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The rising prevalence of type 2 diabetes mellitu:
underscore the need for new antidiabeti
mechanism remains unclear. This study
linked to T2DM and its complications:

"M the side effects of synthetic hypoglycemic agents

n silk (CS) is known for its antidiabetic properties, but its
re potential of CS constituents in modulating six key enzymes
ha-amylase (AA), alpha-glucosidase (AG), aldose reductase (AR),
ine phosphatase 1B (PTP1B), and sorbitol dehydrogenase (SDH), using

computational techniques. mance liquid chromatography-mass spectrometry identified 128 metabolites
across three CS extracts“faqueous; hydro-ethanol, and ethanol) from premature and mature developmental stages.
d i x abolite abundance, particularly in the hydro-ethanolic extract. An insight into the

t iomandbinding energy calculations over a 120-ns molecular dynamics simulation identified R-7-
0 -[(3E)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one (—40.30 kcal/mol), 1-O-vanilloyl-beta-

.17 kcal/mol), (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside (—44.13 kcal/mol),

p-coumaroyl malic acid (—34.40 kcal/mol), 2-hydroxydecanedioic acid (—19.71 kcal/mol), and (-)-11-hydroxy-
9,10-dihydrojasmonic acid 11-beta-D-glucoside (—36.61 kcal/mol) with the highest negative binding free energy
against AA, AG, AR, DPP-4, PTP1B, and SDH, respectively. Post-MD simulation confirmed the formation of more
thermodynamically stable CS metabolites-enzyme complexes in comparison to the respective reference standard-
enzyme complexes. Evidence from this study shows that CS metabolites possess potential inhibitory effects on the

investigated targets and suggest that CS and its metabolites could be a potential alternative for managing T2DM.

1. INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a significant
global health issue, recognized as a chronic metabolic disorder
that leads to high blood glucose levels due to inadequate insulin
production and/or insulin resistance [1,2]. Prolonged exposure
to T2DM or insufficient management can result in serious
complications such as kidney disease, vision impairment,
cardiovascular issues, heart attacks, strokes, nerve damage,
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skin disorders, and foot ulcers [2], potentially leading to death
in severe instances [3]. In addition to these complications,
T2DM places considerable physiological and psychological
stress on individuals and creates a substantial financial burden
on healthcare systems worldwide [4,5]. Although T2DM is
classified as a noncommunicable disease, its rising prevalence
across all demographics is alarming [6]. Currently, an estimated
537 million individuals globally are living with diabetes, with
90% diagnosed with T2DM [7].

The increased activity of alpha-amylase (AA)
and alpha-glucosidase (AG) accelerates the breakdown of
carbohydrates to simple sugars, resulting in a rapid influx
of glucose in the bloodstream, contributing to postprandial
hyperglycaemia [8]. Unlike AA and AG, dipeptidyl peptidase-4
(DPP-4) plays a role in breaking down glucagon-like peptide-1,
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an incretin hormone that stimulates insulin release and
inhibits glucagon release. These two hormones are essential in
regulating blood glucose levels [9]. Similarly, protein tyrosine
phosphatase-1B (PTP1B) is involved in the dephosphorylation
of insulin receptors and insulin receptor substrates, influencing
the insulin signalling pathway [10]. In T2DM, elevated
PTPIB activity hinders insulin signalling by excessively
dephosphorylating insulin receptors, which results in decreased
glucose uptake in cells, thus elevated blood glucose levels
[I1]. On the other hand, aldose reductase (AR) and sorbitol
dehydrogenase (SDH) play crucial roles in the polyol pathway, a
metabolic route responsible for converting glucose into sorbitol
and sorbitol to fructose, respectively [12,13]. In T2DM, the
activity of AR and SDH intensifies, resulting in the buildup of
sorbitol and fructose within cells [14]. Accumulation of sorbitol
and fructose can induce osmotic stress, causing cellular damage
and dysfunction, thereby contributing to the development of
secondary complications such as neuropathy, nephropathy, and
diabetic retinopathy [15,16]. These six enzymes play crucial
roles in the pathogenesis of T2DM or its related diabetic
complications through various factors, not limited to glucose
production and absorption, interference of insulin signalling,
glucagon release, breakdown of glycogen, and increase of
incretin concentration, accumulation of sorbitol, among others
[17-22]. Therefore, effective modulation of the specific activity
of these enzymes is crucial in the discovery and development
of novel antidiabetic compounds and emerging target-based
therapies [8,23].

The consistent maintenance of blood e
levels using lifestyle changes, such as a healthy di t@ar
physical exercise, consistent blood glucow Ting,
regular medical check-ups, and weig andgcment, is often
unattainable for many patients. This sitated reliance
on synthetic medications to effective age diabetes and
its complications [24]. While the potency of the synthetic
oral hypoglycemic medications is undoubtable, the associated
adverse side effects, compliance with a complex dosing
schedule, and cost have undermined their application in clinical
practice [24-26]. Therefore, the development of alternative or/
and complementary therapeutics with promising antidiabetic
potentials is imperative.

Due to the rich and diverse presence of metabolites,
medicinal plants serve as a cogent source for the development
of effective and culturally relevant therapeutic agents against
several diseases, including T2DM [24,27]. Corn is popularly
consumed in several parts of the world, including South
Africa, with its cob and silk usually considered as waste. Corn
silk (CS) is an underutilized corn part that consists of diverse
phytochemicals, such as phenolic acids, flavonoids, carotenoids,
sterols, tannins, volatile compounds, sugars, vitamins, minerals,
polysaccharides, proteins, and peptides [25,28], many of which
have contributed to its significant therapeutic properties [29,30].
Although CS is often discarded as a waste material [31], it has
several pharmacological properties, including antioxidant, anti-
inflammatory, diuretic, kaliuretic, anti-hyperlipidemic, anti-
microbial, anti-cancer, anti-hypertensive, and antidiabetic [32],
making it ethnopharmacologically relevant [27]. Studies have
shown the antidiabetic potential of CS [33—-37]; however, there
is limited information on the mechanism of action behind its

] C

antidiabetic properties, particularly its relationship with the key
enzymes implicated in T2DM pathogenesis.

Understanding the relationship between plant
secondary metabolites, such as those present in CS, and enzymes
implicated in the pathogenesis of T2DM can be useful for the
development of targeted therapeutic approaches [38,39]. This
will, in turn, contribute to the development of novel antidiabetic
therapeutics and the emerging field of target-based therapies,
which is expected to contribute to the effective management
of T2DM [40]. To this extent, the study explored metabolomic
profiling and computational techniques in the identification
of CS secondary metabolites and their molecular interactions
with key enzymes implicated in T2DM and its complications to
identify possible novel compounds with antidiabetic potential.

2. METHODOLOGY

2.1. Corn silk collection and processing for the preparation of
extracts

Fresh CS of a commonly consumed South African
commercial corn hybrid ILHYB22 was collected at two
developmental stages (premature and mature) at the Cedara
College of Agriculture, KwaZulu-Natal, South Africa. The
processin, d preparation of CS from both developmental
stages % ce three extracts [aqueous, hydro-ethanolic
S oﬁa ), and ethanolic] were carried out as described in
igu 41]. The powdered CS (raw) and the prepared extracts
re stored (4°C) until needed [42].

2.2. Metabolomic profiling of corn silk

Ultra-performance liquid chromatography-mass
spectrometry (UPLC-MS) analysis was performed on the raw and
extracts (aqueous, hydro-ethanolic, and ethanolic) of mature and
premature CS as previously reported [43,44]. A Water Synapt G2
quadruple time-of-flight mass spectrometer, connected to a Waters
Acquity UPLC-combined with a photo diode array detector
(Milford, MA, United States of America), was used to analyze the
samples. Briefly, 2 g of each sample was subjected to ultrasonic-
assisted extraction (SS-6508T, Sunshine, India) using a solvent
system of 50% methanol and 0.1% formic acid for 24 hours at room
temperature [43]. The samples were then centrifuged (mySPIN
12, Thermo Scientific, United States of America) for 5 minutes at
14,000 rpm, and the resulting supernatant in each case was used
for further analysis. Acquisition and confirmation of data were
performed using Masslynx 4.1, while MS-DIAL and MS-FINDER
2.0 software (RIKEN Center for Sustainable Resource Science:
Metabolome Informatics Research Team, Kanagawa, Japan).
Metaboanalyst  (https://www.metaboanalyst.ca/MetaboAnalyst/)
(accessed on 1 July 2022) was utilized for statistical analysis
between the samples of CS, where principal component analysis,
partial-least squares discriminant analysis, orthogonal partial-least
squares discriminant analysis, and a hierarchical heat map were
generated [44]. Relative abundance of the metabolites present in
CS was performed based on peak height percentage [45].

2.3. Pharmacokinetics screening of corn silk metabolites

To identify orally bioavailable compounds and drug-
likeness properties of the metabolites present in CS, virtual
screening was conducted [46]. The Simplified Molecular
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Figure 1. Preparation of aqueous, hydro-ethanolic,

silk (CS).

Input Line Entry System of the metabolites was gbtain 6

the PubChem database (https://pubchem.ncbi.nlm nihigov/;
accessed on 30 July 2022) and input into

issSADME
server (http://www.swissadme.ch/; > 30 July
e Lipinski’s rule

2022). Compounds with < 2 violatio
(molecular weight < 500 g/mol, < 5 hydrdgen bond donors, <
10 hydrogen bond acceptors, and partition coefficient Log p <
5) were selected for subsequent analysis. Molecular docking of
corn silk metabolites against the investigated diabetes enzymes

Following pharmacokinetic screening, the identified
metabolites and selected enzymes were subjected to molecular
docking. The X-ray crystal structures of the six enzymes namely:
AA (protein data bank (PDB) ID 4W93), AG (3W37), AR
(3RX3), DPP-4 (1WCY), PTP1B (1SUG), and SDH (1PL3g),
were obtained from Research Collaboratory for Structural
Bioinformatics Protein Protein Data Bank (https://www.rcsb.
org/; accessed 1 September 2022). The enzymes were prepared
using USCF Chimera v 1.16 [47]. The 3D conformers of the
metabolites and the reference standards (acarbose for AA and
AG, epalrestat for AR, ursolic acid for PTP1B, sitagliptin for
DPP-4, and 4-[2-1R-hydroxy-ethyl)-pyrimidin-4-yl]piperazine-
1-sulfonic acid dimethylamide for SDH) were obtained from
PubChem  (https://pubchem.ncbi.nlm.nih.gov/; accessed 1
September 2022) and subsequently optimized on USCF Chimera
v 1.16 by addition of Gasteiger charges and nonpolar hydrogen
atoms [21]. Identification of grid box coordinates (x-y-z) and
grid box side (x-y-z) of the native ligand for each enzyme was
determined on UCSF Chimera v 1.16. These were then used to
dock the CS metabolites to the active site of the enzymes using
the Autodock Vina Plugin on Chimera V1.16 [21]. To prevent

e ha&c' tracts of mature and premature corn

pseudo-positive binding conformations, the docking protocol was
validated as previously detailed [48] by measuring the root mean
square deviation (RMSD) of docked ligands from the reference
pocket bearing the native ligands in the co-crystal structures of
AA, AG, AR, DPP-4, PTP1B, and SDH (Fig. 2a-f, respectively),
following optimal superimposition. The RMSD of the docked
ligands from the native inhibitor in the 3D structures of all six
enzymes was 0.5 A, which indicates similar binding orientation,
ultimately validating the protocol employed.

