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1. INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a significant 

global health issue, recognized as a chronic metabolic disorder 
that leads to high blood glucose levels due to inadequate insulin 
production and/or insulin resistance [1,2]. Prolonged exposure 
to T2DM or insufficient management can result in serious 
complications such as kidney disease, vision impairment, 
cardiovascular issues, heart attacks, strokes, nerve damage, 

skin disorders, and foot ulcers [2], potentially leading to death 
in severe instances [3]. In addition to these complications, 
T2DM places considerable physiological and psychological 
stress on individuals and creates a substantial financial burden 
on healthcare systems worldwide [4,5]. Although T2DM is 
classified as a noncommunicable disease, its rising prevalence 
across all demographics is alarming [6]. Currently, an estimated 
537 million individuals globally are living with diabetes, with 
90% diagnosed with T2DM [7].

The increased activity of alpha-amylase (AA) 
and alpha-glucosidase (AG) accelerates the breakdown of 
carbohydrates to simple sugars, resulting in a rapid influx 
of glucose in the bloodstream, contributing to postprandial 
hyperglycaemia [8]. Unlike AA and AG, dipeptidyl peptidase-4 
(DPP-4) plays a role in breaking down glucagon-like peptide-1, 
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ABSTRACT
The rising prevalence of type 2 diabetes mellitus (T2DM) and the side effects of synthetic hypoglycemic agents 
underscore the need for new antidiabetic compounds. Corn silk (CS) is known for its antidiabetic properties, but its 
mechanism remains unclear. This study explored the potential of CS constituents in modulating six key enzymes 
linked to T2DM and its complications: alpha-amylase (AA), alpha-glucosidase (AG), aldose reductase (AR), 
dipeptidyl peptidase-4 (DPP-4), protein tyrosine phosphatase 1B (PTP1B), and sorbitol dehydrogenase (SDH), using 
computational techniques. Ultra-performance liquid chromatography-mass spectrometry identified 128 metabolites 
across three CS extracts (aqueous, hydro-ethanol, and ethanol) from premature and mature developmental stages. 
Mature CS had a higher metabolite abundance, particularly in the hydro-ethanolic extract. An insight into the 
structural interaction and binding energy calculations over a 120-ns molecular dynamics simulation identified R-7-
butyl-6,8-dihydroxy-3-[(3E)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one (−40.30 kcal/mol), 1-O-vanilloyl-beta-
D-glucose (−34.17 kcal/mol), (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside (−44.13 kcal/mol), 
p-coumaroyl malic acid (−34.40 kcal/mol), 2-hydroxydecanedioic acid (−19.71 kcal/mol), and (-)-11-hydroxy-
9,10-dihydrojasmonic acid 11-beta-D-glucoside (−36.61 kcal/mol) with the highest negative binding free energy 
against AA, AG, AR, DPP-4, PTP1B, and SDH, respectively. Post-MD simulation confirmed the formation of more 
thermodynamically stable CS metabolites-enzyme complexes in comparison to the respective reference standard-
enzyme complexes. Evidence from this study shows that CS metabolites possess potential inhibitory effects on the 
investigated targets and suggest that CS and its metabolites could be a potential alternative for managing T2DM. 
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antidiabetic properties, particularly its relationship with the key 
enzymes implicated in T2DM pathogenesis. 

Understanding the relationship between plant 
secondary metabolites, such as those present in CS, and enzymes 
implicated in the pathogenesis of T2DM can be useful for the 
development of targeted therapeutic approaches [38,39]. This 
will, in turn, contribute to the development of novel antidiabetic 
therapeutics and the emerging field of target-based therapies, 
which is expected to contribute to the effective management 
of T2DM [40]. To this extent, the study explored metabolomic 
profiling and computational techniques in the identification 
of CS secondary metabolites and their molecular interactions 
with key enzymes implicated in T2DM and its complications to 
identify possible novel compounds with antidiabetic potential. 

2. METHODOLOGY

2.1. Corn silk collection and processing for the preparation of 
extracts

Fresh CS of a commonly consumed South African 
commercial corn hybrid ILHYB22 was collected at two 
developmental stages (premature and mature) at the Cedara 
College of Agriculture, KwaZulu-Natal, South Africa. The 
processing and preparation of CS from both developmental 
stages to produce three extracts [aqueous, hydro-ethanolic 
(50% ethanol), and ethanolic] were carried out as described in 
Figure 1 [41]. The powdered CS (raw) and the prepared extracts 
were stored (4°C) until needed [42]. 

2.2. Metabolomic profiling of corn silk
Ultra-performance liquid chromatography-mass 

spectrometry (UPLC-MS) analysis was performed on the raw and 
extracts (aqueous, hydro-ethanolic, and ethanolic) of mature and 
premature CS as previously reported [43,44]. A Water Synapt G2 
quadruple time-of-flight mass spectrometer, connected to a Waters 
Acquity UPLC-combined with a photo diode array detector 
(Milford, MA, United States of America), was used to analyze the 
samples. Briefly, 2 g of each sample was subjected to ultrasonic-
assisted extraction (SS-6508T, Sunshine, India) using a solvent 
system of 50% methanol and 0.1% formic acid for 24 hours at room 
temperature [43]. The samples were then centrifuged (mySPIN 
12, Thermo Scientific, United States of America) for 5 minutes at 
14,000 rpm, and the resulting supernatant in each case was used 
for further analysis. Acquisition and confirmation of data were 
performed using Masslynx 4.1, while MS-DIAL and MS-FINDER 
2.0 software (RIKEN Center for Sustainable Resource Science: 
Metabolome Informatics Research Team, Kanagawa, Japan). 
Metaboanalyst (https://www.metaboanalyst.ca/MetaboAnalyst/) 
(accessed on 1 July 2022) was utilized for statistical analysis 
between the samples of CS, where principal component analysis, 
partial-least squares discriminant analysis, orthogonal partial-least 
squares discriminant analysis, and a hierarchical heat map were 
generated [44]. Relative abundance of the metabolites present in 
CS was performed based on peak height percentage [45].

2.3. Pharmacokinetics screening of corn silk metabolites
To identify orally bioavailable compounds and drug-

likeness properties of the metabolites present in CS, virtual 
screening was conducted [46]. The Simplified Molecular 

an incretin hormone that stimulates insulin release and 
inhibits glucagon release. These two hormones are essential in 
regulating blood glucose levels [9]. Similarly, protein tyrosine 
phosphatase-1B (PTP1B) is involved in the dephosphorylation 
of insulin receptors and insulin receptor substrates, influencing 
the insulin signalling pathway [10]. In T2DM, elevated 
PTP1B activity hinders insulin signalling by excessively 
dephosphorylating insulin receptors, which results in decreased 
glucose uptake in cells, thus elevated blood glucose levels 
[11]. On the other hand, aldose reductase (AR) and sorbitol 
dehydrogenase (SDH) play crucial roles in the polyol pathway, a 
metabolic route responsible for converting glucose into sorbitol 
and sorbitol to fructose, respectively [12,13]. In T2DM, the 
activity of AR and SDH intensifies, resulting in the buildup of 
sorbitol and fructose within cells [14]. Accumulation of sorbitol 
and fructose can induce osmotic stress, causing cellular damage 
and dysfunction, thereby contributing to the development of 
secondary complications such as neuropathy, nephropathy, and 
diabetic retinopathy [15,16]. These six enzymes play crucial 
roles in the pathogenesis of T2DM or its related diabetic 
complications through various factors, not limited to glucose 
production and absorption, interference of insulin signalling, 
glucagon release, breakdown of glycogen, and increase of 
incretin concentration, accumulation of sorbitol, among others 
[17–22]. Therefore, effective modulation of the specific activity 
of these enzymes is crucial in the discovery and development 
of novel antidiabetic compounds and emerging target-based 
therapies [8,23].

The consistent maintenance of blood glucose 
levels using lifestyle changes, such as a healthy diet, regular 
physical exercise, consistent blood glucose monitoring, 
regular medical check-ups, and weight management, is often 
unattainable for many patients. This has necessitated reliance 
on synthetic medications to effectively manage diabetes and 
its complications [24]. While the potency of the synthetic 
oral hypoglycemic medications is undoubtable, the associated 
adverse side effects, compliance with a complex dosing 
schedule, and cost have undermined their application in clinical 
practice [24–26]. Therefore, the development of alternative or/
and complementary therapeutics with promising antidiabetic 
potentials is imperative. 

Due to the rich and diverse presence of metabolites, 
medicinal plants serve as a cogent source for the development 
of effective and culturally relevant therapeutic agents against 
several diseases, including T2DM [24,27]. Corn is popularly 
consumed in several parts of the world, including South 
Africa, with its cob and silk usually considered as waste. Corn 
silk (CS) is an underutilized corn part that consists of diverse 
phytochemicals, such as phenolic acids, flavonoids, carotenoids, 
sterols, tannins, volatile compounds, sugars, vitamins, minerals, 
polysaccharides, proteins, and peptides [25,28], many of which 
have contributed to its significant therapeutic properties [29,30]. 
Although CS is often discarded as a waste material [31], it has 
several pharmacological properties, including antioxidant, anti-
inflammatory, diuretic, kaliuretic, anti-hyperlipidemic, anti-
microbial, anti-cancer, anti-hypertensive, and antidiabetic [32], 
making it ethnopharmacologically relevant [27]. Studies have 
shown the antidiabetic potential of CS [33–37]; however, there 
is limited information on the mechanism of action behind its 
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Input Line Entry System of the metabolites was obtained from 
the PubChem database (https://pubchem.ncbi.nlm.nih.gov/; 
accessed on 30 July 2022) and input into the SwissADME 
server (http://www.swissadme.ch/; accessed on 30 July 
2022). Compounds with ≤ 2 violations of the Lipinski’s rule 
(molecular weight ≤ 500 g/mol, < 5 hydrogen bond donors, ≤ 
10 hydrogen bond acceptors, and partition coefficient Log p < 
5) were selected for subsequent analysis. Molecular docking of 
corn silk metabolites against the investigated diabetes enzymes

Following pharmacokinetic screening, the identified 
metabolites and selected enzymes were subjected to molecular 
docking. The X-ray crystal structures of the six enzymes namely: 
AA (protein data bank (PDB) ID 4W93), AG (3W37), AR 
(3RX3), DPP-4 (1WCY), PTP1B (1SUG), and SDH (1PL8), 
were obtained from Research Collaboratory for Structural 
Bioinformatics Protein Protein Data Bank (https://www.rcsb.
org/; accessed 1 September 2022). The enzymes were prepared 
using USCF Chimera v 1.16 [47]. The 3D conformers of the 
metabolites and the reference standards (acarbose for AA and 
AG, epalrestat for AR, ursolic acid for PTP1B, sitagliptin for 
DPP-4, and 4-[2-1R-hydroxy-ethyl)-pyrimidin-4-yl]piperazine-
1-sulfonic acid dimethylamide for SDH) were obtained from 
PubChem (https://pubchem.ncbi.nlm.nih.gov/; accessed 1 
September 2022) and subsequently optimized on USCF Chimera 
v 1.16 by addition of Gasteiger charges and nonpolar hydrogen 
atoms [21]. Identification of grid box coordinates (x-y-z) and 
grid box side (x-y-z) of the native ligand for each enzyme was 
determined on UCSF Chimera v 1.16. These were then used to 
dock the CS metabolites to the active site of the enzymes using 
the Autodock Vina Plugin on Chimera V1.16 [21]. To prevent 

pseudo-positive binding conformations, the docking protocol was 
validated as previously detailed [48] by measuring the root mean 
square deviation (RMSD) of docked ligands from the reference 
pocket bearing the native ligands in the co-crystal structures of 
AA, AG, AR, DPP-4, PTP1B, and SDH (Fig. 2a-f, respectively), 
following optimal superimposition. The RMSD of the docked 
ligands from the native inhibitor in the 3D structures of all six 
enzymes was 0.5 Å, which indicates similar binding orientation, 
ultimately validating the protocol employed. 

