Solid lipid nanoparticle-loaded oral dispersible films of eletriptan hydrobromide for enhanced bioavailability and sustained migraine relief

Anju Bala Chander Parkash Dora Inderjeet Verma   

Open Access   

Published:  Oct 15, 2025

DOI: 10.7324/JAPS.2026.262961
Abstract

The present study aims to develop and characterize a solid lipid nanoparticle-loaded oral dispersible film of eletriptan hydrobromide for migraine treatment. Eletriptan hydrobromide is a selective serotonin 5-HT1B/1D receptor agonist drug which is mainly used in the treatment of migraine. Solid lipid nanoparticles (SLN) were prepared using high-pressure homogenization and optimized through Box–Behnken design. The drug-loaded SLN were evaluated by their size, polydispersity index, drug entrapment efficiency, and in vitro drug release. Oral dispersible films were prepared using the solvent casting method, with pullulan as the film-forming polymer and propylene glycol as the plasticizer. X-ray diffraction was used to assess the drug’s solid-state characteristics. Oral dispersible film containing SLN showed higher (87.02%) and sustained drug release over a period of 24 hours as compared to free drug loaded in oral dispersible film. A transmission electron microscope study illustrated that the SLN were dispersed uniformly in the film and spherical in shape. Results of the study demonstrate that our formulation enhances the poor oral bioavailability of the drug, avoids first pass metabolism, provides a rapid onset of action, and sustained drug release.


Keyword:     Eletriptan hydrobromide solid lipid nanoparticles Box–Behnken design oral dispersible film (ODF) solvent casting method


Citation:

Bala A, Dora CP, Verma I. Solid lipid nanoparticle-loaded oral dispersible films of eletriptan hydrobromide for enhanced bioavailability and sustained migraine relief. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.262961

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Edvinsson L, Haanes KA, Warfvinge K, Krause DN. CGRP as the target of new migraine therapies-successful translation from bench to clinic. Nat Rev Neurol. 2018;14(6):338-50. https://doi.org/10.1038/s41582-018-0003-1

2. Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev. 2023;103(2):1565-644. https://doi.org/10.1152/physrev.00059.2021

3. Imai N, Matsumori Y. Different effects of migraine associated features on headache impact, pain intensity, and psychiatric conditions in patients with migraine. Sci Rep. 2024;14(1):22611. https://doi.org/10.1038/s41598-024-74253-3

4. Goadsby PJ. Migraine: diagnosis and management. Intern Med J. 2003;33:436-42. 5. Pellesi L, Do TP, Hougaard A. Pharmacological management of migraine: current strategies and future directions. Expert Opin Pharmacother. 2024;25(6):673-83. https://doi.org/10.1080/14656566.2024.2349791

6. Thalakoti S, Patil VV, Damodaram S, Vause CV, Langford LE, Freeman SE, Durham PL. Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache: J Head Face Pain. 2007;47(7):1008-23. https://doi.org/10.1111/j.1526-4610.2007.00854.x

7. Teixido M, Carey J. Migraine-more than a headache. Otolaryngol Head Neck Surg. 2014;14:1-4.

8. Goadsby PJ. Migraine pathophysiology. Headache: J Head Face Pain. 2005;45:S14-24. https://doi.org/10.1111/j.1526-4610.2005.4501003.x

9. Gilmore B, Michael M. Treatment of acute migraine headache. Am Fam Physician. 2011;83(3):271-80.

10. Wang SJ, Juang KD, Fuh JL, Lu SR. Psychiatric comorbidity and suicide risk in adolescents with chronic daily headache. Neurology. 2007;68(18):1468-73. https://doi.org/10.1212/01.wnl.0000260607.90634.d6

11. Esim O, Savaser A, Ozkan CK, Oztuna A, Goksel BA, Ozler M, et al. Nose to brain delivery of eletriptan hydrobromide nanoparticles: preparation, in vitro/in vivo evaluation and effect on trigeminal activation. J Drug Deliv Sci Technol. 2020;59:101919. https://doi.org/10.1016/j.jddst.2020.101919

12. Somwanshi SV, Thonte SS. Formulation development and in vitro evaluation of eletriptan fast dissolving oral films. Int J Pharm Sci Drug Res. 2018;10(6):447-53. https://doi.org/10.25004/IJPSDR.2018.100604

13. Ferreira AO, Brandão MAF, Raposo FJ, Polonini HC, Raposo NRB. Orodispersible films for compounding pharmacies. Int J Pharm Compd. 2017;21(6):454-61.