2.4. Molecular dynamics (MD) simulation of corn silk
metabolites against the investigated diabetes enzymes

After validating the docking protocol, the five
complexes exhibiting the most favorable poses (indicated by
the lowest docking scores) for each enzyme were chosen for
further investigation through a 120-nanosecond molecular
dynamics simulation, as previously described [49]. The
simulation utilized the GPU force field within the AMBER
18 software, specifically employing the Force Field 18SB
variant. The atomic partial charges for the compounds were
derived using the restrained electrostatic potential and
general amber force field methods from ANTECHAMBER.
The leap module of AMBER 18 was employed to neutralize
the system by adding hydrogen atoms along with Na+ and
Cl- counter ions. The residues were designated as 1-495,
1-913, 1-315, 1-729, 1-299, and 1-356 for AA, AG, AR,
DPP-4, PTP1B, and SDH, respectively. Each system was then
implicitly positioned within an orthorhombic box of TIP3P
water molecules, ensuring that all atoms were within 8A of
any edge of the box. The simulation was conducted using
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Figure 2. Superimposition on co-crystallized structure of a) alpha amylase: nativ

and compound with the highest docking score (blue). Root mean square deviation
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sorbitol dehydrogenase: native ligand (black), supesimposed docked native ligand (green), reference standard (red) and compound with highest docking score (blue).
RMSD value of 0.5 A. Grid box co-ordinates: centre (X =97, Y =31, Z = 26) and size (X =9, Y =15, Z=13).

the SHAKE algorithm from the Leap module to restrict the
expansion of all chemical bonds, including those of hydrogen
atoms. Each simulation step was set at 2 femtoseconds, and an
SPFP precision model was utilized. The simulations adhered
to the isobaric-isothermal ensemble, featuring randomized
seeding, with the Berendsen barostat maintaining a constant
pressure of 1 bar, a pressure-coupling constant of 2 ps, a
temperature of 300 K, and a Langevin thermostat with a
collision frequency of 1.0 ps. Post-dynamics data [RMSD,
root mean square fluctuation (RMSF), radius of gyration
(ROG), solvent accessible surface (SASA), and number
of hydrogen bonds] were computed [50]. The binding
free energy (AG,, ) was calculated using the Molecular
Mechanics/GB Surface Area (MM/GBSA) method, wherein
AG,, , was averaged over 120,000 snapshots extracted from
the 120 ns trajectory [51]. Equations 1-5 depict the formula
for the calculation of the average AG,, , for each molecular
species (complex, ligand, and protein):

AGb[nd = Egax + Gxol - TS (1)
A G receptw'i Gligand (2)
E = Eint+ Evdw t Eele (3)

gas

bind complex -

G I: GGB+ GSA (4)

G,,=ySASA (5)

The complexes’ (ligand-receptor) interaction at the
active site of each enzyme was examined at 0 ns, 60 ns, and 120
ns using Discovery Studio version 21.1.1 [52].

2.5. Quantum chemical calculations

The molecular characteristics of the lead compounds
were predicted using density functional theory (DFT) via
quantum chemical calculations. The widely used 6-31 + G(d,p)
basis set combined with the Becke3-Lee—Yang—Parr (B3LYP)
method [53] was adopted to optimize the lead compounds using
the Gaussian 16 suite of the CHPC, Cape Town, South Africa
and the resulting files were then visualized using GaussView
6 software V 6.0.16. The study assessed the conceptual DFT
(cDFT), namely the frontier molecular orbitals comprising
the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO) [54], taking
into consideration the Parr and Pearson interpretation of DFT
and Koopmans’ theorem [55]. Equations 6—13 were used to
compute other chemical descriptors, including energy gap (AE),
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ionization energy (I), electron affinity (A), chemical hardness
(n), softness (d), electronegativity (y), chemical potential (Cp),
and global electrophilicity (CD).

AE = ELUMO - EHOMO (©)
I= _ELUMO (7)
A= _EHOMO ®)
AE
- = 9
"= )
1
0= — (10)
]
(I+4)
X
: (n
Cp=-x (12)
P
Q=
JE (13)

2.6. Toxicity prediction

The top-performing compounds against the six targets
were further analyzed for their toxicity profile by inputting their
SMILES in the ProTox server (https://tox.charite.de/protox3/#;
accessed on 7 July 2025) [56].

3. RESULTS

3.1. Metabolomic profiling of corn silk metaboli

produced from MassLynx (Supplementary Figures S1-S4).
Altogether, 128 metabolites (compounds C1-128) were identified
in all the CS samples investigated. The highest amount of variation
between the two developmental stages was 63.95 (41.1% in
principal component 1% and 22.8% in principal component
2), with the compounds found to cluster majorly in two distinct
positions (Fig. 3a). The top 15 compounds responsible for the high
chemical diversity between the different developmental stages
are presented in Figure 3b. Thirteen out of the 15 metabolites
were found to be highly abundant in the mature CS, whereas
C103 (Pandangolide 1) and C74 (3-hydroxysebaic acid) were
more prevalent in the premature CS (Supplementary Table S1).
The use of different extraction solvents produced variation in the
type of metabolites extracted in both the premature and mature
CS. Between the different samples of CS, there was 62.4%
quantitative and qualitative variation of metabolites (42.1%
in principal component 1 and 20.3% in principal component
2) (Fig. 4a). The top 15 metabolites responsible for the high
chemical diversity between the eight samples of CS are presented
in Figure 4b, where caffeoyl tartaric acid (C105) was the most
variant between the samples. The top 15 CS metabolites were
less abundant in the aqueous extracts of CS while out of the 15
metabolites which contributed to the highest variation between
the extrac, %al of 5, 1, 4, 2, and 3 metabolites were highly
w premature CS, raw mature CS, hydro-ethanolic

e tnx’ premature CS, hydro-ethanolic extract of mature CS,

nd ethanolic extract of mature CS, respectively (Fig. 4b).

The relative abundance of the metabolites in the
different samples of CS is presented in Supplementary Figure
S5 (compounds C1-C65) and Supplementary Figure S6

The metabolites identified through UPJs aly51s (compounds C66—C128), as well as Supplementary Table S2.
(Supplementary Table S1) were conﬁrm atograms Majority of the metabolites were found to be more abundant
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Figure 3. a) Principal component analysis plot of the percentage chemical diversity of metabolites between the two different developmental growth stages
[premature (light green) and mature (light red) of corn silk; b) Orthogonal partial least squares-discriminant analysis (OPLS-DA) loadings plot of the top fifteen
metabolites that were the most chemically diverse between the two developmental growth stages of corn silk with red showing high prevalence and blue showing
low prevalence. PC: principal component, C105: tetradecanedioic acid, C51: methyl geranate, C73: UNPD230015, C26: diaportinic acid, C107: genistin, C82:
diaportinol, C27: benzyl-O-beta-D-glucopyranoside, C103: pandangolide la, C74: 3-hydroxysebacic acid, C69: dodecanedioic acid, C106: (R)-7-butyl-6,8-
dihydroxy-3-[(3E)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one, C118: ginsenoyne E, C104: 4-hydroxynonenal, C55: daldiniapyrone, and C121: UNPD205010.
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CS (light red)]; b) Partial least squares-discriminant analysis (PLS-DA) loading plot of the to
the eight samples of CS with red showing high prevalence and blue showing low prgval

of premature CS, ETH MAT: ethanolic extract of mature CS, ETH PRE: ethanoli

HYD PRE: hydro-ethanolic extract of premature CS, RAW MAT: raw extrac

acid, C60: quercitrin, C9: D-2-hydroxyglutaric acid, C98: 5,7,4’-trihydroxy-3’-
>6)-galactoside], C122: maysin 3’-methyl ether, C83: herbacetin 7- (6”
p-coumaroyl malic acid, C99: quercetin 3-O-(6-acetyl- glucoslde

in the hydro-ethanolic extract of mature
C3, C8,C21,C32,C33, C38,C42, C58

abundant in aqueous extract of mature dgompounds C1, C3,
C8, C21, C32, C33, €92, C100, and CI02 (more abundant in
aqueous extract of premature CS) C47, C48, C61, C76, C82,
C88, C89, €99, C103, and C106 (more abundant in ethanolic
extract of mature CS), C36, C54, C70, C90, C96, C108,
C125, C126, and C127 (more abundant in ethanolic extract of
premature CS), C5 (more abundant in hydro-ethanolic extract
of premature CS), and C65 (more abundant in raw extract of
premature CS). The percentage yield of the 128 metabolites
between the different samples of CS (aqueous, hydro-ethanolic,
and ethanolic) extracts of premature and mature CS is presented
in Supplementary Figure S7. Hydro-ethanolic extract of mature
CS (37%) had the highest yield, followed by the hydro-
ethanolic extract of premature CS (12%) and aqueous extract of
premature CS (12%), with the raw sample of mature CS (5%)
sample having the lowest yield.

pounds
, 124 (more

3.2. Drug-likeness filtering of corn silk metabolites

Although several prediction analyses were considered
(Lipinski, Veber, Mugge, and Egan rules) and all showed that
most of the metabolites had < 4 violations and demonstrated
relatively good pharmacokinetic properties, including
gastrointestinal absorption, blood-brain permeability, and were
mostly nonphospho-glycoprotein substrates and noninhibitors
of the cytochrome P450 isoenzymes. However, the most
common Lipinski’s rule of five (Ro5) was subsequently adopted

etabolites that were the most chemically diverse between
aqueous extract of mature CS, AQP; aqueous extract
ture CS, HYD MAT: hydro-ethanolic extract of mature CS,
W PRE: raw extract of premature CS. C119: caffeoyl tartaric
oxy avone, C109: kaempferol 3-[2”-acetyl-alpha-L-arabinopyranosyl-(1-
side), C107: genistin, C59: apiin, C97: maysin, C66: UNPD19396, C108:

pferltrm and C86: mirificin.

for the screening of the metabolites. Out of the 128 metabolites
identified in the different samples of CS, 110 passed Lipinski’s
Ro5, while 18 compounds exhibited more than 2 violations and
were excluded from further analysis (Supplementary Table S3).

3.3. Molecular docking of corn silk metabolites against the
investigated diabetes enzymes

Based on the docking scores, details of the top
five CS metabolites with the investigated diabetes enzymes
are provided in Table 1. Aesculin (AES), austricin (AUS),
(6E)-1-(4-hydroxyphenyl)-7-phenylhepta-4,6-dien-3-one
(HPH), (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-
D-glucoside (HDJ), phaseic acid (PHA), and erythronolide B
(ETB) had the highest negative docking scores against AA,
AG, AR, DPP-4, PTP1B, and SDH, respectively (Table 1). The
docking scores of the remaining 105 CS metabolites against the
enzyme targets are presented in Supplementary Table S4.