2.4. Molecular dynamics (MD) simulation of corn silk 
metabolites against the investigated diabetes enzymes 

After validating the docking protocol, the five 
complexes exhibiting the most favorable poses (indicated by 
the lowest docking scores) for each enzyme were chosen for 
further investigation through a 120-nanosecond molecular 
dynamics simulation, as previously described [49]. The 
simulation utilized the GPU force field within the AMBER 
18 software, specifically employing the Force Field 18SB 
variant. The atomic partial charges for the compounds were 
derived using the restrained electrostatic potential and 
general amber force field methods from ANTECHAMBER. 
The leap module of AMBER 18 was employed to neutralize 
the system by adding hydrogen atoms along with Na+ and 
Cl- counter ions. The residues were designated as 1–495, 
1–913, 1−315, 1–729, 1–299, and 1–356 for AA, AG, AR, 
DPP-4, PTP1B, and SDH, respectively. Each system was then 
implicitly positioned within an orthorhombic box of TIP3P 
water molecules, ensuring that all atoms were within 8Å of 
any edge of the box. The simulation was conducted using 

Figure 1. Preparation of aqueous, hydro-ethanolic, and ethanolic extracts of mature and premature corn 
silk (CS). 
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the SHAKE algorithm from the Leap module to restrict the 
expansion of all chemical bonds, including those of hydrogen 
atoms. Each simulation step was set at 2 femtoseconds, and an 
SPFP precision model was utilized. The simulations adhered 
to the isobaric-isothermal ensemble, featuring randomized 
seeding, with the Berendsen barostat maintaining a constant 
pressure of 1 bar, a pressure-coupling constant of 2 ps, a 
temperature of 300 K, and a Langevin thermostat with a 
collision frequency of 1.0 ps. Post-dynamics data [RMSD, 
root mean square fluctuation (RMSF), radius of gyration 
(ROG), solvent accessible surface (SASA), and number 
of hydrogen bonds] were computed [50]. The binding 
free energy (∆Gbind) was calculated using the Molecular 
Mechanics/GB Surface Area (MM/GBSA) method, wherein 
∆Gbind was averaged over 120,000 snapshots extracted from 
the 120 ns trajectory [51]. Equations 1–5 depict the formula 
for the calculation of the average ∆Gbind for each molecular 
species (complex, ligand, and protein):

ΔGbind = Egas + Gsol – TS� (1)

ΔGbind = Gcomplex – Greceptor – Gligand� (2)

Egas = Eint + Evdw + Eele � (3)

Gsol = GGB + GSA � (4)

GSA = 𝛾SASA � (5)

The complexes’ (ligand-receptor) interaction at the 
active site of each enzyme was examined at 0 ns, 60 ns, and 120 
ns using Discovery Studio version 21.1.1 [52]. 

2.5. Quantum chemical calculations
The molecular characteristics of the lead compounds 

were predicted using density functional theory (DFT) via 
quantum chemical calculations. The widely used 6-31 + G(d,p) 
basis set combined with the Becke3-Lee–Yang–Parr (B3LYP) 
method [53] was adopted to optimize the lead compounds using 
the Gaussian 16 suite of the CHPC, Cape Town, South Africa 
and the resulting files were then visualized using GaussView 
6 software V 6.0.16. The study assessed the conceptual DFT 
(cDFT), namely the frontier molecular orbitals comprising 
the highest occupied molecular orbital (HOMO) and the 
lowest unoccupied molecular orbital (LUMO) [54], taking 
into consideration the Parr and Pearson interpretation of DFT 
and Koopmans’ theorem [55]. Equations 6–13 were used to 
compute other chemical descriptors, including energy gap (ΔE), 

Figure 2. Superimposition on co-crystallized structure of a) alpha amylase: native ligand (black), superimposed docked native ligand (green), reference standard (red), 
and compound with the highest docking score (blue). Root mean square deviation (RMSD) value of 0.5 Å. Grid box co-ordinates: centre (X = −11, Y = 4, Z = −22) 
and size (X = 20, Y = 18, Z = 13); b) alpha glucosidase: native ligand (black), superimposed docked native ligand and standard (green) and compound with highest 
docking score (blue). RMSD value of 0.5 Å. Grid box co-ordinates: centre (X = 0.2, Y = −3, Z = −23) and size (X = 11, Y = 22, Z = 12); c) aldose reductase: native 
ligand (black), superimposed docked native ligand (green), reference standard (red), and compound with highest docking score (blue). RMSD value of 0.5 Å. Grid 
box co-ordinates: centre (X = −10, Y = 9, Z = 17) and size (X = 11, Y = 22, Z = 12); d) dipeptidyl peptidase 4: native ligand (black), superimposed docked native 
ligand (green), reference standard (red), and compound with highest docking score (blue). RMSD value of 0.5 Å. Grid box co-ordinates: centre (X = 56, Y = 62, Z = 
35) and size (X = 13, Y = 10, Z = 7); e) protein tyrosinase phosphatase-1B: native ligand (black), superimposed docked native ligand (green), reference standard (red) 
and compound with highest docking score (blue). RMSD value of 0.5 Å. Grid box co-ordinates: centre (X = 44, Y = −3, Z = −4) and size (X = 7, Y = 6, Z = 7) and f) 
sorbitol dehydrogenase: native ligand (black), superimposed docked native ligand (green), reference standard (red) and compound with highest docking score (blue). 
RMSD value of 0.5 Å. Grid box co-ordinates: centre (X = 97, Y = 31, Z = 26) and size (X = 9, Y = 15, Z = 13). 
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ionization energy (I), electron affinity (A), chemical hardness 
(ŋ), softness (δ), electronegativity (χ), chemical potential (Cp), 
and global electrophilicity (Ꞷ).

ΔE = ELUMO - EHOMO� (6)

I = -ELUMO � (7)

A = -EHOMO � (8)

ŋ =
ΔE
2

δ =
1
ŋ

χ =
(I+A)

2

Cp = -χ 	� (12)

Ꞷ =
χ2 
ΔE

2.6. Toxicity prediction
The top-performing compounds against the six targets 

were further analyzed for their toxicity profile by inputting their 
SMILES in the ProTox server (https://tox.charite.de/protox3/#; 
accessed on 7 July 2025) [56].

3. RESULTS

3.1. Metabolomic profiling of corn silk metabolites
The metabolites identified through UPLC-MS analysis 

(Supplementary Table S1) were confirmed on the chromatograms 

(13)

(9)

(10)

(11)

produced from MassLynx (Supplementary Figures S1–S4). 
Altogether, 128 metabolites (compounds C1–128) were identified 
in all the CS samples investigated. The highest amount of variation 
between the two developmental stages was 63.95 (41.1% in 
principal component 1% and 22.8% in principal component 
2), with the compounds found to cluster majorly in two distinct 
positions (Fig. 3a). The top 15 compounds responsible for the high 
chemical diversity between the different developmental stages 
are presented in Figure 3b. Thirteen out of the 15 metabolites 
were found to be highly abundant in the mature CS, whereas 
C103 (Pandangolide 1) and C74 (3-hydroxysebaic acid) were 
more prevalent in the premature CS (Supplementary Table S1). 
The use of different extraction solvents produced variation in the 
type of metabolites extracted in both the premature and mature 
CS. Between the different samples of CS, there was 62.4% 
quantitative and qualitative variation of metabolites (42.1% 
in principal component 1 and 20.3% in principal component 
2) (Fig. 4a). The top 15 metabolites responsible for the high 
chemical diversity between the eight samples of CS are presented 
in Figure 4b, where caffeoyl tartaric acid (C105) was the most 
variant between the samples. The top 15 CS metabolites were 
less abundant in the aqueous extracts of CS while out of the 15 
metabolites which contributed to the highest variation between 
the extracts, a total of 5, 1, 4, 2, and 3 metabolites were highly 
abundant in raw premature CS, raw mature CS, hydro-ethanolic 
extract of premature CS, hydro-ethanolic extract of mature CS, 
and ethanolic extract of mature CS, respectively (Fig. 4b). 

The relative abundance of the metabolites in the 
different samples of CS is presented in Supplementary Figure 
S5 (compounds C1–C65) and Supplementary Figure S6 
(compounds C66–C128), as well as Supplementary Table S2. 
Majority of the metabolites were found to be more abundant 

Figure 3. a) Principal component analysis plot of the percentage chemical diversity of metabolites between the two different developmental growth stages 
[premature (light green) and mature (light red) of corn silk; b) Orthogonal partial least squares-discriminant analysis (OPLS-DA) loadings plot of the top fifteen 
metabolites that were the most chemically diverse between the two developmental growth stages of corn silk with red showing high prevalence and blue showing 
low prevalence. PC: principal component, C105: tetradecanedioic acid, C51: methyl geranate, C73: UNPD230015, C26: diaportinic acid, C107: genistin, C82: 
diaportinol, C27: benzyl-O-beta-D-glucopyranoside, C103: pandangolide 1a, C74: 3-hydroxysebacic acid, C69: dodecanedioic acid, C106: (R)-7-butyl-6,8-
dihydroxy-3-[(3E)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one, C118: ginsenoyne E, C104: 4-hydroxynonenal, C55: daldiniapyrone, and C121: UNPD205010.
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in the hydro-ethanolic extract of mature CS except compounds 
C3, C8, C21, C32, C33, C38, C42, C58, C105, and C124 (more 
abundant in aqueous extract of mature CS), compounds C1, C3, 
C8, C21, C32, C33, C92, C100, and C102 (more abundant in 
aqueous extract of premature CS) C47, C48, C61, C76, C82, 
C88, C89, C99, C103, and C106 (more abundant in ethanolic 
extract of mature CS), C36, C54, C70, C90, C96, C108, 
C125, C126, and C127 (more abundant in ethanolic extract of 
premature CS), C5 (more abundant in hydro-ethanolic extract 
of premature CS), and C65 (more abundant in raw extract of 
premature CS). The percentage yield of the 128 metabolites 
between the different samples of CS (aqueous, hydro-ethanolic, 
and ethanolic) extracts of premature and mature CS is presented 
in Supplementary Figure S7. Hydro-ethanolic extract of mature 
CS (37%) had the highest yield, followed by the hydro-
ethanolic extract of premature CS (12%) and aqueous extract of 
premature CS (12%), with the raw sample of mature CS (5%) 
sample having the lowest yield.

3.2. Drug-likeness filtering of corn silk metabolites
Although several prediction analyses were considered 

(Lipinski, Veber, Mugge, and Egan rules) and all showed that 
most of the metabolites had ≤ 4 violations and demonstrated 
relatively good pharmacokinetic properties, including 
gastrointestinal absorption, blood-brain permeability, and were 
mostly nonphospho-glycoprotein substrates and noninhibitors 
of the cytochrome P450 isoenzymes. However, the most 
common Lipinski’s rule of five (Ro5) was subsequently adopted 

for the screening of the metabolites. Out of the 128 metabolites 
identified in the different samples of CS, 110 passed Lipinski’s 
Ro5, while 18 compounds exhibited more than 2 violations and 
were excluded from further analysis (Supplementary Table S3).

3.3. Molecular docking of corn silk metabolites against the 
investigated diabetes enzymes

Based on the docking scores, details of the top 
five CS metabolites with the investigated diabetes enzymes 
are provided in Table 1. Aesculin (AES), austricin (AUS), 
(6E)-1-(4-hydroxyphenyl)-7-phenylhepta-4,6-dien-3-one 
(HPH), (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta- 
D-glucoside (HDJ), phaseic acid (PHA), and erythronolide B 
(ETB) had the highest negative docking scores against AA, 
AG, AR, DPP-4, PTP1B, and SDH, respectively (Table 1). The 
docking scores of the remaining 105 CS metabolites against the 
enzyme targets are presented in Supplementary  Table S4.

