Polyphenolic compounds from Peperomia pellucida have been reported to exhibit various therapeutic applications. The level of polyphenol contained in the extract is correlated with its biological activities. A combination of natural deep eutectic solvent (NADES) and microwave-assisted extraction (MAE) is considered as a potential green method that is able to attract the target secondary metabolites. This study aims to screen the most effective NADES composition as an extraction solvent and to optimize the MAE condition on extracting polyphenols from P. pellucida herbs using Box–Behnken design with response surface methodology. The total phenolic content (TPC) was determined using a UV-Vis spectrophotometer. The combination of glucose and citric acid (1:3 w/w) yielded the highest TPC value of 114.59 mg gallic acid equivalent (GAE)/g sample among the investigated NADES compositions. The optimum conditions of MAE were attained at a microwave power of 50%, an extraction time of 5 minutes, a NADES ratio of 5:1 (w/w), and a solvent–sample ratio of 6:1 (ml/g), yielding a TPC value of 138.29 ± 2.21 mg GAE/g sample. Our findings demonstrate that glucose:citric acid-based NADES combined with MAE can be an alternative method to obtain polyphenol-rich extracts from P. pellucida.
Ahmad I, Hikmawan BD, Febrina L, Junaidin J, Rusman A, Salam S, Suhartono E, Nugroho Y, Iskandar I, Zein M, Julianto V, Rahmanto O, Mun’im A. Application of microwave-assisted extraction using glucose-citric acid deep eutectic solvent for enhancement of polyphenols extraction from Peperomia pellucida (L) Kunth herb. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.231184
1. Ahmad I, Hikmawan BD, Sulistiarini R, Mun'im A. Peperomia pellucida (L.) Kunth herbs: a comprehensive review on phytochemical, pharmacological, extraction engineering development, and economic promising perspectives. J Appl Pharm Sci. 2023;13(1):1-9. https://doi.org/10.7324/JAPS.2023.130201 | |
2. Ahmad I, Ambarwati N, Elya B, Omar H, Mulia K, Yanuar A, et al. A new angiotensin-converting enzyme inhibitor from Peperomia pellucida (L.) Kunth. Asian Pac J Trop Biomed. 2019;9(6):257-62. https://doi.org/10.4103/2221-1691.260398 | |
3. Uwaya OD, Omozuwa PO, Inegbedion RE. Evaluation of in-vitro antioxidant and antidiarrheal activities of Peperomia pellucida methanol extracts on Albino mice. J Appl Sci Environ Manag. 2021;25(9):1681-8. https://doi.org/10.4314/jasem.v25i9.21 | |
4. Alves NSF, Setzer WN, da Silva JKR. The chemistry and biological activities of Peperomia pellucida (Piperaceae): a critical review. J Ethnopharmacol. 2019;232(232):90-102. https://doi.org/10.1016/j.jep.2018.12.021 | |
5. Gomes PWP, Barretto H, Reis JDE, Muribeca A, Veloso A, Albuquerque C, et al. Chemical composition of leaves, stem, and roots of Peperomia pellucida (L.) Kunth. Molecules. 2022;27(6):1847. https://doi.org/10.3390/molecules27061847 | |
6. Makori SI, Mu TH, Sun HN. Total polyphenol content, antioxidant activity, and individual phenolic composition of different edible parts of 4 sweet potato cultivars. Nat Prod Comm. 2020;15(7):1934578X20936931. https://doi.org/10.1177/1934578X20936931 | |
7. Vidal-Casanella O, Moreno-Merchan J, Granados M, Nuñez O, Saurina J, Sentellas S. Total polyphenol content in food samples and nutraceuticals: antioxidant indices versus high performance liquid chromatography. Antioxidants. 2022;11(2):324. https://doi.org/10.3390/antiox11020324 | |
8. Ho KL, Tan CG, Yong PH, Wang CW, Lim SH, Kuppusamy UR, et al. Extraction of phytochemicals with health benefit from Peperomia pellucida (L.) Kunth through liquid-liquid partitioning. J Appl Res Med Aromat Plants. 2022;30:100392. https://doi.org/10.1016/j.jarmap.2022.100392 | |