3.4. Molecular dynamics simulation of top CS metabolites
against the investigated diabetes enzymes

The AG, , of the top five CS compounds against each
of the investigated enzymes following a 120-ns MD simulation
is presented in Table 2. Metabolites BHP (=40.30 kcal/mol),
VBG (—34.17 kcal/mol), HDJ (—44.13 kcal/mol), CMA (—34.40
kcal/mol), HDA (—19.71 kcal/mol), and HDJ (=36.61 kcal/mol)
had the highest negative AG,, , against AA, AG, AR, DPP-
4, PTP1B, and SDH, respectively. Except for the AA-BHP
complex, which had a lower negative AG,, , compared to AA-
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‘ ; A Compound . Compound  Docking score
highest negative docking score (best pose) and reference standards number Identity Abbreviation  (kcal/mol)
against each of the enzyme targets. C105 Tetradecanedioic acid TDA -5.8
Compound . Compound  Docking score 2-Hydroxydecanedioic
number Identity Abbreviation (kcal/mol) Cs2 acid HDA 54
Alpha-amylase C4 Methylisocitric acid MCA 5.2
31 Aesculin AES —8.1 C69 Dodecanedioic acid DCA —5.2
(R)-7-butyl-6,8-dihydroxy- - Ursolic acid* URS -5.2
3-[(3e)-pent-3-en-1-yl]- N -
C106 3 4-dihydroisochromen- BHP 8.0 Sorbitol dehydrogenase
1-one C72 Erythronolide B ETB -9.2
C88  Curvularol CUR -7.9 Cit - (+)-Cnicin CNI -8.7
(6¢)-1-(4-hydroxyphenyl)- C100 Blennin D BLD -8.5
Cl14 7-phenylhepta-4,6-dien- HPH -7.8 (-)-11-hydroxy-9,10-
3-one C37 dihydrojasmonic acid HDJ -8.4
Co4 Austricin AUS =77 11-beta-D-glucoside
- Acarbose* ACA -6.9 (R)-7-butyl-6,8-dihydroxy-
N N 3-[(3E)-pent-3-en-1-yl]- B
Alpha-glucosidase C106 3 4-dihydroisochromen- BHP 8.3
Co4 Austricin AUS -7.8 1-one
C12 Glutaric acid GTA =1.7 4-[2-1R-hydroxy-
1-O-vanilloyl-beta-D- ) ethyl)-pyrimidin-4- yI] _
C16 glucose VBG -15 iperazine-1-sulfonic acid HPS 30
1 *
Cs1 Methyl geranate MGN -7.4 < eghylamlde
(-)-11-hydroxy-9,10- ARef, “’% o
C37 dihydrojasmonic acid HDJ -7.4
11-beta-D-gl id . .
e *g teosice rbose (—49.08 kcal/mol), others had higher negative AG,, |
' Acarbose ACA than their respective standards (Table 2).
Aldose reductase
(6E)-1-(4-hydroxyphenyl)- 3.4.1. Post-dynamic analysis of top CS metabolites against alpha-
C14 7-phenylhepta-4,6-dien- amylase
3-one The alterations in structure and conformation resulting
(R)-7-butyl-6,8-dihydroxy- from the interactions of the top-ranked metabolites of CS with the
C106 i'g(z.Eg'ﬂenFG'in'l'yl]' BHP 86 enzymes during the simulation periods are presented in Tables 3
1’—o_nel yarorsochromen- and Figures 5-10. All CS metabolites-A A complexes had higher
e Aeseul AES 05 average RMSD values than apo-AA (1.57 A), except for AA-
esmf l_n : AES (1.52 A), displaying the lowest average RMSD among the
Co4 Austricin AUS -85 metabolite-AA complexes (Table 3). Following equilibration at
(-)-11-hydroxy-9,10- 10 ns, RMSD of all AA complexes fluctuated between 1.10 A
37 dihydrojasmonic acid HDJ -85 and 2.25 A throughout the remaining simulation, while only
11-beta-D-glucoside AA-CUR fluctuated close to 2.50 A from 70 ns till the end of
- Epalrestat* EPA 63 the simulation (Fig. 5a). Conversely, both apo-AA (0.94 A) and
Dipeptidyl peptidase-4 AA-ACA (0.97 A) exhibited lower mean RMSF values than all
(-)-11-hydroxy-9,10- AA complexes, with the AA-CUR complex presenting the least
Cc37 dihydrojasmonic acid HDJ -8.6 RMSF value (0.70 A) (Table 3). Additionally, the complexes
11-beta-D-glucoside displayed random fluctuations in RMSF between 0.5 A and
C119 Caffeoyl tartaric acid CTA -8.0 2.5 A, with major fluctuations observed in various residues,
(R)-7-butyl-6,8-dihydroxy- including 120—.140, 180-200, 240-320, 340—409, 405-410, and
3-[(3E)-pent-3-en-1-yl]- 450-495, swaying between 0.5 Aand5.75 A (Fig. 5b). All AA-
C106 . . BHP -7.8 o
3,4-dihydroisochromen- complexes exhibited lower mean ROG values compared to apo-
1-one AA, except CUR- (23.38 A) and AUS-AA complexes (23.45
Cs1 Phaseic acid PHA -7.8 A) (Table 3). After 5 ns, a stable ROG plot for all the bound
C108 p-Coumaroyl malic acid CMA 7.7 complexes between 23.9 A and 23.6 A was observed except for
_ Sitagliptin* SGT 62 ACA, which exhibiteq random.ﬂuctuations at 30, 80, and 100 ns
. . (Fig. 5¢). A marginal increase in the mean number of hydrogen
Protein tyrosine phosphatase B . . .
C81 bonds formed in the CS metabolites complexes relative to the

Phaseic acid PHA 6.0 apo-enzyme was observed [ BHP (266.49), CUR (267.01), and
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Table 2. Thermodynamic components of top 5 identified secondary metabolites present in CS against target enzymes.

(kcal/mol)
Complex AE, v AE, . AGas AG_ AG, .
Alpha-amylase
AES —28.64 £ 4.67 —38.73 £14.93 —67.37+15.14 39.07 + 8.41 —28.31+8.24
BHP -36.06 +3.95 —48.13+ 14.03 —85.20 £ 14.41 45.17+7.85 —40.30 + 7.35
CUR —24.89 + 3.08 —27.14+6.24 —52.03 £ 591 22.88+3.75 —29.15+3.74
HPH —28.16 +4.81 —14.85+6.56 —43.00 + 6.46 19.40 £ 4.34 —23.55+£5.30
AUS —24.98 +3.25 —10.72 +£9.37 —35.69 £ 10.80 17.24£7.93 —18.45+4.04
ACA —51.81 +5.29 —132.83 £ 15.05 —184.60 + 14.87 135.57 +10.04 —49.08 +7.99
Alpha-glucosidase
AUS —24.10+£3.30 —44.02 £23.29 —68.12 £ 23.36 46.91 + 18.00 2121 +7.72
GTA —26.16 £4.32 —31.61£22.53 —57.718 £23.27 35.19+13.17 —22.57+12.05
VBG —23.42+3.54 —72.98 £ 14.48 —96.40 + 14.00 62.22 +£8.84 —34.17 £ 6.08
MGN —11.98 +£9.58 —7.45 £ 8.63 —18.21 £ 16.09 11.29+9.94 —6.92 £ 7.00
HDJ —27.81 +4.45 —52.92 + 14.77 —80.73 £ 13.48 52.10+£9.52 —28.63 +5.74
ACA -31.64+5.13 -161.95+22.72 —193.60 + 23.49 177.05 £ 20.09 —16.54 £6.71
Aldose reductase
HPH —35.06 +3.18 —25.23£7.03 —60.30 + 8.03 26.16 +3.87 —34.13+£5.05
BHP —47.41+£2.95 —19.07 £ 4.47 —66.49 + S.X 25.64 +3.38 —40.85 +3.44
AES —43.04 £5.01 —27.19+9.85 . 33.01 £5.68 —37.22 +£8.40
AUS —35.07 +3.27 —13.42+11.84 17.47 £ 7.66 —31.02+5.99
HDJ —58.97+4.97 —33.08 £8.12 —92)06 + 10.51 47.92+5.78 —44.13+ 6.75
EPA —21.18+5.82 —9.73+8.05 > -30.91 +£9.94 15.80 + 6.48 —15.10 +5.02
L ° Mpeptidase-4
HDJ -16.28 £ 12.70 -2 —37.27+33.50 25.26 +£23.85 —12.00 £ 10.42
CTA —23.08 +3.41 & 6.10 —72.39 £ 15.32 55.70 £ 12.05 —16.69 £4.72
BHP —36.40 £ 4.65 36+ 1231 —82.77+13.24 49.54 +8.24 -33.22+6.24
PHA —27.98 +£3.30 —51.07 +£8.92 —=79.06 + 8.45 57.26 +6.46 —21.79 £4.06
CMA —18.45+3.76 -77.1195 £ 8.25 -95.58 +7.62 61.16 £5.38 -34.40 +4.17
HDJ —39.63 £4.59 -254.13 +12.21 -293.75 +12.39 262.99 + 11.01 -30.77 +4.71
Protein tyrosine phosphatase B
PHA —16.47 +5.83 —11.47 £ 8.38 —27.94+11.01 19.30 + 8.62 —8.64 +£3.49
TDA —20.88 +6.79 —18.80 £ 13.35 —39.68 £16.18 21.95+11.27 —17.72+6.72
HDA —21.31+4.27 —20.75 £ 10.38 —42.07 £ 11.85 22.36 +7.68 —19.71 £5.86
MCA —16.76 + 3.66 —29.90 + 14.68 —46.66 + 16.42 33,19+ 12.75 —13.47+4.53
DCA —13.54 £ 7.80 —13.76 £ 10.83 —27.30 £+ 15.28 14.77 + 8.80 —12.52 +8.06
URS -30.78 +£3.51 —13.01 £6.23 —36.19 £ 6.89 20.15+5.79 —16.03 +4.03
Sorbitol dehydrogenase
ETB —28.90 £3.75 —23.10 £ 14.35 =52.01 £15.71 31.37+10.29 —20.63 +7.06
CNI —27.87 +5.69 —22.19 £ 14.26 =50.06 + 14.79 27.99 +9.04 —22.06 +7.03
BLD —23.54+£545 —12.27+7.63 —35.82+£10.79 17.13 £ 6.44 —18.69 £ 7.07
HDJ —40.01 +6.01 =56.06 +9.90 —96.08 £ 13.13 59.46 +7.41 -36.61 +7.39
BHP —32.12 +4.05 —35.79 + 8.64 —67.92+£9.72 40.60 +5.70 —27.31+5.25
HPS —36.62 £ 5.69 —12.81+6.22 —44.43 £9.35 8.19+5.02 —34.24+9.18

elec”

bind®

AE ., Van der Waals energy; AE _: electrostatic energy; AE gas-phase free energy; AG_ solvation free energy and AG,, : total binding free energy. AES:

aesculin; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one; CUR: curvularol; HPH: (6e)-1-(4-hydroxyphenyl)-7-phenylhepta-

4,6-dien-3-one; AUS: austricin; ACA: acarbose; GTA: glutaric acid; VBG: 1-O-vanilloyl-beta-D-glucose; MGN: methyl geranate; HDIJ: (-)-11-hydroxy-9,10-

dihydrojasmonic acid 11-beta-D-glucoside; EPA: epalrestat; CTA: caffeoyl tartaric acid; PHA: phaseic acid; CMA: p-coumaroyl malic acid; SGT: sitagliptin; TDA:

tetradecanedioc acid; HDA: 2-hydroxydecanedioic acid; MCA: methylisocitric acid; DCA: dodecanedioc acid; URS: ursolic acid; ETB: erythronolide B; CNI:

cnicin; BLD: blennin D; HPS: 4-[2-1R-hydroxy-ethyl)-pyrimidin-4- yl]piperazine-1-sulfonic acid dimethylamide.
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Table 3. Mean post-molecular dynamics parameters of top 5 identified metabolites of corn silk against the target enzymes.

