Ethanolic extract of Garcinia cowa leaves reduces adipocyte size and hepatic fat accumulation in high-fat diet-fed rats

Siwaporn Praman Wannisa Sukhorum Thidarat Duangyod Rawiwan Charoensup   

Open Access   

Published:  Jul 19, 2025

DOI: 10.7324/JAPS.2025.249567
Abstract

Garcinia cowa Roxb. ex Choisy (G. cowa) has traditionally been used to enhance blood circulation, aid digestion, and act as an antipyretic and expectorant. Although previous studies have demonstrated its anti-hyperlipidemic activity in vitro, the anti-obesity effects of G. cowa remain inadequately explored. This study evaluates the effects of ethanolic G. cowa leaf extract (GCE) in high-fat diet (HFD)-induced obese rats. Wistar rats were divided into four groups: normal diet, HFD, HFD with GCE (200 mg/kg), and HFD with GCE (400 mg/kg), treated for 8 weeks. HFD significantly increased body weight, fat mass, and feed efficiency ratio, whereas GCE supplementation attenuated these effects without affecting food intake. In addition, histological analysis revealed HFD-induced adipocyte enlargement and hepatic fat accumulation. Notably, the administration of GCE restored both adipocyte size and number while also reducing hepatic fat accumulation. However, among groups, no significant differences were observed in liver and kidney weights, serum lipid profiles, liver enzymes, or blood glucose. Hydroxycitric acid and flavonoids may contribute to the anti-obesity effects of GCE. These findings suggest that GCE treatment reduced adipocyte size and hepatic lipid accumulation in HFD-induced obese rats, demonstrating its potential anti-obesity properties.


Keyword:     Garcinia cowa anti-obesity high-fat diet adipose tissue hepatic fat accumulation


Citation:

Praman S, Sukhorum W, Duangyod T, Charoensup R. Ethanolic extract of Garcinia cowa leaves reduces adipocyte size and hepatic fat accumulation in high-fat diet-fed rats. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.249567

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Koliaki C, Dalamaga M, Liatis S. Update on the obesity epidemic: after the sudden rise, is the upward trajectory beginning to flatten? Curr Obes Rep. 2023;12(4):514–27. doi: https://doi.org/10.1007/s13679-023-00527-y

2. World Health Organization.obesity and overweight. Geneva, Switzerland: WHO [Internet]; 2025 May 7 [cited 2025 May 20]. Available from: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight

3. Kaveripakam SS, Adikay S, Retnasamy G. Anti-obesity efficacy of roots of Stereospermum suaveolens in high fat-induced obese rats. J Young Pharm. 2017;9(2):234–8. doi: https://doi.org/10.5530/jyp.2017.9.46

4. Lin X, Li H.obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol (Lausanne). 2021;12:706978. doi: https://doi.org/10.3389/fendo.2021.706978

5. Poston WS, Hyder ML, O’Byrne KK, Foreyt JP. Where do diets, exercise, and behavior modification fit in the treatment of obesity? Endocrine. 2000;13(2):187–92. doi: https://doi.org/10.1385/ENDO:13:2:187

6. Tak YJ, Lee SY. Anti-obesity drugs: long-term efficacy and safety: an updated review. World J Mens Health. 2021;39(2):208–21. doi: https://doi.org/10.5534/wjmh.200010

7. Yun JW. Possible anti-obesity therapeutics from naturea review. Phytochemistry. 2010;71(14–15):1625–41. doi: https://doi.org/10.1016/j.phytochem.2010.07.011

8. Kongchian A, Keawboonlert N, Boonrak T, Lookyee S, Buasri K, Sukongkul N, et al. Anti-hyperlipidemia and anti-obesity properties of Garcinia atroviridis and Camellia sinensis extracts in high-fat diet mice. Walailak J Sci Technol. 2020;17(10):1126–38. doi: https://doi.org/10.48048/wjst.2020.10717

9. Lim WF, Nasir SM, Teh LK, James RJ, Izhar MHM, Salleh MZ. The methanolic extract of Garcinia atroviridis (MeGa) reduces body weight and food intake, and improves lipid profiles by altering the lipid metabolism: a rat model. Turk J Biol. 2020;44(6):437–48. doi: https://doi.org/10.3906/biy-2005-2

