Aaptamine attenuates the action of statin on PCSK9 and LDLR expression as well as LDL-C uptake in human liver cells

Abdul Matin Gul-e-Saba Chaudhry Yeong Yik Sung Tengku Sifzizul Tengku Muhammad   

Open Access   

Published:  Oct 15, 2025

DOI: 10.7324/JAPS.2026.26400
Abstract

Atherosclerosis is characterized by the buildup of lipid deposits and plaque formation resulting from consistently elevated levels of LDL-cholesterol (LDL-C) in the blood. This study investigates the effects of aaptamine on the regulation of statin action concerning PCSK9 and LDL receptor (LDLR) expression, as well as LDL-C uptake in human liver cells. This research sought to assess the impact of aaptamine on the statin-induced elevation of PCSK9 expression, LDLR levels, and LDL-C uptake. The MTS assay was utilized to evaluate cytotoxicity. PCSK9 mRNA levels were quantified using real-time PCR, and protein expression was assessed through western blotting. Immunohistochemistry was utilized to evaluate LDLR levels and LDL-C uptake in hepatic cells. Results indicate that simvastatin elevated PCSK9 gene expression, achieving a maximum increase of fourfold. Co-incubation of aptamine in simvastatin-treated cells significantly reduced PCSK9 gene expression. The co-treatment of cells with simvastatin and aaptamine resulted in a threefold increase in LDLR protein levels and LDL-C uptake rates. The results indicated that aptamine reduced the effects of simvastatin on PCSK9 and LDLR expression, thereby enhancing LDL-C uptake by liver cells. This suggests that aaptamine may be a viable candidate for further development in the context of cardiovascular disease.


Keyword:     Atherosclerosis PCSK9 Statin Aaptamine LDL-C Marine natural compound


Citation:

Matin A, Chaudhry G, Sung YY, Muhammad TST. Aaptamine attenuates the action of statin on PCSK9 and LDLR expression as well as LDL-C uptake in human liver cells. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.26400

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Nordestgaard BG, Langsted A. Lipoprotein(a) and cardiovascular disease. Lancet. 2024;404(10459):1255–64. doi: https://doi.org/10.1016/S0140-6736(24)01308-4

2. Lee YY, Rhee MH. Atherosclerosis. In: recent advancements in microbial diversity. Elsevier; 2022. pp 265–75. doi: https://doi.org/10.1016/B978-0-12-822368-0.00012-8

3. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2015 update : a report from the American Heart Association. Circulation. 2015;131:29–39. doi: https://doi.org/10.1161/CIR.0000000000000152

4. Batty M, Bennett MR, Yu E. The role of oxidative stress in Atherosclerosis. Cells. 2022;11(23):3843. doi: https://doi.org/10.3390/cells11233843

5. Dabravolski SA, Khotina VA, Omelchenko A V, Kalmykov VA, Orekhov AN. The role of the VEGF Family in Atherosclerosis development and its potential as treatment targets. Int J Mol Sci. 2022;23(2):931. doi: https://doi.org/10.3390/ijms23020931

6. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12(3):204–12. doi: https://doi.org/10.1038/ni.2001

7. Insull W. The Pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am J Med. 2009;122(1 SUPPL.):S3–14. doi: https://doi.org/10.1016/j.amjmed.2008.10.013

8. Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209(1):13–22. doi: https://doi.org/10.1083/jcb.201412052

9. Talayero BG, Sacks FM. The role of triglycerides in atherosclerosis. Curr Cardiol Rep. 2011;13(6):544–52. doi: https://doi.org/10.1007/s11886-011-0220-3

10. Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science (80-). 2001;292(5519):1160–4. doi: https://doi.org/10.1126/science.1059344

11. Taylor F, Huffman MD, Macedo AF, Moore THM, Burke M, Davey Smith G, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;2017(5):3. doi: https://doi.org/10.1002/14651858.CD004816.pub5