009

Complexes RMSD (A) RMSF () RoG (A) Number of H-Bonds SASA (A)

AA (apo-enzyme) 1.57+0.15 0.94 +0.41 23.31+0.09 266.48 + 11.04 17,130.45 + 426.56
AA-AES 1.52+0.14 1.01 +£0.50 23.28 +0.09 267.39+10.24 17,547.30 + 595.29
AA-BHP 1.89 +0.22 1.04 + 0.68 23.20+0.07 266.49 +10.61 17,413.58 + 411.68
AA-CUR 1.78 +0.30 0.70 +0.31 23.38+0.11 267.01 £10.31 17,492.10 + 512.41
AA-HPH 1.67+0.16 1.05 +0.56 23.27+0.09 260.07 + 10.67 17,815.54 + 514.36
AA-AUS 1.85+0.25 1.20+0.64 23.45+0.14 258.22 +10.70 18,410.21 + 602.75
AA-ACA 1.82+0.47 0.97 +0.25 23.28 +0.09 260.75 + 10.62 17,301.00 + 421.52

AG (apo-enzyme) 1.61+£0.19 1.07 £ 0.55 27.77+0.06 427.02+12.77 29,619.23 + 477.95
AG-AUS 1.73£0.18 0.85+0.38 27.96 +0.09 413.94+13.26 30,865.47 + 658.70
AG-GTA 2.20+0.23 1.03+0.57 27.83+£0.06 410.42 +12.99 30,623.51 = 540.63
AG-VBG 1.95+0.25 1.09 + 0.63 27.76 £ 0.10 405.92 +13.50 29,917.13 + 566.38
AG-MGN 1.81+0.19 1.09 + 0.56 27.99+0.11 411.04 +15.87 30,951.06 + 584.89
AG- HDJ 1.70 £0.12 1.06 + 0.46 28.05+0.09 41538 +13.28 31,439.30 = 660.19
AG-ACA 1.65 +0.10 1.00 + 0.44 27.84+0.08 427.01 +13.66 29,417.32 + 532.42

AR (apo-enzyme) 1.59+0.23 1.05 0.64+ 19.33+£0.06 138.95 + 8.05 13,387.83 + 284.35
AR-HPH 1.49 +0.22 1.07 + 0.66 19.17 £ 0.09 142.29 +8.19 12,864.95 + 380.00
AR-BHP 1.24+0.14 0.91+0.51 19.11 £0.07 14232 +7.87 12,525.95 +307.21
AR-AES 1.57+0.21 1.09 + 0.59 19.27 +0.06 \ 140.52 +7.99 12,884.81 +275.19
AR-AUS 136+0.14 1.03+0.58 19.29+0, 134.74 + 8.28 13,134.07 + 315.08
AR-HDJ 1.58 +£0.29 0.76 +0.32 . 8&{ 143.24 + 8.04 12,661.33 + 326.55
AR-EPA 2.00+0.31 1.12+0.73 45 + 0008 137.55 +7.96 13,339.97 + 304.39

DPP-4 (apo-enzyme) 1.81+0.14 1.14+0.59 27004 +0.10 387.26 + 12.43 29,772.27 + 407.99
DPP-4-HDJ 220+ 0.42 1.30 + 1%7 6 27.36+0.21 380.75 + 12.55 30,518.02 +471.31
DPP-4-CTA 1.81+0.18 1.23 NQ’ 27.12+0.09 376.11 + 14.39 30,495.52 + 488.42
DPP-4-BHP 2.23+0.33 @. 27.29+0.11 387.35+12.78 30,644.12 + 571.00
DPP-4-PHA 2.12+0.28 1%£0.75 27.19+0.10 383.89+12.19 295,88.14 + 407.11
DPP-4-CMA 2.49+0.23 1.14£0.52 27.28+0.12 382.29 + 12.21 30,372.92 £ 431.08
DPP-4-SGT 232+0.32 1.23+0.84 27.23+0.14 385.80 + 12.28 29,879.51 + 471.52

PTP1B (apo-enzyme) 1.47+0.23 1.15+0.54 19.37£0.07 159.89 + 8.32 13,132.84 £295.15
PTP1B-PHA 1.44 £ 0.20 1.13 +0.88 19.49 +0.13 156.33 +£9.00 13,899.21 + 563.67
PTP1B-TDA 1.39+0.19 0.99 +0.53 19.36 £ 0.09 155.92 +8.78 13,415.10 £ 338.21
PTP1B-HDA 1.15+0.10 1.01+0.52 19.33 +0.06 163.00 + 8.44 13,039.12 + 293.12
PTP1B-MCA 1.14+0.14 0.99 +0.54 19.25+0.06 161.67 +8.17 13,059.97 + 422.08
PTP1B-DCA 1.70 + 0.28 1.14+1.55 19.47+0.11 155.44 + 8.57 13,903.14 + 284.06
PTP1B-URS 1.15+0.10 1.00 +0.42 19.27+0.06 159.76 + 8.62 13,136.17 + 295.29

SDH (apo-enzyme) 248 +0.44 1.35+1.01 20.72£0.15 131.92+7.41 12,222.97 + 332.44
SDH- ETB 2.41+0.30 1.33+0.99 21.16+0.16 133.65 + 7.69 12,433.06 + 250.00
SDH-CNI 3.15+0.38 1.50+1.25 21.22+0.19 131.58 +7.58 12,389.66 + 331.358
SDH-BLD 242 +0.43 1.29 +0.81 21.02+0.16 168.23 + 8.86 14,797.04 + 277.96
SDH-HDJ 2.85+0.51 1.44 = 1.00 21.21+0.22 133.37+7.85 12,145.93 + 288.83
SDH-BHP 2.79+0.28 1.37 +0.90 20.90 +0.12 161.22 + 8.57 14,975.50 + 359.245
SDH-HPS 2.91+0.55 1.35+0.94 21.17+0.19 166.34 + 8.38 14,759.29 + 301.96

RMSD: root mean square deviation; RMSF: root mean square fluctuation; ROG: radius of gyration; H-bonds: hydrogen bonds; SASA; solvent accessible surface
area; AA: alpha-amylase; AG: alpha-glucosidase; AR: aldose reductase; DPP-4: dipeptidyl peptidase-4; PTP1B: protein tyrosine phosphatase 1B; SDH: sorbitol
dehydrogenase; AES: aesculin; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one; CUR: curvularol; HPH: (6e)-1-(4-
hydroxyphenyl)-7-phenylhepta-4,6-dien-3-one; AUS: austricin; ACA: acarbose; GTA: glutaric acid; VBG: 1-O-vanilloyl-beta-D-glucose; MGN: methyl geranate;
HDJ: (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; EPA: epalrestat; CTA: caffeoyl tartaric acid; PHA: phaseic acid; CMA: p-coumaroyl malic
acid; SGT: sitagliptin; TDA: tetradecanedioc acid; HDA: 2-hydroxydecanedioic acid; MCA: methylisocitric acid; DCA: dodecanedioc acid; URS: ursolic acid,
ETB: erythronolide B; CNI: cnicin; BLD: blennin D; HPS: 4-[2-1R-hydroxy-ethyl)-pyrimidin-4- yl]piperazine-1-sulfonic acid dimethylamide.
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Figure 6. Post-dynamic component plots of CS metabolites-AG complexes presented as (a) RMSD, (b) RMSF, (¢) ROG, (d) number of hydrogen bonds, and (e)
SASA over 120 ns simulation. AG: alpha-glucosidase; AUS: austricin; GTA: glutaric acid; VBG: 1-O-vanilloyl-beta-D-glucose; MGN: methyl geranate; HDJ:
(-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; ACA: acarbose.
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Figure 7. Post-dynamic component plots of CS metabolites-AR complexes prese s ( D, (b) RMSF, (¢) ROG, (d) number of hydrogen bonds, and (e)
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Figure 8. Post-dynamic component plots of CS metabolites-DPP-4 complexes presented as (a) RMSD, (b) RMSF, (¢) ROG, (d) number of hydrogen bonds, and
(e) SASA over 120 ns simulation. DPP-4: dipeptidyl peptidase-4; HDJ: (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; CTA: caffeoyl tartaric
acid; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one; PHA: phaseic acid; CMA: p-coumaroyl malic acid; SGT: sitagliptin.
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AES (267.39) compared to apo-AA (2 om AUS
(258.22), all AA complexes exhibite ghe
of hydrogen bonds than ACA (260.7 dble 3). There was
a slight fluctuation between 230 and 310 in the number of
hydrogen bonds formed during the 120 ns simulation period;
otherwise, no major fluctuations were observed (Fig. 5d).
Regarding SASA, an increase in the mean value was observed
for all complexes compared to apo-AA (17130.45 A) and ACA
(17301.00 A) (Table 3). Following a steady increase during
the initial 5 ns of the simulation, all AA complexes exhibited a
stable and continuous increase within the range of 16,000 A and
19,000 A (Fig. 5¢).

Figure 9. Post-dynamic component plots of CS metabolites-PTP1B compé@res

3.4.2. Post-dynamic analysis of top CS metabolites against alpha-
glucosidase

All AG complexes exhibited a higher average RMSD
compared to both apo-AG (1.61 A) and AG-ACA complex
(1.65 A) (Table 3). Following equilibration at 5 ns, fluctuations
within the range of 0.75 A to 2.5 A persisted until the end of the
simulation in all the bound complexes (Fig. 6a). The mean RMSF
of apo-AG (1.07 A) exceeded that of the AG-CS metabolite
complexes apart from VBG (1.09 A) and MGN (1.09 A). Notably,
the AG-AUS complex displayed the lowest average RMSF (0.85
A) among all the complexes (Table 3). Upon binding to AG, all
investigated compounds exhibited random fluctuations between
0.5 A and 6 A, with major fluctuations occurring sporadically
across various amino acid residues (Fig. 6b). Similarly, except
for VBG (27.76 A), all AG complexes demonstrated higher mean

»>

as (a) RMSD, (b) RMSF, (c) ROG, (d) number of hydrogen bonds, and (e)

: phaséic acid; TDA: tetradecanedioc acid; HDA: 2-hydroxydecanedioic acid; MCA:

ROG values compared to apo-AG (27.77 A) (Table 3). The ROG
of all AG complexes fluctuated between 27.5 A and 28.2 A, with
a decrease in ROG plot for the VBG complex observed between
40 ns and 50 ns, as shown in Figure 6¢. In contrast to apo-AG
(427.02), a reduction in the mean number of hydrogen bonds was
observed for all AG complexes (Table 3). Throughout the 120
ns simulation, the number of hydrogen bonds formed between
AG complexes ranged from 360 to 470, showing no significant
fluctuations in the plot (Fig. 6d). However, higher average SASA
values were observed for all AG complexes relative to apo-AG
(29619.23 A) and AG-ACA (29417.32 A) (Table 3). After an
equilibration in the SASA plot at 10 ns and 27,000 A, all AG
complexes fluctuated between 28,000 A and 32,500 A till the end
of the simulation (Fig. 6¢).