3.4. Molecular dynamics simulation of top CS metabolites 
against the investigated diabetes enzymes

The ∆Gbind of the top five CS compounds against each 
of the investigated enzymes following a 120-ns MD simulation 
is presented in Table 2. Metabolites BHP (−40.30 kcal/mol), 
VBG (−34.17 kcal/mol), HDJ (−44.13 kcal/mol), CMA (−34.40 
kcal/mol), HDA (−19.71 kcal/mol), and HDJ (−36.61 kcal/mol) 
had the highest negative ΔGbind against AA, AG, AR, DPP-
4, PTP1B, and SDH, respectively. Except for the AA-BHP 
complex, which had a lower negative ∆Gbind compared to AA-

Figure 4. a). Principal component analysis scores plot of the percentage chemical diversity of metabolites (circle) between eight samples of CS [raw extract 
of premature CS (light blue), raw extract of mature CS (dark blue), aqueous extract of premature CS (orange), aqueous extract of mature CS (purple), hydro-
ethanolic extract of premature CS (yellow), hydro-ethanolic extract of mature CS (pink), ethanolic extract of premature CS (green) and ethanolic extract of mature 
CS (light red)]; b) Partial least squares-discriminant analysis (PLS-DA) loading plot of the top 15 metabolites that were the most chemically diverse between 
the eight samples of CS with red showing high prevalence and blue showing low prevalence. AQ MAT: aqueous extract of mature CS, AQP; aqueous extract 
of premature CS, ETH MAT: ethanolic extract of mature CS, ETH PRE: ethanolic extract of premature CS, HYD MAT: hydro-ethanolic extract of mature CS, 
HYD PRE: hydro-ethanolic extract of premature CS, RAW MAT: raw extract of mature CS, RAW PRE: raw extract of premature CS. C119: caffeoyl tartaric 
acid, C60: quercitrin, C9: D-2-hydroxyglutaric acid, C98: 5,7,4’-trihydroxy-3’-methoxyflavone, C109: kaempferol 3-[2’’’-acetyl-alpha-L-arabinopyranosyl-(1-
>6)-galactoside], C122: maysin 3’-methyl ether, C83: herbacetin 7-(6’’-quinoylglucoside), C107: genistin, C59: apiin, C97: maysin, C66: UNPD19396, C108: 
p-coumaroyl malic acid, C99: quercetin 3-O-(6’’-acetyl-glucoside), C70: kaempferitrin and C86: mirificin. 
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acarbose (−49.08 kcal/mol), others had higher negative ΔGbind 
than their respective standards (Table 2). 

3.4.1. Post-dynamic analysis of top CS metabolites against alpha-
amylase

The alterations in structure and conformation resulting 
from the interactions of the top-ranked metabolites of CS with the 
enzymes during the simulation periods are presented in Tables 3 
and Figures 5–10. All CS metabolites-AA complexes had higher 
average RMSD values than apo-AA (1.57 Å), except for AA-
AES (1.52 Å), displaying the lowest average RMSD among the 
metabolite-AA complexes (Table 3). Following equilibration at 
10 ns, RMSD of all AA complexes fluctuated between 1.10 Å 
and 2.25 Å throughout the remaining simulation, while only 
AA-CUR fluctuated close to 2.50 Å from 70 ns till the end of 
the simulation (Fig. 5a). Conversely, both apo-AA (0.94 Å) and 
AA-ACA (0.97 Å) exhibited lower mean RMSF values than all 
AA complexes, with the AA-CUR complex presenting the least 
RMSF value (0.70 Å) (Table 3). Additionally, the complexes 
displayed random fluctuations in RMSF between 0.5 Å and 
2.5 Å, with major fluctuations observed in various residues, 
including 120–140, 180–200, 240–320, 340–400, 405–410, and 
450–495, swaying between 0.5 Å and 5.75 Å (Fig. 5b). All AA-
complexes exhibited lower mean ROG values compared to apo-
AA, except CUR- (23.38 Å) and AUS-AA complexes (23.45 
Å) (Table 3). After 5 ns, a stable ROG plot for all the bound 
complexes between 23.9 Å and 23.6 Å was observed except for 
ACA, which exhibited random fluctuations at 30, 80, and 100 ns 
(Fig. 5c). A marginal increase in the mean number of hydrogen 
bonds formed in the CS metabolites complexes relative to the 
apo-enzyme was observed [ BHP (266.49), CUR (267.01), and 

Table 1. Molecular docking results of CS metabolites with the five 
highest negative docking score (best pose) and reference standards 

against each of the enzyme targets. 

Compound 
number Identity Compound 

Abbreviation
Docking score 

(kcal/mol)

Alpha-amylase

C31 Aesculin AES −8.1

C106

(R)-7-butyl-6,8-dihydroxy-
3-[(3e)-pent-3-en-1-yl]-
3,4-dihydroisochromen-
1-one

BHP −8.0

C88 Curvularol CUR −7.9

C14
(6e)-1-(4-hydroxyphenyl)-
7-phenylhepta-4,6-dien-
3-one

HPH −7.8

C64 Austricin AUS −7.7

- Acarbose* ACA −6.9

Alpha-glucosidase

C64 Austricin AUS −7.8

C12 Glutaric acid GTA −7.7

C16 1-O-vanilloyl-beta-D-
glucose VBG −7.5

C51 Methyl geranate MGN −7.4

C37
(-)-11-hydroxy-9,10-
dihydrojasmonic acid 
11-beta-D-glucoside

HDJ −7.4

- Acarbose* ACA −7.3

Aldose reductase

C14
(6E)-1-(4-hydroxyphenyl)-
7-phenylhepta-4,6-dien-
3-one

HPH −9.9

C106

(R)-7-butyl-6,8-dihydroxy-
3-[(3E)-pent-3-en-1-yl]-
3,4-dihydroisochromen-
1-one

BHP −8.6

C31 Aesculin AES −8.5

C64 Austricin AUS −8.5

C37
(-)-11-hydroxy-9,10-
dihydrojasmonic acid 
11-beta-D-glucoside

HDJ −8.5

- Epalrestat* EPA −6.3

Dipeptidyl peptidase-4

C37
(-)-11-hydroxy-9,10-
dihydrojasmonic acid 
11-beta-D-glucoside

HDJ −8.6

C119 Caffeoyl tartaric acid CTA −8.0

C106

(R)-7-butyl-6,8-dihydroxy-
3-[(3E)-pent-3-en-1-yl]-
3,4-dihydroisochromen-
1-one

BHP −7.8

C81 Phaseic acid PHA −7.8

C108 p-Coumaroyl malic acid CMA −7.7

- Sitagliptin* SGT −6.2

Protein tyrosine phosphatase B

C81 Phaseic acid PHA −6.0

Compound 
number Identity Compound 

Abbreviation
Docking score 

(kcal/mol)

C105 Tetradecanedioic acid TDA −5.8

C52 2-Hydroxydecanedioic 
acid HDA −5.4

C4 Methylisocitric acid MCA −5.2

C69 Dodecanedioic acid DCA −5.2

- Ursolic acid* URS −5.2

Sorbitol dehydrogenase

C72 Erythronolide B ETB −9.2

C111 (+)-Cnicin CNI −8.7

C100 Blennin D BLD −8.5

C37
(-)-11-hydroxy-9,10-
dihydrojasmonic acid 
11-beta-D-glucoside

HDJ −8.4

C106

(R)-7-butyl-6,8-dihydroxy-
3-[(3E)-pent-3-en-1-yl]-
3,4-dihydroisochromen-
1-one

BHP −8.3

-

4-[2-1R-hydroxy-
ethyl)-pyrimidin-4- yl] 
piperazine-1-sulfonic acid 
dimethylamide*  

HPS −5.0

*Reference standards
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Table 2. Thermodynamic components of top 5 identified secondary metabolites present in CS against target enzymes.

 (kcal/mol)