12. Cziraky MJ, Watson KE, Talbert RL. Targeting low HDL-cholesterol to decrease residual cardiovascular risk in the managed care setting. J Manag Care Pharm. 2008;14(8 Supp A):1–31. doi: https://doi.org/10.18553/jmcp.2008.14.S8-A.1

13. Thompson PD, Panza G, Zaleski A, Taylor B. The present and future statin-associated side effects. J Am Coll Cardiol. 2016;67(20):2395– 410. doi: https://doi.org/10.1016/j.jacc.2016.02.071

14. Lee MC, Peng TR, Chen BL, Lee CH, Wang JY, Lai CP, et al. Effects of various statins on depressive symptoms: a network meta-analysis. J Affect Disord. 2021;293:205–13. doi: https://doi.org/10.1016/j. jad.2021.06.034

15. Beglova N, Blacklow SC. The LDL receptor: How acid pulls the trigger. Trends Biochem Sci. 2005;30(6):309–17. doi: https://doi.org/10.1016/j.tibs.2005.03.007

16. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Bélanger Jasmin S, Stifani S, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA. 2003;100(3):928–33. doi: https://doi.org/10.1073/pnas.0335507100

17. Zhang DW, Lagace TA, Garuti R, Zhao Z, McDonald M, Horton JD, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007;282(25):18602–12. doi: https://doi.org/10.1074/jbc.M702027200

18. Choi HK, Hwang JT, Nam TG, Kim SH, Min DK, Park SW, et al. Welsh onion extract inhibits PCSK9 expression contributing to the maintenance of the LDLR level under lipid depletion conditions of HepG2 cells. Food Funct. 2017;8(12):4582–91. doi: https://doi.org/10.1039/c7fo00562h

19. Nadar VM, Manivannan S, Chinnaiyan R, Govarthanan M, Ponnuchamy K. Review on marine sponge alkaloid, aaptamine: a potential antibacterial and anticancer drug. Chem Biol Drug Des. 2022;99(1):103–10. doi: https://doi.org/10.1111/cbdd.13932

20. Kamaruddin NN, Din LHM, Jack A, Manan AFA, Mohamad H, Muhammad TST, et al. Acanthaster planci Inhibits PCSK9 Gene Expression via Peroxisome Proliferator Response Element (PPRE) and Activation of MEK and PKC Signaling Pathways in Human Liver Cells. Pharmaceuticals. 2025;15(3):4. doi: https://doi.org/10.3390/ph15030269

21. Mohamad H, Rosmiati, Muhammad TST, Andriani Y, Bakar K, Ismail N, et al. Potential secondary metabolites from marine sponge Aaptos aaptos for atherosclerosis and vibriosis treatments. Nat Prod Commun. 2017;12(8):1227–30. doi: https://doi.org/10.1177/1934578x1701200819

22. Mohamad H, Razak MFA, Kamaruddin NN, Din LHM, Asari A, Andriani Y, et al. PCSK9 inhibitory activity of marine-derived compounds, aaptaminoids, and benzamide originated from Aaptos aaptos and Acanthaster planci as a potential treatment for atherosclerosis. J Appl Pharm Sci. 2020;10(8):111–23. doi: https://doi.org/10.7324/JAPS.2020.10813

23. Duan Y, Chen Y, Hu W, Li X, Yang X, Zhou X, et al. Peroxisome proliferator-activated receptor γ activation by ligands and dephosphorylation induces proprotein convertase subtilisin kexin type 9 and low density lipoprotein receptor expression. J Biol Chem. 2012;287(28):23667–77. doi: https://doi.org/10.1074/jbc.M112.350181

24. Jack A, Mohd MA, Kamaruddin NN, Mohd Din LH, Hajri NA, Tengku Muhammad TS. Acaudina molpadioides mediates lipid uptake by suppressing PCSK9 transcription and increasing LDL receptor in human liver cells. Saudi J Biol Sci. 2021;28(12):7105–16. doi: https://doi.org/10.1016/j.sjbs.2021.08.003