3.4.3. Post-dynamic analysis of top CS metabolites against aldose
reductase

A decrease in the mean RMSD was noted for all AR
complexes compared to the apo-AR (1.59 A), except for EPA
(2.00 A), which exhibited an increase in the mean RMSD (Table
3). Following a steady rise in RMSD from 0.5 A during the
initial 5 ns of the simulation, the system reached equilibrium,
and the RMSD of all AR complexes varied between 0.9 A and
2.5 A (Fig. 7a). All examined AR complexes displayed a decline
in the average RMSF, with HDJ exhibiting the lowest mean
RMSF (0.76 A) compared to apo-AR (1.05) and AR-EPA (1.12)
(Table 3). After an initial decrease in RMSF during the first 5
ns of the simulation, all AR complexes fluctuated between 0.5
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7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-dihydroisoci?j1lej\\0
A and 5 A, with notable fluctuations observedli ues 25—
50, 50-60, 75-90, 130-150, and 215 @ J7b). Similarly,
all AR complexes demonstrated a decteas¢ in their average
ROG values compared to apo-AR (19.33), except for EPA,
which presented an average ROG value of 19.45 A (Table 3).
Throughout the simulation, the ROG fluctuated between 19.8 A
and 19.75 A, with higher variations observed in EPA and AR-
HDJ (Fig. 7c). All AR complexes displayed a higher number of
hydrogen bonds compared to apo-AR (138.95), except for AUS
(134.74) (Table 3). The number of hydrogen bonds for all AR
complexes ranged from 110 to 170, with no major fluctuations
observed (Fig. 7d). In contrast to apo-AR (13387.83 A), all AR
complexes exhibited a decrease in mean SASA values, except
for EPA (13339.97 A) (Table 3). Following an initial increase
in SASA during the first 5 ns, all AR complexes fluctuated
between 11,500 A and 14,500 A, without significant variations
(Fig. 7e).

3.4.4. Post-dynamic analysis of top CS metabolites against DPP-4

All DPP-4 complexes exhibited higher average
RMSD values relative to the apo-DPP-4 (1.81 A) except for
CTA (1.81 A), which was similar to apo-DPP-4 (Table 3). After
an initial increase in RMSD from 0.5 A, all DPP-4 complexes
fluctuated between 1.25 A and 3.5 A with CMA and HDJ
showing major fluctuations at 8 ns and 50 ns, respectively (Fig.
8a). In contrast to apo-DPP-4 (1.14 A), all DPP-4 complexes
had higher mean RMSF, except PHA (1.14 A) and CMA (1.14
A) with equal average RMSF value (Table 3). The RMSF of

all DPP-4 complexes fluctuated between 0.5 and 3.5 A, except
for a major fluctuation increase to 8 A between residues 200
and 240 (Fig. 8b). All DPP-4 complexes showed an increase
in mean ROG in comparison to apo-DPP-4 (27.04 A) (Table
3). After an increase in ROG from 26.6 A during the first 5
ns, all DPP-4 complexes fluctuated between 26.8 A and 27.3 A
except for HDJ and BHP, which had increases ranging between
27.8 and 28.1 A between 20 ns to 40 ns and 50 ns to 60 ns,
respectively (Fig. 8c). All DPP-4 complexes showed a reduction
in the mean number of hydrogen bonds in comparison to apo-
DPP-4 (387.26), except for the BHP complex (387.35) (Table
3). The number of hydrogen bonds fluctuated between 320 and
440 throughout the 120 ns simulation (Fig. 8d). Relative to apo-
DPP-4 (29772.27 A), all DPP-4 complexes showed an increase
in mean SASA except for PHA (29588.14 A) (Table 3). Once
the complexes equilibrated after 10 ns, the SASA of all DPP-4
complexes fluctuated between 28,500 and 32,500 A (Fig. 8e).

3.4.5. Post-dynamic analysis of top CS metabolites against PTP1B

When bound to PTP1B, all compounds exhibited a
reduction in mean RMSD in comparison to apo-PTP1B (1.47
A), except for DCA (1.70 A). Notably, MCA displayed the
lowest mean RMSD of 1.14 A when bound to PTP1B, lower
than the PTP2B-URS complex (1.15 A) (Table 3). Following
an initial increase during the first 10 ns of the simulation, all
PTP1B complexes exhibited fluctuations within the range
of 0.75-2.00 A, except for DCA, which fluctuated to 2.5 A
between 85 ns and 105 ns (Fig. 9a). In comparison to the apo-
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PTP1B (1.15 A), all PTP1B complexes had lower RMSF values,
with MCA and TDA exhibiting the lowest mean RMSF of 0.99
AA, both notably comparable to URS (1.00 A) (Table 3). The
RMSF for all complexes varied within the range of 0.5 A to
4.00 A. Notably, DCA, TDA, and PHA displayed an increase in
RMSF, ranging from 5.80 A to 9.80 A, specifically at residues
280-299 (Fig. 9b). The mean ROG of all PTP1B complexes
was comparably lower than apo-PTP1B (19.37 A), with the
exception of PHA (19.49 A) and DCA (19.47 A). Interestingly,
MCA (19.25 A) exhibited the lowest mean RMSF, which was
marginally less than URS (19.27 A) (Table 3). During the 120
ns simulation, the ROG of all PTP1B complexes fluctuated
between 19.05 A to 19.75 A, except DCA, TDA, and PHA, with
terminal fluctuations ranging from 19.90 A to 20.10 A between
110 and 120 ns (Fig. 9¢c). The average number of hydrogen
bonds formed between the PTPIB complexes compared to
apo-PTP1B (159.89) decreased during the simulation, with the
exception of MCA (161.67) and HDA (163.67), which were
comparably higher (Table 3). The number of hydrogen bonds
formed between all the PTP1B complexes ranged between 120
and 190 during the 120 ns simulation (Fig. 9d). All PTP1B
complexes revealed a higher average SASA in contrast to apo-

PTP1B (13132.84 A), except for HDA (13039.12 A) and MCA
(13059.97 A), which were notably lower (Table 3). After an
increase in the SASA values during the initial 5 ns, all PTP1B
complexes fluctuated between 12,250 and 145,000 A with PHA
and DCA increasing to 15,250 A at the end of the simulation
(Fig. 9e).

3.4.6. Post-dynamic analysis of top CS metabolites against SDH

When bound to SDH, the investigated compounds
displayed elevated mean RMSD values than apo-SDH (2.48
A), with the exception of ETB (2.41 A) and BLD (2.45 A),
both of which exhibited lower values. In comparison to the
AA-HPS (2.91 A) (standard) complex, all SDH-CS complexes
had lower mean RMSD, except for CNI (3.15 A) (Table 3).
The examined SDH complexes had RMSD values ranging
from 1.00 A to 4.00 A during the simulation (Fig. 10a). The
mean RMSF of apo-SDH (1.35 A) complex and SDH-HPS
(1.35 A) complex were lower in comparison to the SDH-CS
metabolite complexes, except for ETB (1.33 A) and BLD (1.29
A). Following a decline in the range of residues 0-10, the
RMSF of the scrutinized SDH complexes exhibited fluctuations
spanning from 0.50 A to 3.00 A until residue 350. Pronounced
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variations were noted particularly between residues 40-75,
100-125, and 260-300, culminating in a significant upsurge in
RMSF to 8.30 A observed around residues 350-356 (Fig. 10b).
In comparison to apo-SDH (20.72 A), the investigated SDH
complexes demonstrated higher mean ROG values. However,
CS metabolites BHP (20.90 A) and BLD (21.02 A) had lower
mean ROG when bound to SDH in comparison to the standard
HPS (21.17 A) (Table 3). Throughout the 120 ns simulation,
fluctuations in ROG were observed, with the complexes
showcasing a range between 20.30 A and 22.10 A (Fig. 10c).
Regarding the mean number of hydrogen bonds formed among
the SDH complexes, all displayed an increase compared to
apo-SDH (131.92), except CNI (131.58), which demonstrated
a relatively similar number of hydrogen bonds. Interestingly,
BLD (168.23) exhibited a higher number of hydrogen bonds in
comparison to HPS (166.34) (Table 3). Throughout the 120 ns
simulation, the number of hydrogen bonds exhibited fluctuations
ranging between 100 and 200 for the SDH complexes. Notably,
HPS and BLD stood out by displaying a higher number of
hydrogen bonds when bound to SDH (Fig. 10d). Among the
SDH complexes, several displayed an increase in the mean
SASA when compared to apo-SDH (12222.97 A), except for

he binding of alpha-glucosidase to (a) 1-O-vanilloyl-beta-D-glucose and (b) acarbose over 120

HDJ (12145.93 A), which had the lowest mean SASA value
(Table 3). The SASA of all SDH complexes varied from 11,250
to 16,500 A, with the larger values attributed to BHP and HPS
(Fig. 10e).

3.4.7. 2D interaction plot analysis of top CS metabolites against
the investigated diabetes enzymes

The 2D interaction plots of the top-ranked CS
compounds (highest negative AG,, ) against their respective
target enzymes over the 120 ns simulation showed various
types of bonds, namely hydrogen bonds (conventional and
carbon), attractive charge, Van der Waals, pi-pi-stacked,
pi-pi T-shaped, pi-cation, pi-anion, pi-alkyl, alky, halogen
(fluoride), and unfavorable acceptor—acceptor and donor—
donor interactions (Fig.s 11-16). While AA and BHP formed
19 interactions, AA and ACA formed 22 interactions (Fig. 11)
at 120 ns. AG and VBG had 19 interactions, but with ACA,
only 10 interactions were observed (Fig. 12). For aldose
reductase, HDJ formed 22 interactions while EPA formed 20
interactions, including (Fig. 13). CMA binds to DPP-4 with
13 interactions, while SGT binds with 16 interactions (Fig.
14). The binding of HDA, URS to PTP1B resulted in 11 and
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12 interactions, respectively (Fig. ISQIy, the SDH-HDJ

complex showed 22 interactions, while HPS showed 9 (Fig.
16). The details of the interacting residues categorized as
hydrogen and hydrophobic interactions post 120 ns simulation
are summarized in Table 4.