14. Patel AR, Prajapati DS, Raval JA. Fast dissolving films (FDFs) as a newer venture in fast dissolving dosage forms. Int J Drug Dev Res. 2010;2(2):232-46.

15. Southward J, Liu F, Aspinall SR, Okwuosa TC. Exploring the potential of mucoadhesive buccal films in geriatric medicine. Drug Dev Ind Pharm. 2025;7:1-21. https://doi.org/10.1080/03639045.2025.2467329

16. Tzanova MM, Hagesaether E, Tho I. Solid lipid nanoparticle-loaded mucoadhesive buccal films-critical quality attributes and in vitro safety & efficacy. Int J Pharm. 2021;592:120-00. https://doi.org/10.1016/j.ijpharm.2020.120100

17. Singh H, Narang JK, Singla YP, Narang RS, Mishra V. TPGS stabilized sublingual films of frovatriptan for the management of menstrual migraine: formulation, design and antioxidant activity. J Drug Deliv Sci Technol. 2017;41:144-56. https://doi.org/10.1016/j.jddst.2017.07.008

18. German-Cortés J, Vilar-Hernández M, Rafael D, Abasolo I, Andrade F. Solid lipid nanoparticles: multitasking nano-carriers for cancer treatment. Pharmaceutics. 2023;15(3):831. https://doi.org/10.3390/pharmaceutics15030831

19. Steiner D, Emmendörffer JF, Bunjes H. Orodispersible films: a delivery platform for solid lipid nanoparticles?. Pharmaceutics. 2021;13(12):2162. https://doi.org/10.3390/pharmaceutics13122162

20. Jan G, Sylva H, Jan Š, Erich P, Hana L, Petr D, et al. . Carmellose mucoadhesive oral films containing vermiculite/chlorhexidine nanocomposites as innovative biomaterials for treatment of oral infections. Bio Med Res Int. 2015; 2015: 1-16. https://doi.org/10.1155/2015/580146

21. Al-Dhubiab BE. In vitro and in vivo evaluation of nano-based films for buccal delivery of Zolpidem. Braz Oral Res.2016;30(1):e126. https://doi.org/10.1590/1807-3107bor-2016.vol30.0126

22. Hua S, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine. 2015;11:1117-32. https://doi.org/10.1016/j.nano.2015.02.018

23. Wang YY, Lai SK, Suk JS, Pace A, Cone R, Hanes J. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem Int Ed Engl. 2008;47(50):9726-9. https://doi.org/10.1002/anie.200803526

24. Jones E, Ojewole E, Kalhapure R, Govender T. In vitro comparative evaluation of monolayered multipolymeric films embedded with didanosine-loaded solid lipid nanoparticles: a potential buccal drug delivery system for ARV therapy. Drug Dev Ind Pharm. 2014;40(5):669-79. https://doi.org/10.3109/03639045.2014.892957

25. Hazzah, HA, Farid RM, Nasra MMA, El-Massik MA, Abdallah OY. Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: development and characterization. Int J Pharm. 2015;492:248-57. 26. Walsh J, Cram A, Woertz K, Breitkreutz J, Winzenburg G, Turner R, et al. Playing hide and seek with poorly tasting paediatric medicines: do not forget the excipients. Adv Drug Deliv Rev. 2014;73:14-33. https://doi.org/10.1016/j.addr.2014.02.012

27. Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. Mater Sci Eng: C. 2016;68:982-94. https://doi.org/10.1016/j.msec.2016.05.119