Complex ΔEVdW ΔEelec ΔGgas ΔGsolv ΔGbind

Alpha-amylase

AES −28.64 ± 4.67 −38.73 ± 14.93 −67.37 ± 15.14 39.07 ± 8.41 −28.31 ± 8.24

BHP −36.06 ± 3.95 −48.13± 14.03 −85.20 ± 14.41 45.17 ± 7.85 −40.30 ± 7.35

CUR −24.89 ± 3.08 −27.14 ± 6.24 −52.03 ± 5.91 22.88 ± 3.75 −29.15 ± 3.74

HPH −28.16 ± 4.81 −14.85 ± 6.56 −43.00 ± 6.46 19.40 ± 4.34 −23.55 ± 5.30

AUS −24.98 ± 3.25 −10.72 ± 9.37 −35.69 ± 10.80 17.24 ± 7.93 −18.45 ± 4.04

ACA −51.81 ± 5.29 −132.83 ± 15.05 −184.60 ± 14.87 135.57 ± 10.04 −49.08 ± 7.99

Alpha-glucosidase

AUS −24.10 ± 3.30 −44.02 ± 23.29 −68.12 ± 23.36 46.91 ± 18.00 −21.21 ± 7.72

GTA −26.16 ± 4.32 −31.61 ± 22.53 −57.78 ± 23.27 35.19 ± 13.17 −22.57 ± 12.05

VBG −23.42 ± 3.54 −72.98 ± 14.48 −96.40 ± 14.00 62.22 ± 8.84 −34.17 ± 6.08

MGN −11.98 ± 9.58 −7.45 ± 8.63 −18.21 ± 16.09 11.29 ± 9.94 −6.92 ± 7.00

HDJ −27.81 ± 4.45 −52.92 ± 14.77 −80.73 ± 13.48 52.10 ± 9.52 −28.63 ± 5.74

ACA −31.64 ± 5.13 −161.95 ± 22.72 −193.60 ± 23.49 177.05 ± 20.09 −16.54 ± 6.71

Aldose reductase

HPH −35.06 ± 3.18 −25.23 ± 7.03 −60.30 ± 8.03 26.16 ± 3.87 −34.13 ± 5.05

BHP −47.41 ± 2.95 −19.07 ± 4.47 −66.49 ± 5.16 25.64 ± 3.38 −40.85 ± 3.44

AES −43.04 ± 5.01 −27.19 ± 9.85 −70.23 ± 11.30 33.01 ± 5.68 −37.22 ± 8.40

AUS −35.07 ± 3.27 −13.42 ± 11.84 −48.50 ± 12.88 17.47 ± 7.66 −31.02 ± 5.99

HDJ −58.97 ± 4.97 −33.08 ± 8.12 −92.06 ± 10.51 47.92 ± 5.78 −44.13± 6.75

EPA −21.18 ± 5.82 −9.73 ± 8.05 −30.91 ± 9.94 15.80 ± 6.48 −15.10 ± 5.02

Dipeptidyl peptidase-4

HDJ −16.28 ± 12.70 −20.99 ± 25.20 −37.27 ± 33.50 25.26 ± 23.85 −12.00 ± 10.42

CTA −23.08 ± 3.41 −49.31 ±16.10 −72.39 ± 15.32 55.70 ± 12.05 −16.69 ± 4.72

BHP −36.40 ± 4.65 −46.36 ± 12.31 −82.77 ± 13.24 49.54 ± 8.24 −33.22 ± 6.24

PHA −27.98 ± 3.30 −51.07 ± 8.92 −79.06 ± 8.45 57.26 ± 6.46 −21.79 ± 4.06

CMA −18.45 ± 3.76 -77.1195 ± 8.25 -95.58 ± 7.62 61.16 ± 5.38 -34.40 ± 4.17

HDJ −39.63 ± 4.59 -254.13 ± 12.21 -293.75 ± 12.39 262.99 ± 11.01 -30.77 ± 4.71

Protein tyrosine phosphatase B

PHA −16.47 ± 5.83 −11.47 ± 8.38 −27.94 ± 11.01 19.30 ± 8.62 −8.64 ± 3.49

TDA −20.88 ± 6.79 −18.80 ± 13.35 −39.68 ± 16.18 21.95 ± 11.27 −17.72 ± 6.72

HDA −21.31 ± 4.27 −20.75 ± 10.38 −42.07 ± 11.85 22.36 ± 7.68 −19.71 ± 5.86

MCA −16.76 ± 3.66 −29.90 ± 14.68 −46.66 ± 16.42 33.19 ± 12.75 −13.47 ± 4.53

DCA −13.54 ± 7.80 −13.76 ± 10.83 −27.30 ± 15.28 14.77 ± 8.80 −12.52 ± 8.06

URS −30.78 ± 3.51 −13.01 ± 6.23 −36.19 ± 6.89 20.15 ± 5.79 −16.03 ± 4.03

Sorbitol dehydrogenase

ETB −28.90 ± 3.75 −23.10 ± 14.35 −52.01 ± 15.71 31.37 ± 10.29 −20.63 ± 7.06

CNI −27.87 ± 5.69 −22.19 ± 14.26 −50.06 ± 14.79 27.99 ± 9.04 −22.06 ± 7.03

BLD −23.54 ± 5.45 −12.27 ± 7.63 −35.82 ± 10.79 17.13 ± 6.44 −18.69 ± 7.07

HDJ −40.01 ± 6.01 −56.06 ± 9.90 −96.08 ± 13.13 59.46 ± 7.41 −36.61 ± 7.39

BHP −32.12 ± 4.05 −35.79 ± 8.64 −67.92 ± 9.72 40.60 ± 5.70 −27.31 ± 5.25

HPS −36.62 ± 5.69 −12.81 ± 6.22 −44.43 ± 9.35 8.19 ± 5.02 −34.24 ± 9.18

∆EvdW: Van der Waals energy; ∆Eelec: electrostatic energy; ∆Egas: gas-phase free energy; ∆Gsolv solvation free energy and ∆Gbind: total binding free energy. AES: 
aesculin; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one; CUR: curvularol; HPH: (6e)-1-(4-hydroxyphenyl)-7-phenylhepta-
4,6-dien-3-one; AUS: austricin; ACA: acarbose; GTA: glutaric acid; VBG: 1-O-vanilloyl-beta-D-glucose; MGN: methyl geranate; HDJ: (-)-11-hydroxy-9,10-
dihydrojasmonic acid 11-beta-D-glucoside; EPA: epalrestat; CTA: caffeoyl tartaric acid; PHA: phaseic acid; CMA: p-coumaroyl malic acid; SGT: sitagliptin; TDA: 
tetradecanedioc acid; HDA: 2-hydroxydecanedioic acid; MCA: methylisocitric acid; DCA: dodecanedioc acid; URS: ursolic acid; ETB: erythronolide B; CNI: 
cnicin; BLD: blennin D; HPS: 4-[2-1R-hydroxy-ethyl)-pyrimidin-4- yl]piperazine-1-sulfonic acid dimethylamide. 
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Table 3. Mean post-molecular dynamics parameters of top 5 identified metabolites of corn silk against the target enzymes.

Complexes RMSD (Å) RMSF (Å) RoG (Å) Number of H-Bonds SASA (Å)

AA (apo-enzyme) 1.57 ± 0.15 0.94 ± 0.41 23.31 ± 0.09 266.48 ± 11.04 17,130.45 ± 426.56

AA-AES 1.52 ± 0.14 1.01 ± 0.50 23.28 ± 0.09 267.39 ± 10.24 17,547.30 ± 595.29

AA-BHP 1.89 ± 0.22 1.04 ± 0.68 23.20 ± 0.07 266.49 ± 10.61 17,413.58 ± 411.68

AA-CUR 1.78 ± 0.30 0.70 ± 0.31 23.38 ± 0.11 267.01 ± 10.31 17,492.10 ± 512.41

AA-HPH 1.67 ± 0.16 1.05 ± 0.56 23.27 ± 0.09 260.07 ± 10.67 17,815.54 ± 514.36

AA-AUS 1.85 ± 0.25 1.20 ± 0.64 23.45 ± 0.14 258.22 ± 10.70 18,410.21 ± 602.75

AA-ACA 1.82 ± 0.47 0.97 ± 0.25 23.28 ± 0.09 260.75 ± 10.62 17,301.00 ± 421.52

AG (apo-enzyme) 1.61 ± 0.19 1.07 ± 0.55 27.77 ± 0.06 427.02 ± 12.77 29,619.23 ± 477.95

AG-AUS 1.73 ± 0.18 0.85 ± 0.38 27.96 + 0.09 413.94 ± 13.26 30,865.47 ± 658.70

AG-GTA 2.20 ± 0.23 1.03 ± 0.57 27.83 ± 0.06 410.42 ± 12.99 30,623.51 ± 540.63

AG-VBG 1.95 ± 0.25 1.09 ± 0.63 27.76 ± 0.10 405.92 ± 13.50 29,917.13 ± 566.38

AG-MGN 1.81 ± 0.19 1.09 ± 0.56 27.99 ± 0.11 411.04 ± 15.87 30,951.06 ± 584.89

AG- HDJ 1.70 ± 0.12 1.06 ± 0.46 28.05 ± 0.09 415.38 ± 13.28 31,439.30 ± 660.19

AG-ACA 1.65 ± 0.10 1.00 ± 0.44 27.84 ± 0.08 427.01 ± 13.66 29,417.32 ± 532.42

AR (apo-enzyme) 1.59 ± 0.23 1.05 0.64± 19.33 ± 0.06 138.95 ± 8.05 13,387.83 ± 284.35

AR-HPH 1.49 ± 0.22 1.07 ± 0.66 19.17 ± 0.09 142.29 ± 8.19 12,864.95 ± 380.00

AR-BHP 1.24 ± 0.14 0.91 ± 0.51 19.11 ± 0.07 142.32 ± 7.87 12,525.95 ± 307.21

AR-AES 1.57 ± 0.21 1.09 ± 0.59 19.27 ± 0.06 140.52 ± 7.99 12,884.81 ± 275.19

AR-AUS 1.36 ± 0.14 1.03 ± 0.58 19.29 ± 0.09 134.74 ± 8.28 13,134.07 ± 315.08

AR-HDJ 1.58 ± 0.29 0.76 ± 0.32 19.18 ± 0.06 143.24 ± 8.04 12,661.33 ± 326.55

AR-EPA 2.00 ± 0.31 1.12 ± 0.73 19.45 ± 0.08 137.55 ± 7.96 13,339.97 ± 304.39

DPP-4 (apo-enzyme) 1.81 ± 0.14 1.14 ± 0.59 27.04 ± 0.10 387.26 ± 12.43 29,772.27 ± 407.99

DPP-4-HDJ 2.20 ± 0.42 1.30 ± 1.67 27.36 ± 0.21 380.75 ± 12.55 30,518.02 ± 471.31

DPP-4-CTA 1.81 ± 0.18 1.23 ± 0.70 27.12 ± 0.09 376.11 ± 14.39 30,495.52 ± 488.42

DPP-4-BHP 2.23 ± 0.33 1.30 ± 0.65 27.29 ± 0.11 387.35 ± 12.78 30,644.12 ± 571.00

DPP-4-PHA 2.12 ± 0.28 1.14 ± 0.75 27.19 ± 0.10 383.89 ± 12.19 295,88.14 ± 407.11

DPP-4-CMA 2.49 ± 0.23 1.14 ± 0.52 27.28 ± 0.12 382.29 ± 12.21 30,372.92 ± 431.08

DPP-4-SGT 2.32 ± 0.32 1.23 ± 0.84 27.23 ± 0.14 385.80 ± 12.28 29,879.51 ± 471.52

PTP1B (apo-enzyme) 1.47 ± 0.23 1.15 ± 0.54 19.37 ± 0.07 159.89 ± 8.32 13,132.84 ± 295.15

PTP1B-PHA 1.44 ± 0.20 1.13 ± 0.88 19.49 ± 0.13 156.33 ± 9.00 13,899.21 ± 563.67

PTP1B-TDA 1.39 ± 0.19 0.99 ± 0.53 19.36 ± 0.09 155.92 ± 8.78 13,415.10 ± 338.21

PTP1B-HDA 1.15 ± 0.10 1.01 ± 0.52 19.33 ± 0.06 163.00 ± 8.44 13,039.12 ± 293.12

PTP1B-MCA 1.14 ± 0.14 0.99 ± 0.54 19.25 ± 0.06 161.67 ± 8.17 13,059.97 ± 422.08

PTP1B-DCA 1.70 ± 0.28 1.14 ± 1.55 19.47 ± 0.11 155.44 ± 8.57 13,903.14 ± 284.06

PTP1B-URS 1.15 ± 0.10 1.00 ± 0.42 19.27 ± 0.06 159.76 ± 8.62 13,136.17 ± 295.29

SDH (apo-enzyme) 2.48 ± 0.44 1.35 ± 1.01 20.72 ± 0.15 131.92 ± 7.41 12,222.97 ± 332.44

SDH- ETB 2.41 ± 0.30 1.33 ± 0.99 21.16 ± 0.16 133.65 ± 7.69 12,433.06 ± 250.00

SDH-CNI 3.15 ± 0.38 1.50 ± 1.25 21.22 ± 0.19 131.58 ± 7.58 12,389.66 ± 331.358

SDH-BLD 2.42 ± 0.43 1.29 ± 0.81 21.02 ± 0.16 168.23 ± 8.86 14,797.04 ± 277.96

SDH-HDJ 2.85 ± 0.51 1.44 ± 1.00 21.21 ± 0.22 133.37 ± 7.85 12,145.93 ± 288.83

SDH-BHP 2.79 ± 0.28 1.37 ± 0.90 20.90 ± 0.12 161.22 ± 8.57 14,975.50 ± 359.245

SDH-HPS 2.91 ± 0.55 1.35 ± 0.94 21.17 ± 0.19 166.34 ± 8.38 14,759.29 ± 301.96

RMSD: root mean square deviation; RMSF: root mean square fluctuation; ROG: radius of gyration; H-bonds: hydrogen bonds; SASA; solvent accessible surface 
area; AA: alpha-amylase; AG: alpha-glucosidase; AR: aldose reductase; DPP-4: dipeptidyl peptidase-4; PTP1B: protein tyrosine phosphatase 1B; SDH: sorbitol 
dehydrogenase; AES: aesculin; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one; CUR: curvularol; HPH: (6e)-1-(4-
hydroxyphenyl)-7-phenylhepta-4,6-dien-3-one; AUS: austricin; ACA: acarbose; GTA: glutaric acid; VBG: 1-O-vanilloyl-beta-D-glucose; MGN: methyl geranate; 
HDJ: (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; EPA: epalrestat; CTA: caffeoyl tartaric acid; PHA: phaseic acid; CMA: p-coumaroyl malic 
acid; SGT: sitagliptin; TDA: tetradecanedioc acid; HDA: 2-hydroxydecanedioic acid; MCA: methylisocitric acid; DCA: dodecanedioc acid; URS: ursolic acid; 
ETB: erythronolide B; CNI: cnicin; BLD: blennin D; HPS: 4-[2-1R-hydroxy-ethyl)-pyrimidin-4- yl]piperazine-1-sulfonic acid dimethylamide.



010	 Akoonjee et al. / Journal of Applied Pharmaceutical Science 2025: Article in Press

Online F
irstFigure 5. Post-dynamic component plots of CS metabolites-AA complexes presented as (a) RMSD, (b) RMSF, (c) ROG, (d) number of hydrogen bonds, and (e) 

SASA over 120 ns simulation. AA: alpha-amylase; AES: aesculin; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one; CUR: 
curvularol; HPH: (6e)-1-(4-hydroxyphenyl)-7-phenylhepta-4,6-dien-3-one; AUS: austricin; ACA: acarbose. 

Figure 6. Post-dynamic component plots of CS metabolites-AG complexes presented as (a) RMSD, (b) RMSF, (c) ROG, (d) number of hydrogen bonds, and (e) 
SASA over 120 ns simulation. AG: alpha-glucosidase; AUS: austricin; GTA: glutaric acid; VBG: 1-O-vanilloyl-beta-D-glucose; MGN: methyl geranate; HDJ: 
(-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; ACA: acarbose.
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SASA over 120 ns simulation. AR: aldose reductase; HPH: (6e)-1-(4-hydroxyphenyl)-7-phenylhepta-4,6-dien-3-one; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-
3-en-1-yl]-3,4-dihydroisochromen-1-one; AES: aesculin; AUS: austricin; HDJ: (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; EPA: epalrestat.