10. Majeed M, Majeed S, Nagabhushanam K, Lawrence L, Mundkur L. Garcinia indica extract standardized for 20% Garcinol reduces adipogenesis and high fat diet-induced obesity in mice by alleviating endoplasmic reticulum stress. J Funct Foods. 2020;67(41):103863. doi: https://doi.org/10.1016/j.jff.2020.103863

11. Sarma R, Kumari S, Elancheran R, Deori M, Devi R. Polyphenol rich extract of Garcinia pedunculata fruit attenuates the hyperlipidemia induced by high fat diet. Front Pharmacol. 2016;7:294. doi: https://doi.org/10.3389/fphar.2016.00294

12. Yadav R, Bindra HK, Chaurasia RC. Therapeutic potential of Garcinia cambogia and Emblica officinalis in the management of obesity and lipid profiles in a rat model of diet induced obesity. Int J Basic Clin Pharmacol. 2024;13(5):647–54. doi: https://doi.org/10.18203/2319-2003.ijbcp20242423

13. Panthong K, Hutadilok-Towatana N, Panthong A. Cowaxanthone F, a new tetraoxygenated xanthone, and other anti-inflammatory and antioxidant compounds from Garcinia cowa. Can J Chem. 2009;87(11):1636–40. doi: https://doi.org/10.1139/V09-123

14. Mahabusarakam W, Chairerk P, Taylor WC. Xanthones from Garcinia cowa Roxb. latex. Phytochemistry. 2005;66(10):1148–53. doi: https://doi.org/10.1016/j.phytochem.2005.02.025

15. Murakami A, Jiwajinda S, Koshimizu K, Ohigashi H. Screening for in vitro anti-tumor promoting activities of edible plants from Thailand. Cancer Lett. 1995;95(1–2):139–46. doi: https://doi.org/10.1016/0304-3835(95)03879-2

16. Negi PS, Jayaprakasha GK, Jena BS. Evaluation of antioxidant and antimutagenic activities of the extracts from the fruit rinds of Garcinia cowa. Int J Food Prop. 2010;13(6):1256–65. doi: https://doi.org/10.1080/10942910903050383

17. Jantan I, Jumuddin FA, Saputri FC, Rahman K. Inhibitory effects of the extracts of Garcinia species on human low-density lipoprotein peroxidation and platelet aggregation in relation to their total phenolic contents. J Med Plant Res. 2011;5(13):2699–709.

18. Bulbul-A-Munira, Chowdhury SA. Antibacterial, neuropharmacological and analgesic activities of Garcinia cowa (family: Clusiaceae). Int Conf Bioinform Biomed Eng. 2015;1(2):112–7.

19. Wahyuni FS, Shaari K, Stanslas J, Lajis N, Hamidi D. Cytotoxic compounds from the leaves of Garcinia cowa Roxb. J Appl Pharm Sci. 2015;5(2):6–11. doi: https://doi.org/10.7324/JAPS.2015.50202

20. Praman S, Teerapattarakan N, Hawiset T. Garcinia cowa leaf ethanolic extract induces vasorelaxation through eNOS/NO/sGC pathway, potassium, and calcium channels in isolated rat thoracic aorta. Pharmacogn J.2024;16(4):797–804. doi: https://doi.org/10.5530/pj.2024.16.132

21. Yorsin S, Sriwiriyajan S, Chongsa W. Vasorelaxing effect of Garcinia cowa leaf extract in rat thoracic aorta and its underlying mechanisms. J Tradit Complement Med. 2023;13(3):219–25. doi: https://doi.org/10.1016/j.jtcme.2022.12.001

22. Pattamadilok D, Niumsakul S, Limpeanchob N, Ingkaninan K, Wongsinkongman P. Chemical constituents and anti-hyperlipidemia activity of Garcinia cowa leaves. J Thai Tradit Altern Med. 2010; 8(2–3):152–9.