28. Beg S, Sharma G, Thanki K, Jain S, Katare OP, Singh B. Positively charged self-nanoemulsifying oily formulations of olmesartan medoxomil: systematic development, in vitro, ex vivo and in vivo evaluation. Int J Pharm. 2015;493(1-2):466-82. https://doi.org/10.1016/j.ijpharm.2015.07.048

29. Barot T, Patel U, Barot S, Dalvadi H. Development and optimization of solid lipid nanoparticle based gel of desoximetasone. Int J Pharm Investig. 2023;13(1):149-54. https://doi.org/10.5530/223097131840

30. Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci. 2017;7(1):47-57. https://doi.org/10.1007/s13204-017-0547-1

31. Chonkar AD, Rao JV, Managuli RS, Mutalik S, Dengale S, Jain P, et al. Development of fast dissolving oral films containing lercanidipine HCl nanoparticles in semicrystalline polymeric matrix for enhanced dissolution and ex vivo permeation. Eur J Pharm Biopharm. 2016;103:179-91. https://doi.org/10.1016/j.ejpb.2016.04.001

32. Babu VN, Rao GS, Budha RR, Alavala RR, Desu PK, Babu GK, et al. Development, characterization and optimization of solid lipid nanoparticles of alpha-mangostin by central composite design approach. JAPS 2023;13(8):140-50. https://doi.org/10.7324/JAPS.2023.24237

33. Pradhan M, Singh D, Singh MR. Development characterization and skin permeating potential of lipid based novel delivery system for topical treatment of psoriasis. Chem Phys Lipids. 2015;186:9-16. https://doi.org/10.1016/j.chemphyslip.2014.11.004

34. Hussain MW, Kushwaha P, Rahman MA, Akhtar J. Development and evaluation of fast dissolving film for oro-buccal drug delivery of chlorpromazine. Indian J Pharm Educ Res. 2017;51(4S):S539-47. https://doi.org/10.5530/ijper.51.4s.81

35. Sengar A, Yadav S, Niranjan S. Formulation and evaluation of mouth-dissolving films of propranolol hydrochloride. World J Pharma Res. 2024;13(16):850-61.

36. Prabhu P, Malli R, Koland M, Vijaynarayana K, D’Souza U, Harish NM, et al. Formulation and evaluation of fast dissolving films of levocitirizine di hydrochloride. Int J Pharm Investig. 2011;1(2):99. https://doi.org/10.4103/2230-973X.82417

37. Bharti K, Mittal P, Mishra B. Formulation and characterization of fast dissolving oral films containing buspirone hydrochloride nanoparticles using design of experiment. J Drug Deliv Sci Technol. 2019;49:420-32. https://doi.org/10.1016/j.jddst.2018.12.013

38. El-Setouhy DA, El-Malak NS. Formulation of a novel tianeptine sodium orodispersible film. Aaps Pharm Sci Tech. 2010;11:1018-25. https://doi.org/10.1208/s12249-010-9464-2

39. Semalty M, Semalty A, Kumar G. Formulation and characterization of mucoadhesive buccal films of glipizide. Indian J Pharm Sci. 2008;70(1):43. https://doi.org/10.4103/0250-474X.40330

40. Patel R, Shah D. Nanoparticles loaded sublingual film as an effective treatment of chemotherapy induced nausea and vomiting. Int J Pharm Tech Res. 2015;8(10):77-87.

41. Al-Nemrawi NK, Dave RH. Formulation and characterization of acetaminophen nanoparticles in orally disintegrating films. Drug deliv. 2016;23(2):540-9. https://doi.org/10.3109/10717544.2014.936987

42. Panda BP, Dey NS, Rao ME. Development of innovative orally fast disintegrating film dosage forms: a review. Int J Pharm Sci Nanotechnol. 2012;5(2):1666-74. https://doi.org/10.37285/ijpsn.2012.5.2.2

Article Metrics
8 Views 0 Downloads 8 Total

Year

Month

Related Search

By author names