9. Phongtongpasuk S, Poadang S. Extraction of antioxidants from Peperomia pellucida L. Kunth. Sci Technol Asia. 2014;19(3):38- 43. | |
10. Pathak M, Singh L, Kumar A, Upadhyay G. Green solvents and their importance in medicinal chemistry: an overview. Subharti J Interdisciplinary Res. 2020;3(1):4-8. | |
11. Ahmad I, Yanuar A, Mulia K, Mun'im A. Application of ionic liquid as a green solvent for polyphenolics content extraction of Peperomia pellucida (L) kunth herb. J Young Pharm. 2017;9(4):486-90. https://doi.org/10.5530/jyp.2017.9.95 | |
12. Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Röder T, et al. Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Berichte. 2005;84(1):71-85. | |
13. Rijai L, Tang ST, Priastomo M, Siska S, Indriyanti N, Ambarwati NSS, et al. Microwave-assisted extraction of polypenols from Eleutherine bulbosa Mill. Urb. bulbs using choline chloride-sorbitol based natural deep eutectic solvent. J Appl Pharm Sci. 2023;13(6):217-24. https://doi.org/10.7324/JAPS.2023.130962 | |
14. Bonacci S, Di Gioia ML, Costanzo P, Maiuolo L, Tallarico S, Nardi M. Natural deep eutectic solvent as extraction media for the main phenolic compounds from olive oil processing wastes. Antioxidants. 2020;9(6):1-14. https://doi.org/10.3390/antiox9060513 | |
15. Barbieri JB, Goltz C, Batistão Cavalheiro F, Theodoro Toci A, Igarashi-Mafra L, Mafra MR. Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds. Ind Crops Prod. 2020;144:112049. https://doi.org/10.1016/j.indcrop.2019.112049 | |
16. Yusuf B, Astati SJ, Ardana M, Herman H, Ibrahim A, Rijai L, et al. Optimizing natural deep eutectic solvent citric acid-glucose based microwave-assisted extraction of total polyphenols content from Eleutherine bulbosa (Mill.) bulb. Indonesian J Chem. 2021;21(4):797-805. https://doi.org/10.22146/ijc.58467 | |
17. Herman, Ibrahim A, Rahayu BP, Arifuddin M, Nur Y, Prabowo WC, et al. Single factor effect of natural deep eutectic solvent citric acid-glucose based microwave-assisted extraction on total polyphenols content from Mitragyna speciosa Korth. Havil leaves. Pharmacogn J. 2021;13(5):1109-15. https://doi.org/10.5530/pj.2021.13.143 | |
18. Oktaviyanti ND, Kartini, Mun'im A. Application and optimization of ultrasound-assisted deep eutectic solvent for the extraction of new skin-lightening cosmetic materials from Ixora javanica flower. Heliyon. 2019;5(11):e02950. https://doi.org/10.1016/j.heliyon.2019.e02950 | |
19. Shang XC, Chu D, Zhang JX, Zheng YF, Li Y. Microwave-assisted extraction, partial purification and biological activity in vitro of polysaccharides from bladder-wrack (Fucus vesiculosus) by using deep eutectic solvents. Sep Purif Technol. 2021;259:118169. https://doi.org/10.1016/j.seppur.2020.118169 | |
20. Hapid A, Zullaikah S, Mahfud M, Kawigraha A, Azmi MU, Haryanto I, et al. Optimization of microwave-assisted roasting: box-behnken design for oxidation of sulfide minerals and control of atmospheric sulfur in refractory gold ore pretreatment. Case Stud ChemEnviron Eng. 2024;10:100826. https://doi.org/10.1016/j.cscee.2024.100826 | |
21. Simamora A, Timotius KH, Setiawan H, Saputri FC, Putri CR, Aryani D, et al. Ultrasonic-assisted extraction of xanthorrhizol from Curcuma xanthorrhiza Roxb. rhizomes by natural deep eutectic solvents: optimization, antioxidant activity, and toxicity profiles. Molecules. 2024;29(9):2093. https://doi.org/10.3390/molecules29092093 | |
22. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965-77. https://doi.org/10.1016/j.talanta.2008.05.019 | |
23. Pani? M, Gunjevi? V, Cravotto G, Radoj?i? Redovnikovi? I. Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chem. 2019;300:125185. https://doi.org/10.1016/j.foodchem.2019.125185 | |
