an update. Clin Pharmacol Biopharm. 2014;3:117. doi: https://doi.org/10.4172/2167-065X.1000117
41. Akoonjee A, Lanrewaju AA, Balogun FO, Makunga NP, Sabiu S. Waste to medicine: evidence from computational studies on the modulatory role of corn silk on the therapeutic targets implicated in type 2 diabetes mellitus. Biology (Basel). 2023;12(12):1509. doi: https://doi.org/10.3390/biology12121509
42. Taiwong N. Drying temperature of corn silk tea: Physical properties, total phenolic content, antioxidant activity and flavonoid content. Food Appl Biosci J.2020;8:38.
43. Magangana TP, Makunga NP, Amos Fawole O, Opara UL. Effect of solvent extraction and blanching pre-treatment on phytochemical, antioxidant properties, enzyme inactivation and antibacterial activities of ‘Wonderful’ pomegranate peel extracts. Processes. 2021;9:1012. doi: https://doi.org/10.3390/pr9061012
44. Magangana TP, Makunga NP, Fawole OA, Stander MA, Opara UL. Antioxidant, antimicrobial, and metabolomic characterization of blanched pomegranate peel extracts: effect of cultivar. Molecules. 2022;27:2979. doi: https://doi.org/10.3390/molecules27092979
45. Macel M, Visschers IGS, Peters JL, Kappers IF, de Vos RCH, van Dam NM. Metabolomics of thrips resistance in pepper (Capsicum spp.) reveals monomer and dimer acyclic diterpene glycosides as potential chemical defenses. J Chem Ecol. 2019;45(5–6):490–501. doi: https://doi.org/10.1007/s10886-019-01074-4
46. Oh KK, Adnan M, Cho DH. Network pharmacology of bioactives from Sorghum bicolor with targets related to diabetes mellitus. PLoS One. 2020;15(12):e0240873. doi: https://doi.org/10.1371/journal.pone.0240873
47. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: https://doi.org/10.1002/jcc.20084
48. Akoonjee A, Lukman HY, Ajao AA, Uthman TO, Sabiu S. A network pharmacology-and molecular dynamics simulation-based bioprospection of Khaya grandifoliola C. DC. for diabetes care. J Biomol Struc Dyn. 2024;43:1–20. doi: https://doi.org/10.1080/0739110 2.2024.2446672
49. Sabiu S, Idowu K. An insight on the nature of biochemical interactions between glycyrrhizin, myricetin and CYP3A4 isoform. J Food Biochem. 2022;46(3):e13831. doi: https://doi.org/10.1111/jfbc.13831
50. Aribisala JO, Nkosi S, Idowu K, Nurain IO, Makolomakwa GM, Shode FO, et al. Astaxanthin-mediated bacterial lethality: evidence from oxidative stress contribution and molecular dynamics simulation. Oxid Med Cell Longev. 2021;2021:7159652. doi: https://doi.org/10.1155/2021/7159652
51. Ylilauri M, Pentikäinen OT. MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J Chem Inf Model. 2013;53(10):2626–33. doi: https://doi.org/10.1021/ci4002475
52. Biovia DS. Discovery studio visualizer v21. 1.0. 20298. San Diego, CA: Dassault Systèmes; 2021.
53. Kruse H, Goerigk L, Grimme S. Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. J Org Chem. 2012;77(23):10824–34. doi: https://doi.org/10.1021/jo302156p
54. Calais JL. Density-functional theory of atoms and molecules. RG Parr and W. Yang, Oxford University press, New York, Oxford, 1989. IX+ 333 pp. Int J Quantum Chem. 1993;47:101. doi: https://doi.org/10.1002/qua.560470107
55. Luo J, Xue ZQ, Liu WM, Wu JL, Yang ZQ. Koopmans’ theorem for large molecular systems within density functional theory. J Phys Chem A. 2006;110(43):12005–9. doi: https://doi.org/10.1021/jp063669m
56. Drwal1 MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014;42: W53–8. doi: https://doi.org/10.1093/nar/gku401
57. Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn Rev. 2012;6(11):1–5. doi: https://doi.org/10.4103/0973-7847.95849
58. Zhang Y, Wu L, Ma Z, Cheng J, Liu J.Anti-diabetic, antioxidant and anti-hyperlipidemic activities of flavonoids from corn silk on STZ-induced diabetic mice. Molecules. 2015;21(1):E7. doi: https://doi.org/10.3390/molecules21010007
59. Sripathy KV, Groot SPC. Seed development and maturation. In: Dadlani, M., Yadava, DK, editors. Seed science and technology. Springer, Singapore; 2023. doi: https://doi.org/10.1007/978-981-19-5888-5_2