25. Chaudhry G-S, Sohimi NKA, Mohamad H, Zafar MN, Ahmed A, Sung YY, et al. Xylocarpus moluccensis induces cytotoxicity in human hepatocellular carcinoma HepG2 cell line via activation of the extrinsic pathway. Asian Pacific J Cancer Prev. 2021;22(Supplement 1):17–24. doi: https://doi.org/10.31557/APJCP.2021.22.S1.17

26. Kuang J, Yan X, Genders AJ, Granata C, Bishop DJ. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. Kalendar R, editor. PLoS One. 2018;13(5):e0196438. doi: https://doi.org/10.1371/journal.pone.0196438

27. Jeong HJ, Lee HS, Kim KS, Kim YK, Yoon D, Sahng WP. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res. 2008;49(2):399–409. doi: https://doi.org/10.1194/jlr.M700443-JLR200

28. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics. 2005;21(13):2933–42. doi: https://doi.org/10.1093/bioinformatics/bti473

29. Jack A. Elucidation of the mechanisms of action of aaptamine in reducing the expression of pcsk9 and increasing the uptake of cholesterols in liver cells. PhD thesis, Universiti Malaysia Terengganu; 2022. Available from: http://umt-ir.umt.edu.my:8080/handle/123456789/19283

30. McNutt MC, Kwon HJ, Chen C, Chen JR, Horton JD, Lagace TA. Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells. J Biol Chem. 2009;284(16):10561–70. doi: https://doi.org/10.1074/jbc.M808802200

31. Reiss AB, Shah N, Muhieddine D, Zhen J, Yudkevich J, Kasselman LJ, et al. PCSK9 in cholesterol metabolism: From bench to bedside. Clin Sci. 2018;132(11):1135–53. doi: https://doi.org/10.1042/CS20180190

32. Chen HC, Chen PY, Wu MJ, Tai MH, Yen JH. Tanshinone IIA modulates low density lipoprotein uptake via down-regulation of PCSK9 gene expression in HepG2 cells. PLoS One. 2016;11(9):1–18. doi: https://doi.org/10.1371/journal.pone.0162414

33. Andriani Y, Pangestika I, Oksal E, Mohamad H, Amir H, Muhammad TST, et al. Anti-atherosclerosis potency of Pandanus tectorius fruit rich by trangeretin and ethyl trans-caffeate, and their cytotoxicity against HepG2 cell line. IOP Conf Ser Mater Sci Eng. 2019;509(1):012155. doi: https://doi.org/10.1088/1757-899X/509/1/012155

34. Alborn WE, Cao G, Careskey HE, Qian YW, Subramaniam DR, Davies J, et al. Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin Chem. 2007;53(10):1814–9. doi: https://doi.org/10.1373/clinchem.2007.091280

35. Seidah NG, Awan Z, Chrétien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circulation Res. 2014;114: 1022–36. doi: https://doi.org/10.1161/CIRCRESAHA.114.301621

36. Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6. doi: https://doi.org/10.1038/ng1161

37. Allard D, Amsellem S, Abifadel M, Trillard M, Devillers M, Luc G, et al. Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Hum Mutat. 2005;26(5):497. doi: https://doi.org/10.1002/humu.9383

38. Cohen JC, Boerwinkle E, Mosley Jr. TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72. doi: https://doi.org/10.1056/NEJMoa054013

39. Dubuc G, Chamberland A, Wassef H, Davignon J, Seidah NG, Bernier L, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2004;24(8):1454–9. doi: https://doi.org/10.1161/01.ATV.0000134621.14315.43

40. Costet P, Cariou B, Lambert G, Lalanne F, Lardeux B, Jarnoux AL, et al. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem. 2006;281(10):6211–8. doi: https://doi.org/10.1074/jbc.M508582200

41. Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie. 2004;86(11):839–48. doi: https://doi.org/10.1016/j.biochi.2004.09.018