23. Jena BS, Jayaprakasha GK, Sakariah KK.organic acids from leaves, fruits, and rinds of Garcinia cowa. J Agric Food Chem. 2002;50(12):3431–4. doi: https://doi.org/10.1021/jf011627j

24. Shiekh KA, Benjakul S, Sae-Leaw T. Effect of Chamuang (Garcinia cowa Roxb.) leaf extract on inhibition of melanosis and quality changes of Pacific white shrimp during refrigerated storage. Food Chem. 2019;270:554–61. doi: https://doi.org/10.1016/j.foodchem.2018.07.139

25. Bastías-Pérez M, Serra D, Herrero L. Dietary options for rodents in the study of obesity. Nutrients. 2020;12(11):3234. doi: https://doi.org/10.3390/nu12113234

26. Arika WM, Kibiti CM, Njagi JM, Ngugi MP. Anti-obesity effects of dichloromethane leaf extract of Gnidia glauca in high fat diet-induced obese rats. Heliyon. 2019;5(11):e02800. doi: https://doi.org/10.1016/j.heliyon.2019.e02800

27. Lee SJ, Choi HN, Kang MJ, Choe E, Auh JH, Kim JI. Chamnamul [Pimpinella brachycarpa (Kom.) Nakai] ameliorates hyperglycemia and improves antioxidant status in mice fed a high-fat, high-sucrose diet. Nutr Res Pract. 2013;7(6):446–52. doi: https://doi.org/10.4162/nrp.2013.7.6.446

28. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.

29. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21. doi: https://doi.org/10.1002/hep.20701

30. Bruder-Nascimento T, Ekeledo OJ, Anderson R, Le HB, Belin de Chantemèle EJ.Long term high fat diet treatment: an appropriate approach to study the sex-specificity of the autonomic and cardiovascular responses to obesity in mice. Front Physiol. 2017;8:32. doi: https://doi.org/10.3389/fphys.2017.00032

31. Kovacs P, Hajnal A. Short-term high-fat diet consumption increases body weight and body adiposity and alters brain stem taste information processing in rats. Chem Senses. 2022;47:bjac020. doi: https://doi.org/10.1093/chemse/bjac020

32. Kim CM, Yi SJ, Cho IJ, Ku SK. Red-koji fermented red ginseng ameliorates high fat diet-induced metabolic disorders in mice. Nutrients. 2013;5(11):4316–32. doi: https://doi.org/10.3390/nu5114316

33. Kim MR, Kim JW, Park JB, Hong YK, Ku SK, Choi JS. Anti-obesity effects of yellow catfish protein hydrolysate on mice fed a 45% kcal high-fat diet. Int J Mol Med. 2017;40(3):784–800. doi: https://doi.org/10.3892/ijmm.2017.3063

34. Wu YHS, Chiu CH, Yang DJ, Lin YL, Tseng JK, Chen YC. Inhibitory effects of litchi (Litchi chinensis Sonn.) flower-water extracts on lipase activity and diet-induced obesity. J Funct Foods. 2013;5(2):923–9. doi: https://doi.org/10.1016/j.jff.2013.02.002

35. Cho YR, Lee JA, Kim YY, Kang JS, Lee JH, Ahn EK. Anti-obesity effects of Clausena excavata in high-fat diet-induced obese mice. Biomed Pharmacother. 2018;99:253–60. doi: https://doi.org/10.1016/j.biopha.2018.01.069

36. Rahman HA, Sahib NG, Saari N, Abas F, Ismail A, Mumtaz MW, et al. Anti-obesity effect of ethanolic extract from Cosmos caudatus Kunth leaf in lean rats fed a high fat diet. BMC Complement Altern Med. 2017;17(1):122. doi: https://doi.org/10.1186/s12906-017-1640-4

37. Garg A, Singh R. Antiobesity activity of aqueous and ethanol extracts of Aegle marmelos leaves in high fat diet induced obese rats. Int J Pharm Sci Rev Res. 2015;30(1):53–60.

38. Kang SJ, Lee JE, Lee EK, Jung DH, Song CH, Park SJ, et al. Fermentation with Aquilariae Lignum enhances the anti-diabetic activity of green tea in type II diabetic db/db mouse. Nutrients. 2014;6(9):3536–71. doi: https://doi.org/10.3390/nu6093536

39. Kim CH, Lee JM, Jang YS, Jeon JH, Lim SS, Kim SC, et al. Anti-obesity effect of Solidago virgaaurea extract in high-fat diet-fed SD rat. Animal Cells Syst (Seoul). 2016;20(6):335–43. doi: https://doi.org/10.1080/19768354.2016.1254110