3.5. Frontier molecular orbitals of the top-ranked compounds

The top-ranked compounds and reference standards
had LUMO energies ranging between —5.92 and —0.22 eV,
except ACA (—0.89 eV) and URS (—0.24 eV). However,
the HOMO energies of the standards fall within the same
range as the top compounds (—5.85 and —7.72 eV) (Table 5
and Fig. 17). The lowest energy gap among the top-ranked
compounds was observed in HPH (3.61 ¢V), AUS (4.70 eV),
HPH (3.61 eV), CTA (4.06 e¢V), PHA (4.41 eV), and CNI
(4.46 eV) against AA, AG, AR, DPP-4, PTPIB, and SDH,
respectively; however, a lower energy gap was observed in
the two reference standards; EPA (3.21 eV) and HPS (4.39
eV) against AR and SDH, respectively (Table 5 and Fig. 17).
Consequently, these compounds exhibited varying softness
and lowest hardness values, respectively [HPH (0.55 and
1.80 eV), AUS (0.43 and 2.35 eV), HPH (0.55 and 1.80 eV),
CTA (0.50 and 2.03 eV), PHA (0.45 and 2.20 e¢V), and CNI
(0.45 and 2.23 eV)]. Notably, PHA had the highest ionization
energy (2.30eV), electronegativity (4.50 eV), electrophilicity

index (4.59 eV), and the lowest chemical potential (—4.50
eV), while GTA had the highest electron affinity (7.72 eV)
Table 5 and Supplementary Table S5. Summarily, the cDFT
parameters of the top-ranked compounds taken for MD
simulation and the reference standards are presented in Table
5, while those of DCA, TDA, MCA, and PHA have been
previously reported [41].

3.6. Toxicity prediction of the top-ranked compounds

To gain insights into the safety of the top-ranked
compounds following MD simulation, the compounds were
subjected to ProTox toxicity prediction. The emerging top
compounds against the diabetes targets had a minimum lethal
dose (LD, of > 400 mg/kg and toxicity class > 3, except
for curvularol, austricin, and methyl isocitric acid, which
presented < 200 mg/kg LD, and toxicity class < 3 (Table 6).
All the compounds showed no hepatotoxicity potential and
were mostly nonend-point toxicants (Table 6). The other four
top compounds for each target equally demonstrated relatively
high tolerable doses, no organ and end-point toxicities, and
compared well with the available standard drugs.

4. DISCUSSION

Humanity has relied on nature to provide food, shelter,
clothing, transportation, fertilizers, flavors and fragrances, and
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notably, medicinal resources among others [57]. For centuries,
plants with medicinal attributes have formed the basis of
the traditional systems of medicine [24], which have been
continuously developed to provide new remedies to treat and/
or manage several diseases and illnesses [57], including T2DM
[58]. For instance, despite being a waste material of corn, CS
has been identified as a possible therapeutic agent for T2DM
management [27], and several other biological properties such
as diuretic, antihyperlipidemic, antihypertensive, anti-obesity,
anti-microbial, neuroprotective, anti-cancer, anti-depressant,
antioxidant, anti-inflammatory, and antidiabetic [29,31,32].
Amongst several factors that influence the
phytochemical profile of therapeutically significant plants
and plant materials (such as CS), determining the changes in
chemical and bioactive components throughout the maturation
process is crucial for identifying the optimal harvest time that
ensures the highest level of therapeutic activity [59]. The high
concentration of metabolites profiled at the mature stage of CS
relative to the premature stage suggests accumulation of the
secondary metabolites during the maturation process of CS [60].
The observed variation in life or developmental cycle of a plant
may be likened to the report of Sarepoua et al. [61], wherein,
despite the presence of certain metabolites in abundance during
the silking phase (premature), the milking stage (mature)
exhibited the highest levels of secondary metabolites such as

total phenolic content, total flavonoid content, total anthocyanin
content and antioxidant capacity. Similarly, Abeywardhana et
al. [62] demonstrated that the therapeutic potential of Ocimum
sanctum is more pronounced at the fully matured stage
compared to the premature stage. The increase in therapeutic
potential at more mature phases of a plant or plant material may
be attributed to a higher presence of therapeutic compounds
[26].

Aside from the influence of the developmental
(mature) stage contributing to the abundance of secondary
metabolites, the processing conditions may also influence the
composition and quantity of metabolites within CS [32]. In
fact, the elevated abundance of various compounds in the raw
CS samples suggest that the processing of CS during extract
preparation (such as drying, grinding, boiling, and alcoholic
solvent extraction) had an impact on the quantity of these
metabolites in the processed CS samples [63]. In traditional
systems of medicine, the simplest and most popular methods
for preserving the medicinal properties of CS involve aqueous,
hydro-ethanolic, and ethanolic extractions [64,65], since the
type of solvent used for extraction plays a role in the types and
amounts of phytoconstituents extracted [28,66].

Metabolites identified in CS extracts, such as
1-O-vanilloyl-beta-D-glucose, a hydrolysable tannin with
potential antidiabetic properties [67], have their variant,
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6-O-vanilloyl-beta-D-glucose being reported to inhibit
a-amylase activity [68]. (R)-7-butyl-6,8-dihydroxy-3-[(3e)-
pent-3-en-1-yl]-3,4-dihydroisochromen-1-one is a derivative
of 3,4-dihydroisocoumarin with antidiabetic activity [69].
Similarly, (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-
D-glucoside and (-)-11-hydroxy-9,10-dihydrojasmonic
acid 11-beta-D-glucoside are glucoside derivatives of
(-)-11-hydroxy-9,10-dihydrojasmonic ~ acid identified in
Gymnema sylvestre and Combretum micranthum and presented
significant binding interaction with a-amylase, a-glucosidase,
and phosphorylated insulin receptor tyrosine kinase to elicit an
antidiabetic effect [70]. P-coumaroyl malic acid, a derivative of
p-coumaric acid, is formed from the esterification of the carboxy
group of p-coumaric acid with the hydroxyl group of malic
acid. P-coumaric acid has been noted for attenuating elevated
blood glucose [71]. Hydroxydecanedioic acids and their
derivatives are water-soluble salts been implicated in T2DM
treatment [ 72]. A proposed pathway for the biosynthesis of some
of the metabolites identified in CS is depicted in Supplementary
Figure 8. Among the CS samples, the hydro-ethanolic extract of
mature CS displayed a higher abundance of most metabolites.
The higher concentration of metabolites in the hydro-ethanolic
extract of mature CS is attributed to the moderate polarity of

hydro-ethanol, suggesting that the majority of the metabolites
in CS are moderately polar [28,66,73]. Furthermore,
Lipinski’s Ro5 was mostly considered due to its simplicity
and practicability in selecting metabolites of remarkable oral
pharmacokinetics profiles for drug development purposes was
employed in this study to screen the metabolites for subsequent
computational studies.

Molecular docking accessed the CS metabolites’
docking scores at active sites of the investigated enzymes, with
higher negative scores indicating stronger ligand attraction [72—
74]. The more negative docking scores of AES, AUS, HPH, HDJ,
PHA, and ETB compared to the reference standards against
AA, AG, AR, DPP-4, PTP1B, and SDH, respectively, indicate
their better binding affinities, interaction, superiority, and their
greater suitability or fitness as possible therapeutics [75-79].
Although there are no studies that have previously explored the
top-ranked CS metabolites relative to the investigated enzyme
targets, Chaudhary et al. [80] revealed that CS compounds
gallotannin, 3-O-caffeoylquinic acid, stigmasterol and
formononetin (7-hydroxy-4’-methoxyisoflavone) had higher
negative docking scores against DPP-4 (—10.7 kcal.mol), AG
(—8.9 kcal.mol), AA (—9.8 kcal.mol), and PTPIB (—8.7 kcal.
mol), highlighting the ability of CS metabolites to modulate
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the activity of key enzymes implicated in the pathogenesis of
T2DM. Similarly, Sabiu et al. [8] demonstrated that phenolic
compounds from Carpobrotus edulis, such as chlorogenic acid,

luteolin-7-O-glucoside, epicatechin, and isorhamnetin-3-O-
rutinoside had commendable binding at the active site of AA,
AG, and AR.
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Table 4. Bond interaction analysis of the targets of top 5 identified metabolites of corn silk against the target enzymes.

Complexes Total interactions Hydrogen bond interactions Hydrophobic interactions
AA
BHP 19 6 [GLN 62, ASP 196, GLU 232, ASN 10 [Van der Waals (TRP 57, TYR 61, HIE 100, THR 162, LEU 164, ARG 195,
297, HIE 298 and ASP 299] ALA 197, ILE 234, PHE 255, and ASN 300), 1 pi-pi stacked (TRP 58) 1 pi-pi
T-shaped (TRP 58) and 1 pi-alkyl (TRP 58]
ACA 22 8 [HIE 100, THR 163, ASP 196, HID 200, 11 [Van der Waals (TRP 57, TRP 58, TYR 61, GLN 62, VAL 97, TYR 150, ARG
HID 298, 2 at ASP 299, and HIP 300] 194, ALA 197, LYS 199, ILE 234, and PHE 255), 2 pi-pi alkyl (LEU 161 and
LEU 162) and 1 pi-anion (ASP 299)]
AG
VBG 19 8 [2 (ASP 175), ILE 176, 2 (HIE 569), 6 [Van der Waals (ALA 177, TRP 410, ARG 495, GLY 510, ASP 540, and ARG
ASP 300 and 2 (ASP 511)] 567), 1 pi-anion (ASP 412), 1 pi-pi stacked (TRP 272) and 3 pi-alkyl (TRP 508,
PHE 544, and HIE 569)]
ACA 10 1 [ARG 241] 8 [Van der Waals (MET 200, GLY 240, THR 242, GLU 244, PRO 626, THR 642,
ARG 642, and ASN 701) and 1 pi-anion (MET 245)]
AR
HDJ 22 10 [TRP 23,2 at HIE 113, TRP 114, TYR 7 [Van der Waals (LYS 24, TYR 51, ASN 163, ARG 220, GLN 52, PHE 124 and
219, PRO 221, VAL 300, CYS 301, ALA  LYS 224), 4 pi-alkyl (VAL 50, TRP 80, PHE 125 and LEU 304), 1 pi-pi stacked
302, and LEU 303] (TRP 222)]
EPA 20 2 [TRP 23 and HIE 113] 10 [Van der Waals (LYS 24, ASP 46, VAL 50, LYS 80, TRP 114, SER162, ASN
163, GLN 186, ILE 263 and LEU 303), 3 pi-pi stacked (TYR 51, TRP 82, TYR
212), 3 pi-alkyl (HIE 113, TYR 212 and CYS 301) and 2 pi-sulfur (HIE 113,
PHE 125)]
DPP-4
CMA 13 5 [GLU 168, TYR 219, PRO 513, ASP al P 164, TYR 510, GLY 512, CYS 514, SER 593, TYR 625
626, and ASN 673] and 1 pi-pi T-shaped (PHE 320)]
SGT 16 3 [GLU 168, TYR 510, and ASN 673] der Waals (GLU 169, SER 172, PHE 320, ARG 321, SER 593, TYR 594,
6 TR 622, and VAL 674), 4 pi-pi alkyl (VAL 619, TYR 625, TYR 629, and HID
° 703) and 1 pi-anion (GLU 168)]
\ PTP1B
HDA 11 2 [ARG 56 8 5 [Van der Waals (PHE 30, ASP53, SER 55, LYS 73, and LYS 255), 4 pi-pi alkyl
bonds (HIS 54, LEU 71 and 2 at PHE 256)]
URS 12 - 8 [Van der Waals (PRO 88, MET 113, ALA 121, GLN 122, GLN 126, MET 132,
ILE 133, and ASP 136) and 4 pi-pi alkyl interactions (CYS 91, LEU 118, and 2
at 134)
SDH
HDJ 22 5 [GLY 45, SER 46, 2 (THR 121) and 12 Van der Waals [(CYS 44, HIS 49, TYR 50, CYS 119, GLU 155, PRO 156,
ARG 298) VAL 159, ILE 183, VAL 272, VAL 296, PHE 295 and TYR 299), 1 pi-pi stacked
(PHE 59) and four pi-alkyl (ILE 56, HIS 69, PHE 119 and LEU 274)]
HPS 9 2 [GLY 45 and THR 250] 5 [Van der Waals (CYS 44, SER 46, HIE 49, ILE 56 and CYS 249) and 2 pi-

alkyl bonds (ILE 183 and LEU 274)]