60. Li R, Pan Y, Li N, Wang Q, Chen Y, Phisalaphong M, Chen H. Antibacterial and cytotoxic activities of a green synthesized silver nanoparticles using corn silk aqueous extract. Colloids Surf A: Physicochem Engineer Aspects. 2020;598:124827 doi: https://doi.org/10.1016/j.colsurfa.2020.124827
61. Sarepoua E, Tangwongchai R, Suriharn B, Lertrat K. Influence of variety and harvest maturity on phytochemical content in corn silk. Food Chem. 2015;169:424–9. doi: https://doi.org/10.1016/j.foodchem.2014.07.136
62. Abeywardhana KW, Abeysinghe DC, Dharmadasa RM, Aththanayake AML. Determination of optimum maturity stage for Ocimum sanctum L. grown under different growing systems in terms of therapeutically active secondary metabolites. World J Agric Res. 2014;2:159–62. doi: https://doi.org/10.12691/wjar-2-4-4
63. Oz AT, Kafkas E. Phytochemicals in fruits and vegetables. In Waisundara V, editor. Superfood and functional food. London: IntechOpen, 2017:175–84. doi: https://doi.org/10.5772/66987 64. Haslina ME. Extract corn silk with variation of solvents on yield, total phenolics, total flavonoids and antioxidant activity. Indonesian Food Nutr Prog. 2017;14:21. doi: https://doi.org/10.22146/ifnp.24280
65. Mihali C, Frumuzachi O, Nicolescu A, Babot? M, P?ltinean R, Tanase C, et al. Valorization of corn silk as an agricultural by-product through the optimization of ultrasound-assisted extraction. App Sci. 2024;14:1516. doi: https://doi.org/10.3390/app14041516
66. Nawaz H, Shad MA, Rehman N, Andaleeb H, Ullah N. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Braz J Pharm Sci. 2020;56:17129. doi: https://doi.org/10.1590/s2175-97902019000417129
67. Du Y, Li X, Xiong X, Cai X, Ren X, Kong Q. An investigation on polyphenol composition and content in skin of grape (Vitis vinifera L. cv. Hutai No.8) fruit during ripening by UHPLC-MS2 technology combined with multivariate statistical analysis. Food Biosci. 2021;43:101276. doi: https://doi.org/10.1016/j.fbio.2021.101276
68. Olennikov DN, Kashchenko NI. Componential profile and amylase inhibiting activity of phenolic compounds from Calendula officinalis L. leaves. Sci World J.2014:654193. doi: https://doi.org/10.1155/2014/654193
69. ?ahin H. In-vitro anti-diabetic, anti-Alzheimer, anti-tyrosinase, antioxidant activities of selected coumarin and dihydroisocoumarin derivatives. Int J Second Metab. 2023;10(3):361–9. doi: https://doi.org/10.21448/ijsm.1196712
70. Ononamadu CJ, Ibrahim A. Molecular docking and prediction of ADME/drug-likeness properties of potentially active antidiabetic compounds isolated from aqueous-methanol extracts of Gymnema sylvestre and Combretum micranthum. BioTechnologia. 2021;102(1):85–99. doi: https://doi.org/10.5114/bta.2021
71. Abdel-Moneim A, Yousef AI, Abd El-Twab SM, Abdel Reheim ES, Ashour MB. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Metab Brain Dis. 2017;32(4):1279– 86. doi: https://doi.org/10.1007/s11011-017-0039-8
72. Mingrone G, Castagneto-Gissey L, Macé K. Use of dicarboxylic acids in type 2 diabetes. Br J Clin Pharmacol. 2013;75(3):671–6. doi: https://doi.org/10.1111/j.1365-2125.2012.04177.x
73. Bitwell C, Indra SS, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci Afr. 2023;19:01585. doi: https://doi.org/10.1016/j.sciaf.2023.e01585
74. Pagadala NS, Syed K, Tuszynski J.Software for molecular docking: a review. Biophys Rev. 2017;9(2):91–102. doi: https://doi.org/10.1007/s12551-016-0247-1
75. Pantsar T, Poso A. Binding affinity via docking: fact and fiction. Molecules. 2018;23(8):1899. doi: https://doi.org/10.3390/molecules23081899
76. Pellicani F, Dal Ben D, Perali A, Pilati S. Machine learning scoring functions for drug discovery from experimental and computer-generated protein-ligand structures: towards per-target scoring functions. Molecules. 2023;28(4):1661. doi: https://doi.org/10.3390/molecules28041661