42. Rashid S, Curtis DE, Garuti R, Anderson NH, Bashmakov Y, Ho YK, et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci USA. 2005;102(15):5374–9. doi: https://doi.org/10.1073/pnas.0501652102

43. Careskey HE, Davis RA, Alborn WE, Troutt JS, Cao G, Konrad RJ. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res. 2008;49(2):394–8. doi: https://doi.org/10.1194/jlr.M700437-JLR200

44. Mayne J, Dewpura T, Raymond A, Cousins M, Chaplin A, Lahey KA, et al. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis. 2008;7(1):1–9. doi: https://doi.org/10.1186/1476-511X-7-22

45. Chabowska G, Barg E, Wójcicka A. Biological activity of naturally derived naphthyridines. Molecules. 2021;26(14):19. doi: https://doi.org/10.3390/molecules26144324

46. Heinäniemi M, Uski JO, Degenhardt T, Carlberg C. Meta-analysis of primary target genes of peroxisome proliferator-activated receptors. Genome Biol. 2007;8(7):19. doi: https://doi.org/10.1186/gb-2007-8-7-r147

47. Wu YR, Li L, Sun XC, Wang J, Ma CY, Zhang Y, et al. Diallyl disulfide improves lipid metabolism by inhibiting PCSK9 expression and increasing LDL uptake via PI3K/Akt-SREBP2 pathway in HepG2 cells. Nutr Metab Cardiovasc Dis. 2021;31(1):322–32. doi: https://doi.org/10.1016/j.numecd.2020.08.012

48. Dong Z, Zhang W, Chen S, Liu C. Silibinin A decreases statin?induced PCSK9 expression in human hepatoblastoma HepG2 cells. Mol Med Rep. 2019;20: 1383–92. doi: https://doi.org/10.3892/MMR.2019.10344/HTML

49. Li H, Dong B, Park SW, Lee HS, Chen W, Liu J. Hepatocyte nuclear factor 1α plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J Biol Chem. 2009;284(42):28885–95. doi: https://doi.org/10.1074/jbc.M109.052407

50. Kim NH, Kim SG. Fibrates revisited: potential role in cardiovascular risk reduction. Diabetes Metab J. 2020;44(2):213. doi: https://doi.org/10.4093/dmj.2020.0001

51. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125–31. doi: https://doi.org/10.1172/JCI0215593

52. Wang S, Xiu J, Liao W, Liao Y, Bin J. Relative effect of current intensive lipid-lowering drugs on cardiovascular outcomes in secondary prevention ? a meta-analysis of 12 randomized trials. Circ J. 2019;83(6):1356–67. doi: https://doi.org/10.1253/circj.CJ-18-1321

53. Dadu RT, Ballantyne CM. Lipid lowering with PCSK9 inhibitors. Nat Rev Cardiol. 2014;11(10):563–75. doi: https://doi.org/10.1038/nrcardio.2014.84

54. Lambert G, Jarnoux AL, Pineau T, Pape O, Chetiveaux M, Laboisse C, et al. Fasting induces hyperlipidemia in mice overexpressing proprotein convertase subtilisin kexin type 9: lack of modulation of very-low-density lipoprotein hepatic output by the low-density lipoprotein receptor. Endocrinology. 2006;147(10):4985–95. doi: https://doi.org/10.1210/en.2006-0098

55. Kourimate S, Le May C, Langhi C, Jarnoux AL, Ouguerram K, Zaïr Y, et al. Dual mechanisms for the fibrate-mediated repression of proprotein convertase subtilisin/kexin type 9. J Biol Chem. 2008;283(15):9666–73. doi: https://doi.org/10.1074/jbc. M705831200

56. Kamaruddin NN, Hajri NA, Andriani Y, Abdul Manan AF, Tengku Muhammad TS, Mohamad H. Acanthaster planci Inhibits PCSK9 and lowers cholesterol levels in rats. Molecules. 2021;26(16):5094. doi: https://doi.org/10.3390/molecules26165094