AA: alpha-amylase; AG: alpha-glucosidase; AR: aldose reductase; DPP-4: dipeptidyl peptidase-4; PTP1B: protein tyrosine phosphatase 1B; SDH: sorbitol
dehydrogenase; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-3-en-1-yl]-3,4-dihydroisochromen-1-one; ACA: acarbose; VBG: 1-O-vanilloyl-beta-D-glucose;
MGN: methyl geranate; HDJ: (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; EPA: epalrestat; CMA: p-coumaroyl malic acid; SGT: sitagliptin;
HDA: 2-hydroxydecanedioic acid; URS: ursolic acid; HPS: 4-[2-1R-hydroxy-ethyl)-pyrimidin-4- yl]piperazine-1-sulfonic acid dimethylamide.

The combination of molecular docking and MD
simulation provides a comprehensive understanding of the
molecular interactions and conformational changes that occur
from the binding of a ligand to a target protein [81]. The
MM/GBSA method calculates AG,, , for macromolecules by
combining molecular mechanics calculations and continuum
solvation models [82]. Lower AG,, , values align with a higher
binding affinity of a ligand to a given target [83], reflecting
a more stable complex [84]. The high negative AG,, , values
for BHP, VBG, HDJ, CMA, HDA, and HDJ among the top
investigated CS metabolites indicate a greater binding affinity

to AA, AG, AR, DPP-4, PTP1B, and SDH, respectively, and
potentially stronger interactions between the CS metabolites
and the enzymes. The higher negative AG,, , of AA-acarbose
relative to the top CS metabolites-AA complexes suggests
better binding affinity of acarbose and potential in inhibiting AA
activity. However, other top CS metabolites bound complexes
with higher negative AG, , values than their respective
reference standards, highlighting superior potential to modulate
their respective enzyme activity. Specifically, the top-ranked CS
metabolites’ ability to inhibit AA, AG, AR, DPP-4, PTPIB, and
SDH suggests CS can prevent carbohydrate and glucagon-like
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Table 5. The cDFT parameters of the top-ranked compounds against enzymes implicated in T2DM.
c¢DFT parameters (eV)
Ligands LUMO HOMO Energy Ionization Electron Hardness Softness Electronegativity Chemical Global
gap energy affinity potential electrophilicity
AA
AES —2.07 —6.42 4.35 2.07 6.42 2.17 0.46 4.24 —4.24 4.14
BHP -1.19 —6.05 4.86 1.19 6.05 2.43 0.41 3.62 —3.62 2.70
CUR —0.42 —6.43 6.01 0.42 6.43 3.01 0.33 3.43 -3.43 1.96
HPH —2.24 —5.85 3.61 2.24 5.84 1.80 0.55 4.04 —4.04 4.53
AUS —1.86 —6.56 4.70 1.86 6.56 235 0.43 421 —4.21 3.78
ACA —0.89 —6.11 522 0.89 6.11 2.61 0.38 3.50 -3.50 2.35
AG
AUS —1.86 —6.56 4.70 1.86 6.56 2.35 0.43 4.21 —4.21 3.78
GTA —0.44 =7.72 7.29 0.44 7.72 3.64 0.27 4.08 —4.08 2.29
VBG —1.47 —6.18 4.71 1.47 6.18 2.36 0.42 3.83 -3.83 3.11
MGN -1.10 —6.34 5.24 1.10 6.34 2.62 0.38 3.72 -3.72 2.64
HDJ —1.17 —6.46 5.29 1.17 6.46 2.65 0.38 3.82 —3.82 2.75
ACA —-0.89 —6.11 5.22 0.89 6.11 2.61 0.38 3.50 —3.50 2.35
AR
HPH —2.24 -5.85 3.61 2.24 5.84 1.80 .55 4.04 —4.04 4.53
BHP -1.19 —6.05 4.86 1.19 6.05 243 &1 3.62 -3.62 2.70
AES —2.07 —6.42 4.35 2.07 6.42 ¢ ﬁ% 0.46 4.24 —4.24 4.14
AUS —1.86 —6.56 4.70 1.86 6.56 &5 0.43 4.21 —4.21 3.78
HDJ -1.17 —6.46 5.29 1.17 46 2.65 0.38 3.82 —3.82 2.75
EPA -2.93 —6.13 3.21 .93 3 1.60 0.62 4.53 —4.53 6.41
DPP-4
HDJ -1.17 6.46 2.65 0.38 3.82 —3.82 2.75
CTA —2.06 6.12 2.03 0.50 4.09 —4.09 4.12
BHP -1.19 6.05 243 0.41 3.62 -3.62 2.70
PHA —2.30 —6.70 4.41 2.30 6.70 2.20 0.45 4.50 —4.50 4.59
CMA —1.86 —6.12 4.26 1.86 6.12 2.13 0.47 3.99 -3.99 3.74
SGT -1.35 —6.65 5.30 1.35 6.65 2.65 0.38 4.00 -3.99 3.01
PTP1B
HDA —-0.76 —7.42 6.66 0.76 7.42 3.33 0.30 4.08 —4.08 2.51
URS —0.24 —6.10 5.85 0.24 6.10 2.93 0.34 3.17 -3.17 1.72
SDH
ETB —0.63 —6.48 5.85 0.63 6.48 2.92 0.34 3.55 -3.55 2.16
CNI —2.12 —6.57 4.46 2.12 6.57 2.23 0.45 435 —4.35 4.23
BLD -1.63 —7.34 5.72 1.63 7.34 2.86 0.35 4.49 —4.48 3.52
HDJ -1.17 —6.46 5.29 1.17 6.46 2.65 0.38 3.82 —3.82 2.75
BHP -1.19 —6.05 4.86 1.19 6.05 2.43 0.41 3.62 —3.62 2.70
HPS -1.79 —6.17 4.39 1.79 6.17 2.19 0.46 3.98 -3.98 3.61

HOMO: highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital; AA: alpha-amylase; AG: alpha-glucosidase; AR: aldose reductase; DPP-
4: dipeptidyl peptidase-4; PTP1B: protein tyrosine phosphatase 1B; SDH: sorbitol dehydrogenase; AES: aesculin; BHP: (R)-7-butyl-6,8-dihydroxy-3-[(3e)-pent-
3-en-1-yl]-3,4-dihydroisochromen-1-one; CUR: curvularol; HPH: (6e)-1-(4-hydroxyphenyl)-7-phenylhepta-4,6-dien-3-one; AUS: austricin; ACA: acarbose; GTA:
glutaric acid; VBG: 1-O-vanilloyl-beta-D-glucose; MGN: methyl geranate; HDJ: (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; EPA: epalrestat;
CTA: caffeoyl tartaric acid; PHA: phaseic acid; CMA: p-coumaroyl malic acid; SGT: sitagliptin; TDA: tetradecanedioc acid; HDA: 2-hydroxydecanedioic acid;
MCA: methylisocitric acid; DCA: dodecanedioc acid; URS: ursolic acid; ETB: erythronolide B; CNI: cnicin; BLD: blennin D; HPS: 4-[2-1R-hydroxy-ethyl)-

pyrimidin-4- yl]piperazine-1-sulfonic acid dimethylamide.
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Table 6. Toxicity prediction of the top ranked compounds profiled
against the enzymes implicated in T2DM.

Compounds LD, (mg/kg)TC HT CDT CRG IT MG CYT

AES 4000/5 In In In Ac In In
BHP 2260/5 In In In Ac In In
CUR 3712 In Ac In Ac In Ac
HPH 2000/4 In In In In In In
AUS 125/3 In In Ac In In In
GTA 2750/5 In In In In In In
VBG 2260/5 In Ac In In In In
MGN 5000/5 In In In In In In
HDJ 10000/6 In Ac In In In In
CTA 2000/4 In In Ac In In In
PHA 1624/4 In In In In In In
CMA 5000/5 In In In In In In
TDA 900/4 In In In In In In
HDA 3400/5 In In In In In In
MCA 50/3 In In In In In In
DCA 900/4 In In In In In In
ETB 5000/5 In In In Ac In In
CNI 452/4 In In In Ac In In
BLD 1330/4 In In In  Ac Ac In
ACA 24000/6 Ac  Ac In Ac In In

URS 2000/4 Ac  Ac Ac
HPS 3000/5 In In

EPA 52 In In In In In I
SGT 2500/5 In In In In o Irﬁz

AES: aesculin; BHP: (R)-7-butyl-6,8-dihydroxy:
dihydroisochromen-1-one; CUR: curvularol; HPHg(6e)-J-(4-hydroxyphenyl)-
7-phenylhepta-4,6-dien-3-one; AUS: austricin; ACA: acarbose; GTA: glutaric
acid; VBG: 1-O-vanilloyl-beta-D-glucose; MGN: methyl geranate; HDJ:
(-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-D-glucoside; EPA: epalrestat;
CTA: caffeoyl tartaric acid; PHA: phaseic acid; CMA: p-coumaroyl malic acid;
SGT: sitagliptin; TDA: tetradecanedioc acid; HDA: 2-hydroxydecanedioic acid;
MCA: methylisocitric acid; DCA: dodecanedioc acid; URS: ursolic acid; ETB:
erythronolide B; CNI: cnicin; BLD: blennin D; HPS: 4-[2-1R-hydroxy-ethyl)-
pyrimidin-4- yl]piperazine-1-sulfonic acid dimethylamide; LD: Lethal dose; TC:
Toxicity class, HT: Hepatotoxicity, CDT: Cardiotoxicity, CRG: Carcinogenity, IT:
Immunotoxicity, MG: Mutagenicity, CYT: Cytotoxicity, In: Inactive, Ac: Active.