24. Gómez-Urios C, Viñas-Ospino A, Puchades-Colera P, Lopez-Malo D, Frigola A, Esteve MJ, et al. Sustainable development and storage tability of orange by-products extract using natural deep eutectic solvents. Foods. 2022;11(16):2457. https://doi.org/10.3390/foods11162457 | |
25. Liu Y, Li J, Fu R, Zhang L, Wang D, Wang S. Enhanced extraction of natural pigments from Curcuma longa L. using natural deep eutectic solvents. Ind Crops Prod. 2019;140:111620. https://doi.org/10.1016/j.indcrop.2019.111620 | |
26. Spaggiari C, Carbonell-Rozas L, Zuilhof H, Costantino G, Righetti L. Structural elucidation and long-term stability of synthesized NADES: a detailed physicochemical analysis. J Mol Liq. 2025;424:127105. https://doi.org/10.1016/j.molliq.2025.127105 | |
27. Savi LK, Dias MCGC, Carpine D, Waszczynskyj N, Ribani RH, Haminiuk CWI. Natural deep eutectic solvents (NADES) based on citric acid and sucrose as a potential green technology: a comprehensive study of water inclusion and its effect on thermal, physical and rheological properties. Int J Food Sci Technol. 2019;54(3):898-907. https://doi.org/10.1111/ijfs.14013 | |
28. Airouyuwa JO, Mostafa H, Ranasinghe M, Maqsood S. Influence of physicochemical properties of carboxylic acid-based natural deep eutectic solvents (CA-NADES) on extraction and stability of bioactive compounds from date (Phoenix dactylifera L.) seeds: an innovative and sustainable extraction technique. J Mol Liq. 2023;388:122767 https://doi.org/10.1016/j.molliq.2023.122767 | |
29. Gómez Vargas C, Ponce NMA, Stortz CA, Fossore EN, Bonelli P, González CMO, et al. Pectin obtention from agroindustrial wastes of Malus domestica using green solvents (citric acid and natural deep eutectic solvents). Chemical, thermal, and rheological characterization. Front Chem. 2025;12:1504582. https://doi.org/10.3389/fchem.2024.1504582 | |
30. Ahmad I, Shakti SOP, Prabowo WC, Hikmawan BD, Arifudin M, Angelina M, et al. Citric acid-glycerol-based NADES for microwave-assisted extraction enhances the polyphenols level of Eleutherine bulbosa mill. Urb. Bulbs. J Appl Pharm Sci. 2024;14(9):189-97. https://doi.org/10.7324/JAPS.2024.180291 | |
31. Huamán-Castilla NL, Gajardo-Parra N, Pérez-Correa JR, Canales RI, Martínez-Cifuentes M, Contreras-Contreras G, et al. Enhanced polyphenols recovery from grape pomace: a comparison of pressurized and atmospheric extractions with deep eutectic solvent aqueous mixtures. Antioxidants. 2023;12(7):1446. https://doi.org/10.3390/antiox12071446 | |
32. Grudniewska A, Pop?o?ski J. Simple and green method for the extraction of xanthohumol from spent hops using deep eutectic solvents. Sep Purif Technol. 2020;250:117196. https://doi.org/10.1016/j.seppur.2020.117196 | |
33. Aung T, Kim SJ, Eun JB. A hybrid RSM-ANN-GA approach on optimisation of extraction conditions for bioactive component-rich laver (Porphyra dentata) extract. Food Chem. 2022;366:130689. https://doi.org/10.1016/j.foodchem.2021.130689 | |
34. Costa FS, Moreira LS, Ludovico LL, Volpe J, de Oliveira AC, Dos Santos MP, et al. Microwave-assisted extraction based on emulsion breaking with natural deep eutectic solvent for vegetable oil sample preparation prior to elemental determination by ICP OES. Talanta. 2024;266:125108. https://doi.org/10.1016/j.talanta.2023.125108 | |
35. Ahmad I, Yanuar A, Mulia K, Mun'im A. Extraction of polyphenolic content from Peperomia pellucida (L) Kunth herb with 1-ethyl-3- methylimidazolium bromide as a green solvent. Indian J Pharm Sci. 2017;79(6):1013-7. https://doi.org/10.4172/pharmaceutical-sciences.1000320 |
Year
Month