77. Agarwal S, Mehrotra RJJC. An overview of molecular docking. JSM Chem. 2016;4:1024.
78. Gupta M, Sharma R, Kumar A. Docking techniques in pharmacology: how much promising? Comput Biol Chem. 2018;76:210–7. doi: https://doi.org/10.1016/j.compbiolchem.2018.06.005
79. Lanrewaju AA, Enitan-Folami AM, Nyaga MM, Sabiu S, Swalaha FM. Metabolites profiling and cheminformatics bioprospection of selected medicinal plants against the main protease and RNA-dependent RNA polymerase of SARS-CoV-2. J Biomol Struct Dyn. 2024;42(13):6740– 60. doi: https://doi.org/10.1080/07391102.2023.2236718
80. Chaudhary RK, Karoli SS, Dwivedi PSR, Bhandari R. Anti-diabetic potential of Corn silk (Stigma maydis): An in-silico approach. J Diabetes Metab Disord. 2022;21(1):445–54. doi: https://doi.org/10.1007/s40200-022-00992-7
81. Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron. 2018;99(6):1129–43. doi: https://doi.org/10.1016/j.neuron.2018.08.011
82. Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model. 2011;51(1):69–82. doi: https://doi.org/10.1021/ci100275a
83. Hata H, Phuoc Tran D, Marzouk Sobeh M, Kitao A. Binding free energy of protein/ligand complexes calculated using dissociation parallel cascade selection molecular dynamics and Markov state model. Biophys Physicobiol. 2021;18:305–16. doi: https://doi.org/10.2142/biophysico.bppb-v18.037
84. Shunmugam L, Soliman, ME. Targeting HCV polymerase: a structural and dynamic perspective into the mechanism of selective covalent inhibition. RSC Adv. 2018;8:42210. doi: https://doi.org/10.1039/c8ra07346e
85. Salim B, Said G, Kambouche N, Kress S. Identification of phenolic compounds from nettle as new candidate inhibitors of main enzymes responsible on type-II diabetes. Curr Drug Discov Technol. 2020;17(2):197–202. doi: https://doi.org/10.2174/15701638156661 80829094831
86. Lanrewaju AA, Enitan-Folami AM, Nyaga MM, Sabiu S, Swalaha FM. Cheminformatics bioprospection of selected medicinal plants metabolites against trypsin cleaved VP4 (spike protein) of rotavirus A. J Biomol Struct Dyn. 2024;42(20):10652–71. doi: https://doi.org/10.1080/07391102.2023.2258405
87. Muralidharan N, Sakthivel R, Velmurugan D, Gromiha MM. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J Biomol Struct Dyn. 2021;39(7):2673– 78. doi: https://doi.org/10.1080/07391102.2020.1752802
88. Childers MC, Daggett V. Insights from molecular dynamics simulations for computational protein design. MSDE. 2017;2:9–33. doi: https://doi.org/10.1039/C6ME00083E
89. Rosenberg MS. Sequence alignment: methods, models, concepts and strategies. Berkeley, CA: University of California Press, 2009. https://doi.org/10.1525/9780520943742
90. Castro-Alvarez A, Costa AM, Vilarrasa J.The performance of several docking programs at reproducing protein-macrolide-like crystal structures. Molecules. 2017;22(1):136. doi: https://doi.org/10.3390/molecules22010136
91. Mpofana N, Peter C, Lukman HY, Makgobole MU, Dlova NC, Gqaleni N, et al. Mechanisms of selected cassipourea metabolites for melasma treatment: network pharmacology and molecular dynamics study. F1000Res. 2024;13:952. doi: https://doi.org/10.12688/f1000research.153996.1
92. Rampadarath A, Balogun FO, Pillay C, Sabiu S. Identification of flavonoid C-glycosides as promising antidiabetics targeting protein tyrosine phosphatase 1B. J Diabetes Res. 2022;2022:6233217. doi: https://doi.org/10.1155/2022/6233217
93. Hess B. Convergence of sampling in protein simulations. Phys Rev. 2002;65:031910. doi: https://doi.org/10.1103/PhysRevE.65.031910
94. Al-Khodairy FM, Khan MKA, Kunhi M, Pulicat MS, Akhtar S, Arif JM. In silico prediction of mechanism of Erysolin-induced apoptosis in human breast cancer cell lines. Am J Bioinform Res. 2013;3:62. doi: https://doi.org/10.5923/j.bioinformatics.20130303.03
95. Alhadrami HA, Hamed AA, Hassan HM, Belbahri L, Rateb ME, Sayed AM. Flavonoids as potential anti-MRSA agents through modulation of PBP2a: a computational and experimental study. Antibiotics. 2020;9(9):562. doi: https://doi.org/10.3390/antibiotics9090562