peptide 1 breakdown, enhance insulin signalling, and reduce
sorbitol and fructose accumulation in cells. These effects
contribute to CS’s antidiabetic action by modulating enzymes
involved in T2DM pathogenesis and its complications.
Additionally, MD simulation can be used to elucidate
the extent of binding stability, flexibility, and compactness of
a protein-ligand bound complex [11]. This is crucial due to
the potential likelihood of an impending conformational or
structural change that could occur after ligand binding to a
receptor, which could potentially impact the biological activity
of the enzyme [85,86]. The RMSD provides insight into the
deviation or changes in the position of atoms over a simulation
period and evaluates the stability of a protein-ligand complex
[87]. A decrease in the RMSD value of a complex in comparison

to the apo-enzyme throughout a simulation indicates enhanced
stability [88]. The lowest mean RMSD values observed in
AA-AES, AR-BHP, DPP-CTA, PTP1B-MCA, and SDH-ETB
complexes in comparison to their respective apo-enzyme and
reference standard complexes suggest that the binding of these
CS metabolites formed stable complexes with the enzymes.
Although the average RMSD values of AES and AUS were
greater than the apo enzymes (AA and AG, respectively), this
finding did not indicate the formation of unstable complexes
since the values recorded were lower than the acceptable 3.0
A, and hence depicting stable complexes formation [89,90].
It is noteworthy that the less stable complexes formed by the
reference standards relative to the top-ranked metabolites
against most of the targets in this study is in line with previous
studies where compounds such as procyanidin, rutin, apigenin,
chlorogenic acid, naringenin, luteolin and isoflavone bound
systems exhibited lower mean RMSD values relative to their
apo-enzymes and reference standards [8,11,91,92].

The RMSF of a protein-ligand system signifies the
effect of a bound compound on the behavior of active site
residues [93], with lower or higher shifts in alpha (a)-carbon
(C) indicating less or more flexible movements, respectively

[94]. Higher RMSF values signify more flexible movement
and the tial of the targets to undergo conformational
changes. er, the low mean RMSF values of the AA-

l@ S, AR-BHP, DPP-4-CMA, DPP-PHA, PTP1B-

CA¥yand SDH-BLD complexes compared to the apo-enzyme

d reference standards suggest lesser flexible movements
and, consequently, greater stability and lower conformational
changes in the investigated complexes. This finding agrees with
previous studies for some metabolite profiled against AG and
DPP-4 [11,21].

The ROG measures the spatial distribution or
compactness of a molecule [95]. It calculates the average
distance of individual atoms (or groups of atoms) in a molecule
from its center of mass, offering insights into how spread out or
condensed a molecule is during a simulation [96], with lower
values indicating more compactness and thus more stability
of the final complexes [97]. The CS metabolites bound to the
investigated targets, specifically AA-BHP, AR-BHP, DPP-CTA,
and PTP1B-MCA, exhibited the least average ROG values,
suggesting a higher degree of compactness and, consequently,
superior stability of the final complexes compared to the apo-
enzyme and the respective standards for potential regulation
of the enzyme activity. In tandem with this study, Sabiu et
al. [21], Rampadarath ef al. [92], and Eawsakul et al. [98]
previously reported that the binding of the CS metabolites to
AA, PTP1B, and AG, respectively, resulted in lower mean ROG
in comparison to the apo-enzyme and reference standard. This
observation further highlights the ability of CS metabolites to
reduce the compactness and thus improve the stability of the
final complexes.

Hydrogen bonds are important interactions and are
essential for molecular recognition, maintaining structural
stability, facilitating enzyme catalysis, influencing drug partition,
and permeability [97,99]. The increase in the average number of
hydrogen bonds within the complexes AA-AES, AR-BHP, DPP-
BHP, PTP1B-HDA, and SDH-BLD, relative to the apo-enzyme
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and standard complexes, suggests the ability of CS compounds
to occupy a portion of the proteins’ intramolecular phase. This
results in the formation of more stable final complexes. This
finding agrees with Rampadarath et a/. [92] and Sajal ez al. [100]
studies, where they show that the binding of plant metabolites,
such as B-pinene, dehydro-p-cymene, -a-pinene, orientin, vitexin,
and apigenin, to DPP-4 and PTP1B presented a higher number
of hydrogen bonds, in comparison to their reference standards.
Hence, this suggests that CS metabolites have the potential to
form a greater number of hydrogen bonds when bound to the
enzyme targets better than the respective standards.

The SASA serves as a measure of thermodynamic
stability, quantifying the surface area of a biomolecule available
to solvent molecules [101], as well as changes in protein surface
area [102]. High SASA values indicate expansion of the surface
area, while lower SASA values suggest a reduction in protein
volumes [97]. Apo-enzymes with higher SASA values possess
greater solvent accessibility potential, which may alter their
catalytic activities. The low SASA values observed in: AG-
VBJ, AR-BHP, DPP-4-PHA, PTP1B-MCA, and SDH-HDIJ
complexes relative to the apo-enzymes and reference standard-
complexes depict a higher degree of protein folding and,
consequently, the formation of more stable final complexes.
Similar studies also reported a reduction in SASA upon the
binding of plant metabolites to the apo-enzyme [11,91,103].

In addition, the nature and number of interactions
formed upon the binding of ligand and the amino acid residues
of the target protein are crucial in determining the exte

of the binding affinity [21]. The high number of ipteragiio
between AG-VBG, AR-HDJ, and SDH-HD]J indieate A@r
and more stable ligand—protein complexes, su % ater
interaction between the CS metabolitgs=anditargetYenzymes.
This suggests a higher degree of inhib @ enzymes by
the CS metabolites in comparison to the reference standards.
The higher negative AG,, , could be attributed to the higher
number of interactions occurring between the top-ranked
CS metabolites and the enzyme targets, in comparison to the
reference standards investigated. While BHP and CMA did
not establish more interactions when bound to AA and DPP-
4, respectively, the AG,, , of the complexes formed with the
CS metabolites was lower when compared to the AG,, , of
the standards. This suggests that despite a lower number of
interactions within the CS metabolite and enzyme complexes,
the interactions formed between the complexes resulted in
greater binding affinity, forming stable final complexes [84]. In
contrast, the decrease in the number of interactions observed
between PTP1B-HDA could contribute to the reduction in the
AG,, , displayed by the complex in comparison to the URS.
The molecular characteristics of the top-ranked
compounds were computed using cDFT parameters to
explore their potential therapeutic importance. The HOMO
and LUMO orbitals are generally recognized as important
markers for forecasting the chemical and biological reactivity
of chemical species [104]. The HOMO is the highest orbital
that contains electrons from which electrons are transferred
to the protein, forming a bond that obstructs the active site
of the protein implicated in the disease condition pathogens.
On the other hand, the LUMO refers to the lowest unoccupied

orbital located in the innermost region that lacks electrons and
functions as an electron acceptor or positive charge carrier,
facilitating the transfer of these particles to larger components
[105]. Therefore, investigating the HOMO and LUMO energies
of lead compounds may provide crucial insights into their
chemical reactivities [106].

The energy gap (AE) between LUMO and HOMO
is essential for comprehending the reactivity, kinetic stability,
and chemical characteristics of a compound [107], with a wide
energy gap suggesting firmness and low chemical reactivity,
whereas a small energy gap indicates softness and high chemical
reactivity [108]. Unfortunately, the lower energy gaps, higher
chemical softness, and lower chemical hardness against each of
the targets observed by some of the top-ranked compounds did
not correlate with their free binding energy, and this could be
due to the observed relative residue fluctuations and increased
surface area of the targets upon ligand binding. This could have
reduced the effect of the reactivity of each compound on the
binding free energy. This observation contradicts our previous
report [41], where there is a correlation between a lower energy
gap and higher negative binding free energy; however, it is
consistent with Rampadarath et al. [106], where the lower
energy gap of formoxanthone B did not result in higher negative

free bindi ergy upon binding for MMP1.
%b , chemical descriptors do not usually

[ ]
P es%t% frect relationship with thermodynamic stability or
ctiyity, as shown by AG. Therefore, the observed AE and AG
iscrepancies in this study allude to the fact that AE and AG give
complementary but distinct insights, and their differences might
be reflecting the different aspects of molecular behavior they
describe. The electrophilicity index quantifies the electrophilic
reactivity of compounds. Molecules with values below 0.8
eV are categorized as weak electrophiles; values above 1.5
eV signify strong electrophiles, while between 0.8 and 1.5
eV suggest moderate electrophiles [109]. Remarkably, all the
top-ranked compounds had an electrophilicity index above 1.5
eV, suggesting they are strong electrophiles with a significant
electrophile presence around the molecules.

Toxicity analysis helps in predicting the degree of
safety of a compound; it indicates the minimum tolerable dose
in half of a population and whether a compound has the potential
to cause organ or end point toxicities [21]. Generally, except
for curvularol, austricin, and methyl isocitric acid, the other
top compounds demonstrated relatively high tolerable doses
and no organ and endpoint toxicities. This denotes little or no
potential to cause pathological conditions such as inflammation,
neurodegenerative diseases, T2DM, aging, cardiovascular
diseases, organ disorders, and cancers [110]. While most
of the compounds indicate being strong electrophiles, the
electrophilicity index is a theoretical descriptor of chemical
reactivity and not a direct biological or systemic toxicity
predictor, as better presented by ProTox prediction; hence,
the compounds demonstrate relatively safe profiles under
physiologic conditions. Altogether, this study shows that CS
contains a hub of metabolites; the lack of validation studies is a
limitation in the work; thus, further wet-lab studies, such as in
vitro and in vivo investigations to establish CS metabolites’ full
potential in diabetes management, are required.
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5. CONCLUSION

The study established that the abundance and types of
metabolites present in CS were influenced by growth stages,
processing condition, and solvent polarity, with the mature
CS and hydro-ethanolic extract of mature CS exhibiting
higher metabolites’ concentrations. The MD simulation of the
metabolites over a 120-ns period against the respective enzymes
profiled revealed (R)-7-butyl-6,8-dihydroxy-3-[(3¢)-pent-3-en-
1-yl]-3,4-dihydroisochromen-1-one (BHP), 1-O-vanilloyl-beta-
D-glucose, (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-
D-glucoside, p-coumaroyl malic acid, 2-hydroxydecanedioic
acid, and (-)-11-hydroxy-9,10-dihydrojasmonic acid 11-beta-
D-glucoside as potential candidates that could modulate the
specific activity of alpha-amylase, alpha-glucosidase, aldose-
reductase, dipeptidyl peptidase-4, protein tyrosine phosphatase
1B, and sorbitol dehydrogenase, respectively. These
observations have lent scientific credence to understanding the
antidiabetic mechanism of action of CS through modulation of
the activity of the key enzymes involved in T2DM pathogenesis
and its secondary complications, furthering the support of CS
development as an antidiabetic therapeutic. However, further
pre-clinical and clinical studies on the identified CS metabolites
are highly suggested to establish their safety and enhance the
development of CS as a potential alternative in the management
of T2DM and its complications.
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