Figure 8. Post-dynamic component plots of CS metabolites-DPP-4 complexes presented as (a) RMSD, (b) RMSF, (c) ROG, (d) number of hydrogen bonds, and 
(e) SASA over 120 ns simulation.  DPP-4: dipeptidyl peptidase-4; HDJ: (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; CTA: caffeoyl tartaric 
acid; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one; PHA: phaseic acid; CMA: p-coumaroyl malic acid; SGT: sitagliptin.
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ROG values compared to apo-AG (27.77 Å) (Table 3). The ROG 
of all AG complexes fluctuated between 27.5 Å and 28.2 Å, with 
a decrease in ROG plot for the VBG complex observed between 
40 ns and 50 ns, as shown in Figure 6c. In contrast to apo-AG 
(427.02), a reduction in the mean number of hydrogen bonds was 
observed for all AG complexes (Table 3). Throughout the 120 
ns simulation, the number of hydrogen bonds formed between 
AG complexes ranged from 360 to 470, showing no significant 
fluctuations in the plot (Fig. 6d). However, higher average SASA 
values were observed for all AG complexes relative to apo-AG 
(29619.23 Å) and AG-ACA (29417.32 Å) (Table 3). After an 
equilibration in the SASA plot at 10 ns and 27,000 Å, all AG 
complexes fluctuated between 28,000 Å and 32,500 Å till the end 
of the simulation (Fig. 6e). 

3.4.3. Post-dynamic analysis of top CS metabolites against aldose 
reductase

A decrease in the mean RMSD was noted for all AR 
complexes compared to the apo-AR (1.59 Å), except for EPA 
(2.00 Å), which exhibited an increase in the mean RMSD (Table 
3). Following a steady rise in RMSD from 0.5 Å during the 
initial 5 ns of the simulation, the system reached equilibrium, 
and the RMSD of all AR complexes varied between 0.9 Å and 
2.5 Å (Fig. 7a). All examined AR complexes displayed a decline 
in the average RMSF, with HDJ exhibiting the lowest mean 
RMSF (0.76 Å) compared to apo-AR (1.05) and AR-EPA (1.12) 
(Table 3). After an initial decrease in RMSF during the first 5 
ns of the simulation, all AR complexes fluctuated between 0.5 

AES (267.39) compared to apo-AA (266.48)]. Apart from AUS 
(258.22), all AA complexes exhibited a higher mean number 
of hydrogen bonds than ACA (260.75) (Table 3). There was 
a slight fluctuation between 230 and 310 in the number of 
hydrogen bonds formed during the 120 ns simulation period; 
otherwise, no major fluctuations were observed (Fig. 5d). 
Regarding SASA, an increase in the mean value was observed 
for all complexes compared to apo-AA (17130.45 Å) and ACA 
(17301.00 Å) (Table 3). Following a steady increase during 
the initial 5 ns of the simulation, all AA complexes exhibited a 
stable and continuous increase within the range of 16,000 Å and 
19,000 Å (Fig. 5e).

3.4.2. Post-dynamic analysis of top CS metabolites against alpha-
glucosidase

All AG complexes exhibited a higher average RMSD 
compared to both apo-AG (1.61 Å) and AG-ACA complex 
(1.65 Å) (Table 3). Following equilibration at 5 ns, fluctuations 
within the range of 0.75 Å to 2.5 Å persisted until the end of the 
simulation in all the bound complexes (Fig. 6a). The mean RMSF 
of apo-AG (1.07 Å) exceeded that of the AG-CS metabolite 
complexes apart from VBG (1.09 Å) and MGN (1.09 Å). Notably, 
the AG-AUS complex displayed the lowest average RMSF (0.85 
Å) among all the complexes (Table 3). Upon binding to AG, all 
investigated compounds exhibited random fluctuations between 
0.5 Å and 6 Å, with major fluctuations occurring sporadically 
across various amino acid residues (Fig. 6b). Similarly, except 
for VBG (27.76 Å), all AG complexes demonstrated higher mean 

Figure 9. Post-dynamic component plots of CS metabolites-PTP1B complexes presented as (a) RMSD, (b) RMSF, (c) ROG, (d) number of hydrogen bonds, and (e) 
SASA over 120 ns simulation. PTP1B: protein tyrosine phosphatase 1B; PHA: phaseic acid; TDA: tetradecanedioc acid; HDA: 2-hydroxydecanedioic acid; MCA: 
methylisocitric acid; DCA: dodecanedioc acid; URS: ursolic acid.
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all DPP-4 complexes fluctuated between 0.5 and 3.5 Å, except 
for a major fluctuation increase to 8 Å between residues 200 
and 240 (Fig. 8b). All DPP-4 complexes showed an increase 
in mean ROG in comparison to apo-DPP-4 (27.04 Å) (Table 
3). After an increase in ROG from 26.6 Å during the first 5 
ns, all DPP-4 complexes fluctuated between 26.8 Å and 27.3 Å 
except for HDJ and BHP, which had increases ranging between 
27.8 and 28.1 Å between 20 ns to 40 ns and 50 ns to 60 ns, 
respectively (Fig. 8c). All DPP-4 complexes showed a reduction 
in the mean number of hydrogen bonds in comparison to apo-
DPP-4 (387.26), except for the BHP complex (387.35) (Table 
3). The number of hydrogen bonds fluctuated between 320 and 
440 throughout the 120 ns simulation (Fig. 8d). Relative to apo-
DPP-4 (29772.27 Å), all DPP-4 complexes showed an increase 
in mean SASA except for PHA (29588.14 Å) (Table 3). Once 
the complexes equilibrated after 10 ns, the SASA of all DPP-4 
complexes fluctuated between 28,500 and 32,500 Å (Fig. 8e).

3.4.5. Post-dynamic analysis of top CS metabolites against PTP1B
When bound to PTP1B, all compounds exhibited a 

reduction in mean RMSD in comparison to apo-PTP1B (1.47 
Å), except for DCA (1.70 Å). Notably, MCA displayed the 
lowest mean RMSD of 1.14 Å when bound to PTP1B, lower 
than the PTP2B-URS complex (1.15 Å) (Table 3). Following 
an initial increase during the first 10 ns of the simulation, all 
PTP1B complexes exhibited fluctuations within the range 
of 0.75–2.00 Å, except for DCA, which fluctuated to 2.5 Å 
between 85 ns and 105 ns (Fig. 9a). In comparison to the apo-

Å and 5 Å, with notable fluctuations observed in residues 25–
50, 50–60, 75–90, 130–150, and 215–250 (Fig. 7b). Similarly, 
all AR complexes demonstrated a decrease in their average 
ROG values compared to apo-AR (19.33), except for EPA, 
which presented an average ROG value of 19.45 Å (Table 3). 
Throughout the simulation, the ROG fluctuated between 19.8 Å 
and 19.75 Å, with higher variations observed in EPA and AR-
HDJ (Fig. 7c). All AR complexes displayed a higher number of 
hydrogen bonds compared to apo-AR (138.95), except for AUS 
(134.74) (Table 3). The number of hydrogen bonds for all AR 
complexes ranged from 110 to 170, with no major fluctuations 
observed (Fig. 7d). In contrast to apo-AR (13387.83 Å), all AR 
complexes exhibited a decrease in mean SASA values, except 
for EPA (13339.97 Å) (Table 3). Following an initial increase 
in SASA during the first 5 ns, all AR complexes fluctuated 
between 11,500 Å and 14,500 Å, without significant variations 
(Fig. 7e). 

3.4.4. Post-dynamic analysis of top CS metabolites against DPP-4
All DPP-4 complexes exhibited higher average 

RMSD values relative to the apo-DPP-4 (1.81 Å) except for 
CTA (1.81 Å), which was similar to apo-DPP-4 (Table 3). After 
an initial increase in RMSD from 0.5 Å, all DPP-4 complexes 
fluctuated between 1.25 Å and 3.5 Å with CMA and HDJ 
showing major fluctuations at 8 ns and 50 ns, respectively (Fig. 
8a). In contrast to apo-DPP-4 (1.14 Å), all DPP-4 complexes 
had higher mean RMSF, except PHA (1.14 Å) and CMA (1.14 
Å) with equal average RMSF value (Table 3). The RMSF of 

Figure 10. Post-dynamic component plots of CS metabolites-SDH complexes presented as (a) RMSD, (b) RMSF, (c) ROG, (d) number of hydrogen bonds, and (e) SASA 
over 120 ns simulation. SDH: sorbitol dehydrogenase; CNI: cnicin; BLD: blennin D; HDJ: (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; BHP: (R)-
7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one; HPS: 4-[2-1R-hydroxy-ethyl)-pyrimidin-4- yl]piperazine-1-sulfonic acid dimethylamide.
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PTP1B (13132.84 Å), except for HDA (13039.12 Å) and MCA 
(13059.97 Å), which were notably lower (Table 3). After an 
increase in the SASA values during the initial 5 ns, all PTP1B 
complexes fluctuated between 12,250 and 145,000 Å with PHA 
and DCA increasing to 15,250 Å at the end of the simulation 
(Fig. 9e). 

3.4.6. Post-dynamic analysis of top CS metabolites against SDH
When bound to SDH, the investigated compounds 

displayed elevated mean RMSD values than apo-SDH (2.48 
Å), with the exception of ETB (2.41 Å) and BLD (2.45 Å), 
both of which exhibited lower values. In comparison to the 
AA-HPS (2.91 Å) (standard) complex, all SDH-CS complexes 
had lower mean RMSD, except for CNI (3.15 Å) (Table 3). 
The examined SDH complexes had RMSD values ranging 
from 1.00 Å to 4.00 Å during the simulation (Fig. 10a). The 
mean RMSF of apo-SDH (1.35 Å) complex and SDH-HPS 
(1.35 Å) complex were lower in comparison to the SDH-CS 
metabolite complexes, except for ETB (1.33 Å) and BLD (1.29 
Å). Following a decline in the range of residues 0–10, the 
RMSF of the scrutinized SDH complexes exhibited fluctuations 
spanning from 0.50 Å to 3.00 Å until residue 350. Pronounced 

PTP1B (1.15 Å), all PTP1B complexes had lower RMSF values, 
with MCA and TDA exhibiting the lowest mean RMSF of 0.99 
ÅÅ, both notably comparable to URS (1.00 Å) (Table 3). The 
RMSF for all complexes varied within the range of 0.5 Å to 
4.00 Å. Notably, DCA, TDA, and PHA displayed an increase in 
RMSF, ranging from 5.80 Å to 9.80 Å, specifically at residues 
280–299 (Fig. 9b). The mean ROG of all PTP1B complexes 
was comparably lower than apo-PTP1B (19.37 Å), with the 
exception of PHA (19.49 Å) and DCA (19.47 Å). Interestingly, 
MCA (19.25 Å) exhibited the lowest mean RMSF, which was 
marginally less than URS (19.27 Å) (Table 3). During the 120 
ns simulation, the ROG of all PTP1B complexes fluctuated 
between 19.05 Å to 19.75 Å, except DCA, TDA, and PHA, with 
terminal fluctuations ranging from 19.90 Å to 20.10 Å between 
110 and 120 ns (Fig. 9c). The average number of hydrogen 
bonds formed between the PTP1B complexes compared to 
apo-PTP1B (159.89) decreased during the simulation, with the 
exception of MCA (161.67) and HDA (163.67), which were 
comparably higher (Table 3). The number of hydrogen bonds 
formed between all the PTP1B complexes ranged between 120 
and 190 during the 120 ns simulation (Fig. 9d). All PTP1B 
complexes revealed a higher average SASA in contrast to apo-

Figure 11. 2-D interaction plots following the binding of AA to (a) (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-dihydroisochromen-
1-one and (b) acarbose over 120 ns simulation. 
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HDJ (12145.93 Å), which had the lowest mean SASA value 
(Table 3). The SASA of all SDH complexes varied from 11,250 
to 16,500 Å, with the larger values attributed to BHP and HPS 
(Fig. 10e). 