96. Rampogu S, Lee G, Park JS, Lee KW, Kim MO. Molecular docking and molecular dynamics simulations discover curcumin analogue as a plausible dual inhibitor for SARS-CoV-2. Int J Mol Sci. 2022;23(3):1771. doi: https://doi.org/10.3390/ijms23031771
97. S’thebe NW, Aribisala JO, Sabiu S. Cheminformatics bioprospection of sunflower seeds’ oils against quorum sensing system of Pseudomonas aeruginosa. Antibiotics (Basel). 2023;12(3):504. doi: https://doi.org/10.3390/antibiotics12030504
98. Eawsakul K, Ongtanasup T, Ngamdokmai N, Bunluepuech K. Alpha-glucosidase inhibitory activities of astilbin contained in Bauhinia strychnifolia Craib. stems: an investigation by in silico and in vitro studies. BMC Complement Med Ther. 2023;23(1):25. doi: https://doi.org/10.1186/s12906-023-03857-5
99. Jairajpuri DS, Hussain A, Nasreen K, Mohammad T, Anjum F, Tabish Rehman M, et al. Identification of natural compounds as potent inhibitors of SARS-CoV-2 main protease using combined docking and molecular dynamics simulations. Saudi J Biol Sci. 2021;28(4):2423–31. doi: https://doi.org/10.1016/j.sjbs.2021.01.040
100. Sajal H, Patil SM, Raj R, Shbeer AM, Ageel M, Ramu R. Computer-aided screening of phytoconstituents from Ocimum tenuiflorum against diabetes mellitus targeting DPP4 inhibition: a combination of molecular docking, molecular dynamics, and pharmacokinetics approaches. Molecules. 2022;27(16):5133. doi: https://doi.org/10.3390/molecules27165133
101. Mousavi SS, Karami A, Haghighi TM, Tumilaar SG, Fatimawali Idroes R, Mahmud S, et al. In silico evaluation of Iranian medicinal plant metabolites as inhibitors against main protease and the receptor-binding domain of SARS-CoV-2. Molecules. 2021;26:5724. doi: https://doi.org/10.3390/molecules26185724
102. Ali SA, Hassan MI, Islam A, Ahmad F. A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr Protein Pept Sci. 2014;15(5):456– 76. doi: https://doi.org/10.2174/1389203715666140327114232
103. Ahmed S, Ali MC, Ruma RA, Mahmud S, Paul GK, Saleh MA, et al. Molecular docking and dynamics simulation of natural compounds from betel leaves (Piper betle L.) for investigating the potential inhibition of alpha-amylase and alpha-glucosidase of type 2 diabetes. Molecules. 2022;27(14):4526. doi: https://doi.org/10.3390/molecules27144526
104. Aihara JI. Reduced HOMO− LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phy Chem A. 1999;103:7487–95. doi: https://doi.org/10.1021/jp990092i
105. Ahamed FM, Chinnam S, Challa M, Kariyanna G, Kumer A, Jadoun, S, et al. Molecular dynamics simulation, QSAR, DFT, molecular docking, ADMET, and synthesis of Ethyl 3-((5-Bromopyridin-2-yl) Imino) butanoate analogues as potential inhibitors of SARS-CoV-2. PACs. 2023;44:1–19. doi: https://doi.org/10.1080/10406638.2023.2173618
106. Rampadarath A, Aribisala JO, Makunga NP, Mazibuko-Mbeje S, Sabiu S. Molecular bioprospection of Helianthus annuus L. (sunflower) cypsela for antidiabetic therapeutics through network pharmacology, density functional theory and molecular dynamics simulation. S Afr J Bot. 2023;162:72–95. doi: https://doi.org/10.1016/j.sajb.2023.08.045
107. Karabacak M, Sinha L, Prasad O, Cinar Z, Cinar M. The spectroscopic (FT-Raman, FT-IR, UV and NMR), molecular electrostatic potential, polarizability and hyperpolarizability, NBO and HOMO-LUMO analysis of monomeric and dimeric structures of 4-chloro-3,5-dinitrobenzoic acid. Spectrochim Acta A Mol Biomol Spectrosc. 2012;93:33-46. doi: https://doi.org/10.1016/j.saa.2012.02.110
108. Esha NJI, Quayum ST, Saif MZ, Almatarneh MH, Rahman S, Alodhayb A, et al. Exploring the potential of fluoro-flavonoid derivatives as anti-lung cancer agents: DFT, molecular docking, and molecular dynamics techniques. Int J Quantum Chem. 2024;124:e7274.
109. Domingo LR, Pérez P. The nucleophilicity N index in organic chemistry. Org Biomol Chem. 2011;9:7168–75.
110. Maida CD, Daidone M, Pacinella G, Norrito RL, Pinto A, Tuttolomondo A. Diabetes and ischemic stroke: an old and new relationship an overview of the close interaction between these diseases. Int J Mol Sci. 2022;23:2397. doi: https://doi.org/10.3390/ijms23042397
Year
Month