57. Yang Z, Liu G, Wang Y, Yin J, Wang J, Xia B, et al. Fucoidan A2 from the brown seaweed Ascophyllum nodosum lowers lipid by improving reverse cholesterol transport in C57BL/6J mice fed a high-fat diet. J Agric Food Chem. 2019;67(20):5782–91. doi: https://doi.org/10.1021/acs.jafc.9b01321

58. Lebeau PF, Byun JH, Platko K, Saliba P, Sguazzin M, MacDonald ME, et al. Caffeine blocks SREBP2-induced hepatic PCSK9 expression to enhance LDLR-mediated cholesterol clearance. Nat Commun. 2022;13(1):1–17. doi: https://doi.org/10.1038/s41467-022-28240-9

59. Hwang JT, Kim HJ, Choi HK, Park JH, Chung S, Chung MY. Butein synergizes with statin to upregulate low-density lipoprotein receptor through HNF1 α-mediated PCSK9 inhibition in HepG2 cells. J Med Food. 2020;23(10):1102–8. doi: https://doi.org/10.1089/jmf.2020.4761

60. Li H, Li H, Ziegler N, Cui R, Liu J. Recent patents on PCSK9: a new target for treating hypercholesterolemia. Recent Pat DNA Gene Seq. 2009;3(3):201–12. doi: https://doi.org/10.2174/187221509789318388

61. Wang J, Wang Y, Yang X, Lin P, Liu N, Li X, et al. Purification, structural characterization, and PCSK9 secretion inhibitory effect of the novel alkali-extracted polysaccharide from Cordyceps militaris. Int J Biol Macromol. 2021;179:407–17. doi: https://doi.org/10.1016/j.ijbiomac.2021.02.191

62. Chae HS, You BH, Kim DY, Lee H, Ko HW, Ko HJ, et al. Sauchinone controls hepatic cholesterol homeostasis by the negative regulation of PCSK9 transcriptional network. Sci Rep. 2018;8(1):1–14. doi: https://doi.org/10.1038/s41598-018-24935-6

63. Kim HJ, Lee J, Chung MY, Hong S, Park JH, Lee SH, et al. Piceatannol reduces resistance to statins in hypercholesterolemia by reducing PCSK9 expression through p300 acetyltransferase inhibition. Pharmacol Res. 2020;161:105205. doi: https://doi.org/10.1016/j.phrs.2020.105205

64. Dong Z, Zhang W, Chen S, Liu C. Silibinin A decreases statin?induced PCSK9 expression in human hepatoblastoma HepG2 cells. Mol Med Rep. 2019;20(2):1383–92. doi: https://doi.org/10.3892/MMR.2019.10344/HTML

65. Hwang JT, Choi E, Choi HK, Park JH, Chung MY. The cholesterol-lowering effect of Capsella bursa-pastoris is mediated via SREBP2 and HNF-1α-regulated PCSK9 inhibition in obese mice and HEPG2 cells. Foods. 2021;10:1–14. doi: https://doi.org/10.3390/foods10020408

66. Qiao MQ, Li Y, Yang YX, Pang CX, Liu YT, Bian C, et al. Structure-activity relationship and biological evaluation of xanthine derivatives as PCSK9 inhibitors for the treatment of atherosclerosis. Eur J Med Chem. 2023;247(November 2022):115047. doi: https://doi.org/10.1016/j.ejmech.2022.115047

67. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci. 2003;100(21):12027–32. doi: https://doi.org/10.1073/pnas.1534923100

68. Maxwell KN, Soccio RE, Duncan EM, Sehayek E, Breslow JL. Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. J Lipid Res. 2003;44(11):2109–19. doi: https://doi.org/10.1194/jlr.M300203-JLR200

Article Metrics
8 Views 0 Downloads 8 Total

Year

Month

Related Search

By author names