3.4.7. 2D interaction plot analysis of top CS metabolites against 
the investigated diabetes enzymes

The 2D interaction plots of the top-ranked CS 
compounds (highest negative ∆Gbind) against their respective 
target enzymes over the 120 ns simulation showed various 
types of bonds, namely hydrogen bonds (conventional and 
carbon), attractive charge, Van der Waals, pi-pi-stacked, 
pi-pi T-shaped, pi-cation, pi-anion, pi-alkyl, alky, halogen 
(fluoride), and unfavorable acceptor–acceptor and donor–
donor interactions (Fig.s 11–16). While AA and BHP formed 
19 interactions, AA and ACA formed 22 interactions (Fig. 11) 
at 120 ns. AG and VBG had 19 interactions, but with ACA, 
only 10 interactions were observed (Fig. 12). For aldose 
reductase, HDJ formed 22 interactions while EPA formed 20 
interactions, including (Fig. 13). CMA binds to DPP-4 with 
13 interactions, while SGT binds with 16 interactions (Fig. 
14). The binding of HDA, URS to PTP1B resulted in 11 and 

variations were noted particularly between residues 40–75, 
100–125, and 260–300, culminating in a significant upsurge in 
RMSF to 8.30 Å observed around residues 350–356 (Fig. 10b). 
In comparison to apo-SDH (20.72 Å), the investigated SDH 
complexes demonstrated higher mean ROG values. However, 
CS metabolites BHP (20.90 Å) and BLD (21.02 Å) had lower 
mean ROG when bound to SDH in comparison to the standard 
HPS (21.17 Å) (Table 3). Throughout the 120 ns simulation, 
fluctuations in ROG were observed, with the complexes 
showcasing a range between 20.30 Å and 22.10 Å (Fig. 10c). 
Regarding the mean number of hydrogen bonds formed among 
the SDH complexes, all displayed an increase compared to 
apo-SDH (131.92), except CNI (131.58), which demonstrated 
a relatively similar number of hydrogen bonds. Interestingly, 
BLD (168.23) exhibited a higher number of hydrogen bonds in 
comparison to HPS (166.34) (Table 3). Throughout the 120 ns 
simulation, the number of hydrogen bonds exhibited fluctuations 
ranging between 100 and 200 for the SDH complexes. Notably, 
HPS and BLD stood out by displaying a higher number of 
hydrogen bonds when bound to SDH (Fig. 10d). Among the 
SDH complexes, several displayed an increase in the mean 
SASA when compared to apo-SDH (12222.97 Å), except for 

Figure 12. 2-D interaction plots following the binding of alpha-glucosidase to (a) 1-O-vanilloyl-beta-D-glucose and (b) acarbose over 120 
ns simulation. 
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index (4.59 eV), and the lowest chemical potential (−4.50 
eV), while GTA had the highest electron affinity (7.72 eV) 
Table 5 and Supplementary Table S5. Summarily, the cDFT 
parameters of the top-ranked compounds taken for MD 
simulation and the reference standards are presented in Table 
5, while those of DCA, TDA, MCA, and PHA have been 
previously reported [41].

3.6. Toxicity prediction of the top-ranked compounds
To gain insights into the safety of the top-ranked 

compounds following MD simulation, the compounds were 
subjected to ProTox toxicity prediction. The emerging top 
compounds against the diabetes targets had a minimum lethal 
dose (LD50) of > 400 mg/kg and toxicity class > 3, except 
for curvularol, austricin, and methyl isocitric acid, which 
presented < 200 mg/kg LD50 and toxicity class ≤ 3 (Table 6). 
All the compounds showed no hepatotoxicity potential and 
were mostly nonend-point toxicants (Table 6). The other four 
top compounds for each target equally demonstrated relatively 
high tolerable doses, no organ and end-point toxicities, and 
compared well with the available standard drugs.

4. DISCUSSION
Humanity has relied on nature to provide food, shelter, 

clothing, transportation, fertilizers, flavors and fragrances, and 

12 interactions, respectively (Fig. 15). Finally, the SDH-HDJ 
complex showed 22 interactions, while HPS showed 9 (Fig. 
16). The details of the interacting residues categorized as 
hydrogen and hydrophobic interactions post 120 ns simulation 
are summarized in Table 4.

3.5. Frontier molecular orbitals of the top-ranked compounds
The top-ranked compounds and reference standards 

had LUMO energies ranging between −5.92 and −0.22 eV, 
except ACA (−0.89 eV) and URS (−0.24 eV). However, 
the HOMO energies of the standards fall within the same 
range as the top compounds (−5.85 and −7.72 eV) (Table 5 
and Fig. 17). The lowest energy gap among the top-ranked 
compounds was observed in HPH (3.61 eV), AUS (4.70 eV), 
HPH (3.61 eV), CTA (4.06 eV), PHA (4.41 eV), and CNI 
(4.46 eV) against AA, AG, AR, DPP-4, PTPIB, and SDH, 
respectively; however, a lower energy gap was observed in 
the two reference standards; EPA (3.21 eV) and HPS (4.39 
eV) against AR and SDH, respectively (Table 5 and Fig. 17). 
Consequently, these compounds exhibited varying softness 
and lowest hardness values, respectively [HPH (0.55 and 
1.80 eV), AUS (0.43 and 2.35 eV), HPH (0.55 and 1.80 eV), 
CTA (0.50 and 2.03 eV), PHA (0.45 and 2.20 eV), and CNI 
(0.45 and 2.23 eV)]. Notably, PHA had the highest ionization 
energy (2.30 eV), electronegativity (4.50 eV), electrophilicity 

Figure 13. 2-D interaction plots following the binding of AR to (a) (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside and (b) 
epalrestat over 120 ns simulation.
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notably, medicinal resources among others [57]. For centuries, 
plants with medicinal attributes have formed the basis of 
the traditional systems of medicine [24], which have been 
continuously developed to provide new remedies to treat and/
or manage several diseases and illnesses [57], including T2DM 
[58]. For instance, despite being a waste material of corn, CS 
has been identified as a possible therapeutic agent for T2DM 
management [27], and several other biological properties such 
as diuretic, antihyperlipidemic, antihypertensive, anti-obesity, 
anti-microbial, neuroprotective, anti-cancer, anti-depressant, 
antioxidant, anti-inflammatory, and antidiabetic [29,31,32]. 

Amongst several factors that influence the 
phytochemical profile of therapeutically significant plants 
and plant materials (such as CS), determining the changes in 
chemical and bioactive components throughout the maturation 
process is crucial for identifying the optimal harvest time that 
ensures the highest level of therapeutic activity [59]. The high 
concentration of metabolites profiled at the mature stage of CS 
relative to the premature stage suggests accumulation of the 
secondary metabolites during the maturation process of CS [60]. 
The observed variation in life or developmental cycle of a plant 
may be likened to the report of Sarepoua et al. [61], wherein, 
despite the presence of certain metabolites in abundance during 
the silking phase (premature), the milking stage (mature) 
exhibited the highest levels of secondary metabolites such as 

total phenolic content, total flavonoid content, total anthocyanin 
content and antioxidant capacity. Similarly, Abeywardhana et 
al. [62] demonstrated that the therapeutic potential of Ocimum 
sanctum is more pronounced at the fully matured stage 
compared to the premature stage. The increase in therapeutic 
potential at more mature phases of a plant or plant material may 
be attributed to a higher presence of therapeutic compounds 
[26].

Aside from the influence of the developmental 
(mature) stage contributing to the abundance of secondary 
metabolites, the processing conditions may also influence the 
composition and quantity of metabolites within CS [32]. In 
fact, the elevated abundance of various compounds in the raw 
CS samples suggest that the processing of CS during extract 
preparation (such as drying, grinding, boiling, and alcoholic 
solvent extraction) had an impact on the quantity of these 
metabolites in the processed CS samples [63]. In traditional 
systems of medicine, the simplest and most popular methods 
for preserving the medicinal properties of CS involve aqueous, 
hydro-ethanolic, and ethanolic extractions [64,65], since the 
type of solvent used for extraction plays a role in the types and 
amounts of phytoconstituents extracted [28,66]. 

Metabolites identified in CS extracts, such as 
1-O-vanilloyl-beta-D-glucose, a hydrolysable tannin with 
potential antidiabetic properties [67], have their variant, 

Figure 14. 2-D interaction plots following the binding of DPP-4 to (a) p-coumaroyl malic acid and (b) sitagliptin over 120 ns simulation.
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hydro-ethanol, suggesting that the majority of the metabolites 
in CS are moderately polar [28,66,73]. Furthermore, 
Lipinski’s Ro5 was mostly considered due to its simplicity 
and practicability in selecting metabolites of remarkable oral 
pharmacokinetics profiles for drug development purposes was 
employed in this study to screen the metabolites for subsequent 
computational studies. 

Molecular docking accessed the CS metabolites’ 
docking scores at active sites of the investigated enzymes, with 
higher negative scores indicating stronger ligand attraction [72–
74]. The more negative docking scores of AES, AUS, HPH, HDJ, 
PHA, and ETB compared to the reference standards against 
AA, AG, AR, DPP-4, PTP1B, and SDH, respectively, indicate 
their better binding affinities, interaction, superiority, and their 
greater suitability or fitness as possible therapeutics [75–79]. 
Although there are no studies that have previously explored the 
top-ranked CS metabolites relative to the investigated enzyme 
targets, Chaudhary et al. [80] revealed that CS compounds 
gallotannin, 3-O-caffeoylquinic acid, stigmasterol and 
formononetin (7-hydroxy-4’-methoxyisoflavone) had higher 
negative docking scores against DPP-4 (−10.7 kcal.mol), AG 
(−8.9 kcal.mol), AA (−9.8 kcal.mol), and PTP1B (−8.7 kcal.
mol), highlighting the ability of CS metabolites to modulate 

6-O-vanilloyl-beta-D-glucose being reported to inhibit 
a-amylase activity [68]. (R)-7-butyl-6,8-dihydroxy-3-[(3e)-
pent-3-en-1-yl]-3,4-dihydroisochromen-1-one is a derivative 
of 3,4-dihydroisocoumarin with antidiabetic activity [69]. 
Similarly, (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-
D-glucoside and (-)-11-hydroxy-9,10-dihydrojasmonic 
acid 11-beta-D-glucoside are glucoside derivatives of 
(-)-11-hydroxy-9,10-dihydrojasmonic acid identified in 
Gymnema sylvestre and Combretum micranthum and presented 
significant binding interaction with α-amylase, α-glucosidase, 
and phosphorylated insulin receptor tyrosine kinase to elicit an 
antidiabetic effect [70]. P-coumaroyl malic acid, a derivative of 
p-coumaric acid, is formed from the esterification of the carboxy 
group of p-coumaric acid with the hydroxyl group of malic 
acid. P-coumaric acid has been noted for attenuating elevated 
blood glucose [71]. Hydroxydecanedioic acids and their 
derivatives are water-soluble salts been implicated in T2DM 
treatment [72]. A proposed pathway for the biosynthesis of some 
of the metabolites identified in CS is depicted in Supplementary 
Figure 8. Among the CS samples, the hydro-ethanolic extract of 
mature CS displayed a higher abundance of most metabolites. 
The higher concentration of metabolites in the hydro-ethanolic 
extract of mature CS is attributed to the moderate polarity of 

Figure 15. 2-D interaction plots of PTP1B bound to (a) CS metabolite 2-hydroxydecanedioic acid and (b) ursolic acid over 120 ns simulation.  
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the activity of key enzymes implicated in the pathogenesis of 
T2DM. Similarly, Sabiu et al. [8] demonstrated that phenolic 
compounds from Carpobrotus edulis, such as chlorogenic acid, 

Figure 16. 2-D interaction plots of SDH bound to (a) (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside and (b) 4-[2-1R-hydroxy-
ethyl)-pyrimidin-4-yl] piperazine-1-sulfonic acid dimethylamide over 120 ns simulation. 

Figure 17. Frontier molecular orbitals for (a) hydroxyphenyl)-7-phenylhepta-4,6-dien-3-one (HPH), (b) austricin (AUS), (c) caffeoyl tartaric 
acid (CTA), (d) cnicin (CNI), (e) acarbose (ACA), (f) epalrestat (EPA), (g) sitagliptin (STG), (h) ursolic acid (URS), and (i) 4-[2-1R-hydroxy-
ethyl)-pyrimidin-4- yl]piperazine-1-sulfonic acid dimethylamide (HPS)

luteolin-7-O-glucoside, epicatechin, and isorhamnetin-3-O-
rutinoside had commendable binding at the active site of AA, 
AG, and AR.
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to AA, AG, AR, DPP-4, PTP1B, and SDH, respectively, and 
potentially stronger interactions between the CS metabolites 
and the enzymes. The higher negative ∆Gbind of AA-acarbose 
relative to the top CS metabolites-AA complexes suggests 
better binding affinity of acarbose and potential in inhibiting AA 
activity. However, other top CS metabolites bound complexes 
with higher negative ∆Gbind values than their respective 
reference standards, highlighting superior potential to modulate 
their respective enzyme activity. Specifically, the top-ranked CS 
metabolites’ ability to inhibit AA, AG, AR, DPP-4, PTP1B, and 
SDH suggests CS can prevent carbohydrate and glucagon-like 

The combination of molecular docking and MD 
simulation provides a comprehensive understanding of the 
molecular interactions and conformational changes that occur 
from the binding of a ligand to a target protein [81]. The 
MM/GBSA method calculates ∆Gbind for macromolecules by 
combining molecular mechanics calculations and continuum 
solvation models [82]. Lower ∆Gbind values align with a higher 
binding affinity of a ligand to a given target [83], reflecting 
a more stable complex [84]. The high negative ∆Gbind values 
for BHP, VBG, HDJ, CMA, HDA, and HDJ among the top 
investigated CS metabolites indicate a greater binding affinity 

Table 4. Bond interaction analysis of the targets of top 5 identified metabolites of corn silk against the target enzymes.

Complexes Total interactions Hydrogen bond interactions Hydrophobic interactions

AA

BHP 19 6 [GLN 62, ASP 196, GLU 232, ASN 
297, HIE 298 and ASP 299]

10 [Van der Waals (TRP 57, TYR 61, HIE 100, THR 162, LEU 164, ARG 195, 
ALA 197, ILE 234, PHE 255, and ASN 300), 1 pi-pi stacked (TRP 58) 1 pi-pi 
T-shaped (TRP 58) and 1 pi-alkyl (TRP 58]

ACA 22 8 [HIE 100, THR 163, ASP 196, HID 200, 
HID 298, 2 at ASP 299, and HIP 300]

11 [Van der Waals (TRP 57, TRP 58, TYR 61, GLN 62, VAL 97, TYR 150, ARG 
194, ALA 197, LYS 199, ILE 234, and PHE 255), 2 pi-pi alkyl (LEU 161 and 
LEU 162) and 1 pi-anion (ASP 299)]

AG

VBG 19 8 [2 (ASP 175), ILE 176, 2 (HIE 569), 
ASP 300 and 2 (ASP 511)]

6 [Van der Waals (ALA 177, TRP 410, ARG 495, GLY 510, ASP 540, and ARG 
567), 1 pi-anion (ASP 412), 1 pi-pi stacked (TRP 272) and 3 pi-alkyl (TRP 508, 
PHE 544, and HIE 569)]

ACA 10 1 [ARG 241] 8 [Van der Waals (MET 200, GLY 240, THR 242, GLU 244, PRO 626, THR 642, 
ARG 642, and ASN 701) and 1 pi-anion (MET 245)]

AR

HDJ 22 10 [TRP 23, 2 at HIE 113, TRP 114, TYR 
219, PRO 221, VAL 300, CYS 301, ALA 
302, and LEU 303]

7 [Van der Waals (LYS 24, TYR 51, ASN 163, ARG 220, GLN 52, PHE 124 and 
LYS 224), 4 pi-alkyl (VAL 50, TRP 80, PHE 125 and LEU 304), 1 pi-pi stacked 
(TRP 222)]

EPA 20 2 [TRP 23 and HIE 113] 10 [Van der Waals (LYS 24, ASP 46, VAL 50, LYS 80, TRP 114, SER162, ASN 
163, GLN 186, ILE 263 and LEU 303), 3 pi-pi stacked (TYR 51, TRP 82, TYR 
212), 3 pi-alkyl (HIE 113, TYR 212 and CYS 301) and 2 pi-sulfur (HIE 113, 
PHE 125)]

DPP-4

CMA 13 5 [GLU 168, TYR 219, PRO 513, ASP 
626, and ASN 673] 

7 [Van der Waals (TRP 164, TYR 510, GLY 512, CYS 514, SER 593, TYR 625 
and TYR 629) and 1 pi-pi T-shaped (PHE 320)]

SGT 16 3 [GLU 168, TYR 510, and ASN 673] 8 [Van der Waals (GLU 169, SER 172, PHE 320, ARG 321, SER 593, TYR 594, 
TRP 622, and VAL 674), 4 pi-pi alkyl (VAL 619, TYR 625, TYR 629, and HID 
703) and 1 pi-anion (GLU 168)]

PTP1B

HDA 11 2 [ARG 56 and LYS 58] 5 [Van der Waals (PHE 30, ASP53, SER 55, LYS 73, and LYS 255), 4 pi-pi alkyl 
bonds (HIS 54, LEU 71 and 2 at PHE 256)]

URS 12 - 8 [Van der Waals (PRO 88, MET 113, ALA 121, GLN 122, GLN 126, MET 132, 
ILE 133, and ASP 136) and 4 pi-pi alkyl interactions (CYS 91, LEU 118, and 2 
at 134)

SDH

HDJ 22 5 [GLY 45, SER 46, 2 (THR 121) and 
ARG 298)

12 Van der Waals [(CYS 44, HIS 49, TYR 50, CYS 119, GLU 155, PRO 156, 
VAL 159, ILE 183, VAL 272, VAL 296, PHE 295 and TYR 299), 1 pi-pi stacked 
(PHE 59) and four pi-alkyl (ILE 56, HIS 69, PHE 119 and LEU 274)]

HPS 9 2 [GLY 45 and THR 250] 5 [Van der Waals (CYS 44, SER 46, HIE 49, ILE 56 and CYS 249) and 2 pi-
alkyl bonds (ILE 183 and LEU 274)]

AA: alpha-amylase; AG: alpha-glucosidase; AR: aldose reductase; DPP-4: dipeptidyl peptidase-4; PTP1B: protein tyrosine phosphatase 1B; SDH: sorbitol 
dehydrogenase; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one; ACA: acarbose; VBG: 1-O-vanilloyl-beta-D-glucose; 
MGN: methyl geranate; HDJ: (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; EPA: epalrestat; CMA: p-coumaroyl malic acid; SGT: sitagliptin; 
HDA: 2-hydroxydecanedioic acid; URS: ursolic acid; HPS: 4-[2-1R-hydroxy-ethyl)-pyrimidin-4- yl]piperazine-1-sulfonic acid dimethylamide.
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Table 5. The cDFT parameters of the top-ranked compounds against enzymes implicated in T2DM.

cDFT parameters (eV)

Ligands LUMO HOMO Energy 
gap

Ionization 
energy

Electron 
affinity

Hardness Softness Electronegativity Chemical 
potential

Global 
electrophilicity

AA

AES −2.07 −6.42 4.35 2.07 6.42 2.17 0.46 4.24 −4.24 4.14

BHP −1.19 −6.05 4.86 1.19 6.05 2.43 0.41 3.62 −3.62 2.70

CUR −0.42 −6.43 6.01 0.42 6.43 3.01 0.33 3.43 −3.43 1.96

HPH −2.24 −5.85 3.61 2.24 5.84 1.80 0.55 4.04 −4.04 4.53

AUS −1.86 −6.56 4.70 1.86 6.56 2.35 0.43 4.21 −4.21 3.78

ACA −0.89 −6.11 5.22 0.89 6.11 2.61 0.38 3.50 −3.50 2.35

AG

AUS −1.86 −6.56 4.70 1.86 6.56 2.35 0.43 4.21 −4.21 3.78

GTA −0.44 −7.72 7.29 0.44 7.72 3.64 0.27 4.08 −4.08 2.29

VBG −1.47 −6.18 4.71 1.47 6.18 2.36 0.42 3.83 −3.83 3.11

MGN −1.10 −6.34 5.24 1.10 6.34 2.62 0.38 3.72 −3.72 2.64

HDJ −1.17 −6.46 5.29 1.17 6.46 2.65 0.38 3.82 −3.82 2.75

ACA −0.89 −6.11 5.22 0.89 6.11 2.61 0.38 3.50 −3.50 2.35

AR

HPH −2.24 −5.85 3.61 2.24 5.84 1.80 0.55 4.04 −4.04 4.53

BHP −1.19 −6.05 4.86 1.19 6.05 2.43 0.41 3.62 −3.62 2.70

AES −2.07 −6.42 4.35 2.07 6.42 2.17 0.46 4.24 −4.24 4.14

AUS −1.86 −6.56 4.70 1.86 6.56 2.35 0.43 4.21 −4.21 3.78

HDJ −1.17 −6.46 5.29 1.17 6.46 2.65 0.38 3.82 −3.82 2.75

EPA −2.93 −6.13 3.21 2.93 6.13 1.60 0.62 4.53 −4.53 6.41

DPP-4

HDJ −1.17 −6.46 5.29 1.17 6.46 2.65 0.38 3.82 −3.82 2.75

CTA −2.06 −6.12 4.06 2.06 6.12 2.03 0.50 4.09 −4.09 4.12

BHP −1.19 −6.05 4.86 1.19 6.05 2.43 0.41 3.62 −3.62 2.70

PHA −2.30 −6.70 4.41 2.30 6.70 2.20 0.45 4.50 −4.50 4.59

CMA −1.86 −6.12 4.26 1.86 6.12 2.13 0.47 3.99 −3.99 3.74

SGT −1.35 −6.65 5.30 1.35 6.65 2.65 0.38 4.00 −3.99 3.01

PTP1B

HDA −0.76 −7.42 6.66 0.76 7.42 3.33 0.30 4.08 −4.08 2.51

URS −0.24 −6.10 5.85 0.24 6.10 2.93 0.34 3.17 −3.17 1.72

SDH

ETB −0.63 −6.48 5.85 0.63 6.48 2.92 0.34 3.55 −3.55 2.16

CNI −2.12 −6.57 4.46 2.12 6.57 2.23 0.45 4.35 −4.35 4.23

BLD −1.63 −7.34 5.72 1.63 7.34 2.86 0.35 4.49 −4.48 3.52

HDJ −1.17 −6.46 5.29 1.17 6.46 2.65 0.38 3.82 −3.82 2.75

BHP −1.19 −6.05 4.86 1.19 6.05 2.43 0.41 3.62 −3.62 2.70

HPS −1.79 −6.17 4.39 1.79 6.17 2.19 0.46 3.98 −3.98 3.61

HOMO: highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital; AA: alpha-amylase; AG: alpha-glucosidase; AR: aldose reductase; DPP-
4: dipeptidyl peptidase-4; PTP1B: protein tyrosine phosphatase 1B; SDH: sorbitol dehydrogenase; AES: aesculin; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-
3-en-1-yl]-3,4-dihydroisochromen-1-one; CUR: curvularol; HPH: (6e)-1-(4-hydroxyphenyl)-7-phenylhepta-4,6-dien-3-one; AUS: austricin; ACA: acarbose; GTA: 
glutaric acid; VBG: 1-O-vanilloyl-beta-D-glucose; MGN: methyl geranate; HDJ: (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; EPA: epalrestat; 
CTA: caffeoyl tartaric acid; PHA: phaseic acid; CMA: p-coumaroyl malic acid; SGT: sitagliptin; TDA: tetradecanedioc acid; HDA: 2-hydroxydecanedioic acid; 
MCA: methylisocitric acid; DCA: dodecanedioc acid; URS: ursolic acid; ETB: erythronolide B; CNI: cnicin; BLD: blennin D; HPS: 4-[2-1R-hydroxy-ethyl)-
pyrimidin-4- yl]piperazine-1-sulfonic acid dimethylamide. 
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to the apo-enzyme throughout a simulation indicates enhanced 
stability [88]. The lowest mean RMSD values observed in 
AA-AES, AR-BHP, DPP-CTA, PTP1B-MCA, and SDH-ETB 
complexes in comparison to their respective apo-enzyme and 
reference standard complexes suggest that the binding of these 
CS metabolites formed stable complexes with the enzymes. 
Although the average RMSD values of AES and AUS were 
greater than the apo enzymes (AA and AG, respectively), this 
finding did not indicate the formation of unstable complexes 
since the values recorded were lower than the acceptable 3.0 
Å, and hence depicting stable complexes formation [89,90]. 
It is noteworthy that the less stable complexes formed by the 
reference standards relative to the top-ranked metabolites 
against most of the targets in this study is in line with previous 
studies where compounds such as procyanidin, rutin, apigenin, 
chlorogenic acid, naringenin, luteolin and isoflavone bound 
systems exhibited lower mean RMSD values relative to their 
apo-enzymes and reference standards [8,11,91,92]. 

The RMSF of a protein-ligand system signifies the 
effect of a bound compound on the behavior of active site 
residues [93], with lower or higher shifts in alpha (α)-carbon 
(C) indicating less or more flexible movements, respectively 
[94]. Higher RMSF values signify more flexible movement 
and the potential of the targets to undergo conformational 
changes. However, the low mean RMSF values of the AA-
CUR, AG-AUS, AR-BHP, DPP-4-CMA, DPP-PHA, PTP1B-
MCA, and SDH-BLD complexes compared to the apo-enzyme 
and reference standards suggest lesser flexible movements 
and, consequently, greater stability and lower conformational 
changes in the investigated complexes. This finding agrees with 
previous studies for some metabolite profiled against AG and 
DPP-4 [11,21]. 

The ROG measures the spatial distribution or 
compactness of a molecule [95]. It calculates the average 
distance of individual atoms (or groups of atoms) in a molecule 
from its center of mass, offering insights into how spread out or 
condensed a molecule is during a simulation [96], with lower 
values indicating more compactness and thus more stability 
of the final complexes [97]. The CS metabolites bound to the 
investigated targets, specifically AA-BHP, AR-BHP, DPP-CTA, 
and PTP1B-MCA, exhibited the least average ROG values, 
suggesting a higher degree of compactness and, consequently, 
superior stability of the final complexes compared to the apo-
enzyme and the respective standards for potential regulation 
of the enzyme activity. In tandem with this study, Sabiu et 
al. [21], Rampadarath et al. [92], and Eawsakul et al. [98] 
previously reported that the binding of the CS metabolites to 
AA, PTP1B, and AG, respectively, resulted in lower mean ROG 
in comparison to the apo-enzyme and reference standard. This 
observation further highlights the ability of CS metabolites to 
reduce the compactness and thus improve the stability of the 
final complexes. 

Hydrogen bonds are important interactions and are 
essential for molecular recognition, maintaining structural 
stability, facilitating enzyme catalysis, influencing drug partition, 
and permeability [97,99]. The increase in the average number of 
hydrogen bonds within the complexes AA-AES, AR-BHP, DPP-
BHP, PTP1B-HDA, and SDH-BLD, relative to the apo-enzyme 

peptide 1 breakdown, enhance insulin signalling, and reduce 
sorbitol and fructose accumulation in cells. These effects 
contribute to CS’s antidiabetic action by modulating enzymes 
involved in T2DM pathogenesis and its complications. 

Additionally, MD simulation can be used to elucidate 
the extent of binding stability, flexibility, and compactness of 
a protein-ligand bound complex [11]. This is crucial due to 
the potential likelihood of an impending conformational or 
structural change that could occur after ligand binding to a 
receptor, which could potentially impact the biological activity 
of the enzyme [85,86]. The RMSD provides insight into the 
deviation or changes in the position of atoms over a simulation 
period and evaluates the stability of a protein-ligand complex 
[87]. A decrease in the RMSD value of a complex in comparison 

Table 6. Toxicity prediction of the top ranked compounds profiled 
against the enzymes implicated in T2DM.

Compounds LD50 (mg/kg)/TC HT CDT CRG IT MG CYT

AES 4000/5 In In In Ac In In

BHP 2260/5 In In In Ac In In

CUR 37/2 In Ac In Ac In Ac

HPH 2000/4 In In In In In In 

AUS 125/3 In In Ac In In In

GTA 2750/5 In In In In In In

VBG 2260/5 In Ac In In In In

MGN 5000/5 In In In In In In 

HDJ 10000/6 In Ac In In In In 

CTA 2000/4 In In Ac In In In 

PHA 1624/4 In In In In In In 

CMA 5000/5 In In In In In In 

TDA 900/4 In In In In In In 

HDA 3400/5 In In In In In In 

MCA 50/3 In In In In In In 

DCA 900/4 In In In In In In 

ETB 5000/5 In In In Ac In In 

CNI 452/4 In In In Ac In In 

BLD 1330/4 In In In Ac Ac In 

ACA 24000/6 Ac Ac In Ac In In

EPA 5/2 In In In In In In 

SGT 2500/5 In In In In In In 

URS 2000/4 Ac Ac Ac Ac In In 

HPS 3000/5 In In In In In In 

AES: aesculin; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-
dihydroisochromen-1-one; CUR: curvularol; HPH: (6e)-1-(4-hydroxyphenyl)-
7-phenylhepta-4,6-dien-3-one; AUS: austricin; ACA: acarbose; GTA: glutaric 
acid; VBG: 1-O-vanilloyl-beta-D-glucose; MGN: methyl geranate; HDJ: 
(-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; EPA: epalrestat; 
CTA: caffeoyl tartaric acid; PHA: phaseic acid; CMA: p-coumaroyl malic acid; 
SGT: sitagliptin; TDA: tetradecanedioc acid; HDA: 2-hydroxydecanedioic acid; 
MCA: methylisocitric acid; DCA: dodecanedioc acid; URS: ursolic acid; ETB: 
erythronolide B; CNI: cnicin; BLD: blennin D; HPS: 4-[2-1R-hydroxy-ethyl)-
pyrimidin-4- yl]piperazine-1-sulfonic acid dimethylamide; LD: Lethal dose; TC: 
Toxicity class, HT: Hepatotoxicity, CDT: Cardiotoxicity, CRG: Carcinogenity, IT: 
Immunotoxicity, MG: Mutagenicity, CYT: Cytotoxicity, In: Inactive, Ac: Active. 
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orbital located in the innermost region that lacks electrons and 
functions as an electron acceptor or positive charge carrier, 
facilitating the transfer of these particles to larger components 
[105]. Therefore, investigating the HOMO and LUMO energies 
of lead compounds may provide crucial insights into their 
chemical reactivities [106].

The energy gap (ΔE) between LUMO and HOMO 
is essential for comprehending the reactivity, kinetic stability, 
and chemical characteristics of a compound [107], with a wide 
energy gap suggesting firmness and low chemical reactivity, 
whereas a small energy gap indicates softness and high chemical 
reactivity [108]. Unfortunately, the lower energy gaps, higher 
chemical softness, and lower chemical hardness against each of 
the targets observed by some of the top-ranked compounds did 
not correlate with their free binding energy, and this could be 
due to the observed relative residue fluctuations and increased 
surface area of the targets upon ligand binding. This could have 
reduced the effect of the reactivity of each compound on the 
binding free energy. This observation contradicts our previous 
report [41], where there is a correlation between a lower energy 
gap and higher negative binding free energy; however, it is 
consistent with Rampadarath et al. [106], where the lower 
energy gap of formoxanthone B did not result in higher negative 
free binding energy upon binding for MMP1. 

Notably, chemical descriptors do not usually 
present a direct relationship with thermodynamic stability or 
reactivity, as shown by ΔG. Therefore, the observed ΔE and ΔG 
discrepancies in this study allude to the fact that ΔE and ΔG give 
complementary but distinct insights, and their differences might 
be reflecting the different aspects of molecular behavior they 
describe. The electrophilicity index quantifies the electrophilic 
reactivity of compounds. Molecules with values below 0.8 
eV are categorized as weak electrophiles; values above 1.5 
eV signify strong electrophiles, while between 0.8 and 1.5 
eV suggest moderate electrophiles [109]. Remarkably, all the 
top-ranked compounds had an electrophilicity index above 1.5 
eV, suggesting they are strong electrophiles with a significant 
electrophile presence around the molecules.

Toxicity analysis helps in predicting the degree of 
safety of a compound; it indicates the minimum tolerable dose 
in half of a population and whether a compound has the potential 
to cause organ or end point toxicities [21]. Generally, except 
for curvularol, austricin, and methyl isocitric acid, the other 
top compounds demonstrated relatively high tolerable doses 
and no organ and endpoint toxicities. This denotes little or no 
potential to cause pathological conditions such as inflammation, 
neurodegenerative diseases, T2DM, aging, cardiovascular 
diseases, organ disorders, and cancers [110]. While most 
of the compounds indicate being strong electrophiles, the 
electrophilicity index is a theoretical descriptor of chemical 
reactivity and not a direct biological or systemic toxicity 
predictor, as better presented by ProTox prediction; hence, 
the compounds demonstrate relatively safe profiles under 
physiologic conditions. Altogether, this study shows that CS 
contains a hub of metabolites; the lack of validation studies is a 
limitation in the work; thus, further wet-lab studies, such as in 
vitro and in vivo investigations to establish CS metabolites’ full 
potential in diabetes management, are required.

and standard complexes, suggests the ability of CS compounds 
to occupy a portion of the proteins’ intramolecular phase. This 
results in the formation of more stable final complexes. This 
finding agrees with Rampadarath et al. [92] and Sajal et al. [100] 
studies, where they show that the binding of plant metabolites, 
such as β-pinene, dehydro-p-cymene, -α-pinene, orientin, vitexin, 
and apigenin, to DPP-4 and PTP1B presented a higher number 
of hydrogen bonds, in comparison to their reference standards. 
Hence, this suggests that CS metabolites have the potential to 
form a greater number of hydrogen bonds when bound to the 
enzyme targets better than the respective standards.

The SASA serves as a measure of thermodynamic 
stability, quantifying the surface area of a biomolecule available 
to solvent molecules [101], as well as changes in protein surface 
area [102]. High SASA values indicate expansion of the surface 
area, while lower SASA values suggest a reduction in protein 
volumes [97]. Apo-enzymes with higher SASA values possess 
greater solvent accessibility potential, which may alter their 
catalytic activities. The low SASA values observed in: AG-
VBJ, AR-BHP, DPP-4-PHA, PTP1B-MCA, and SDH-HDJ 
complexes relative to the apo-enzymes and reference standard-
complexes depict a higher degree of protein folding and, 
consequently, the formation of more stable final complexes. 
Similar studies also reported a reduction in SASA upon the 
binding of plant metabolites to the apo-enzyme [11,91,103]. 

In addition, the nature and number of interactions 
formed upon the binding of ligand and the amino acid residues 
of the target protein are crucial in determining the extent 
of the binding affinity [21]. The high number of interactions 
between AG-VBG, AR-HDJ, and SDH-HDJ indicated stronger 
and more stable ligand–protein complexes, suggesting greater 
interaction between the CS metabolites and target enzymes. 
This suggests a higher degree of inhibition of the enzymes by 
the CS metabolites in comparison to the reference standards. 
The higher negative ∆Gbind could be attributed to the higher 
number of interactions occurring between the top-ranked 
CS metabolites and the enzyme targets, in comparison to the 
reference standards investigated. While BHP and CMA did 
not establish more interactions when bound to AA and DPP-
4, respectively, the ΔGbind of the complexes formed with the 
CS metabolites was lower when compared to the ΔGbind of 
the standards. This suggests that despite a lower number of 
interactions within the CS metabolite and enzyme complexes, 
the interactions formed between the complexes resulted in 
greater binding affinity, forming stable final complexes [84]. In 
contrast, the decrease in the number of interactions observed 
between PTP1B-HDA could contribute to the reduction in the 
ΔGbind displayed by the complex in comparison to the URS. 

The molecular characteristics of the top-ranked 
compounds were computed using cDFT parameters to 
explore their potential therapeutic importance. The HOMO 
and LUMO orbitals are generally recognized as important 
markers for forecasting the chemical and biological reactivity 
of chemical species [104]. The HOMO is the highest orbital 
that contains electrons from which electrons are transferred 
to the protein, forming a bond that obstructs the active site 
of the protein implicated in the disease condition pathogens. 
On the other hand, the LUMO refers to the lowest unoccupied 
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