40. Kim BM, Cho BO, Jang SI. Anti-obesity effects of Diospyros lotus leaf extract in mice with high-fat diet-induced obesity. Int J Mol Med. 2019;43(1):603–13. doi: https://doi.org/10.3892/ijmm.2018.3941

41. Meli R, Mattace Raso G, Irace C, Simeoli R, Di Pascale A, Paciello O, et al. High fat diet induces liver steatosis and early dysregulation of iron metabolism in rats. PLoS One. 2013;8(6):e66570. doi: https://doi.org/10.1371/journal.pone.0066570

42. Tsuru H, Osaka M, Hiraoka Y, Yoshida M. HFD-induced hepatic lipid accumulation and inflammation are decreased in Factor D deficient mouse. Sci Rep. 2020;10(1):17593. doi: https://doi.org/10.1038/s41598-020-74617-5

43. El Hilaly J, Israili ZH, Lyoussi B. Acute and chronic toxicological studies of Ajuga iva in experimental animals. J Ethnopharmacol. 2004;91(1):43–50. doi: https://doi.org/10.1016/j.jep.2003.11.009

44. Abbas MA, Boby N, Lee EB, Hong JH, Park SC. Anti-obesity effects of Ecklonia cava extract in high-fat diet-induced obese rats. Antioxidants (Basel). 2022;11(2):310. doi: https://doi.org/10.3390/antiox11020310

45. Ai ZL, Zhang X, Ge W, Zhong YB, Wang HY, Zuo ZY, et al. Salvia miltiorrhiza extract may exert an anti-obesity effect in rats with high-fat diet-induced obesity by modulating gut microbiome and lipid metabolism. World J Gastroenterol. 2022;28(43):6131–56. doi: https://doi.org/10.3748/wjg.v28.i43.6131

46. Jung YC, Kim HW, Min BK, Cho JY, Son HJ, Lee JY, et al. Inhibitory effect of olive leaf extract on obesity in high-fat diet-induced mice. In Vivo. 2019;33(3):707–15. doi: https://doi.org/10.21873/invivo.11529

47. Bréger G, André A, Cotte C, Hammaidi A, Amérand A, Faivre C, et al. Anti-obesity effects evaluation of a blackcurrant leaf standardized hydro-alcoholic extract in Wistar rat subjected to a high-fat diet. Biology (Basel). 2024;13(12):999. doi: https://doi.org/10.3390/biology13120999

48. Onakpoya I, Hung SK, Perry R, Wider B, Ernst E. The use of Garcinia extract (hydroxycitric acid) as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. J Obes. 2011;2011:509038. doi: https://doi.org/10.1155/2011/509038

49. Roongpisuthipong C, Kantawan R, Roongpisuthipong W. Reduction of adipose tissue and body weight: effect of water soluble calcium hydroxycitrate in Garcinia atroviridis on the short term treatment of obese women in Thailand. Asia Pac J Clin Nutr. 2007;16(1):25–9.

50. Leonhardt M, Langhans W. Hydroxycitrate has long-term effects on feeding behavior, body weight regain and metabolism after body weight loss in male rats. J Nutr. 2002;132(7):1977–82. doi: https://doi.org/10.1093/jn/132.7.1977

51. Downs BW, Bagchi M, Subbaraju GV, Shara MA, Preuss HG, Bagchi D. Bioefficacy of a novel calcium-potassium salt of (-)-hydroxycitric acid. Mutat Res. 2005;579(1–2):149–62. doi: https://doi.org/10.1016/j.mrfmmm.2005.02.021

52. Hayamizu K, Ishii Y, Kaneko I, Shen M, Okuhara Y, Shigematsu N, et al. Effects of garcinia cambogia (Hydroxycitric acid) on visceral fat accumulation: a double-blind, randomized, placebo-controlled trial. Curr Ther Res Clin Exp. 2003;64(8):551–67. doi: https://doi.org/10.1016/j.curtheres.2003.08.006

53. Kovacs EM, Westerterp-Plantenga MS. Effects of (-)-hydroxycitrate on net fat synthesis as de novo lipogenesis. Physiol Behav. 2006; 88(4–5):371–81. doi: https://doi.org/10.1016/j.physbeh.2006.04.005

54. Leonhardt M, Hrupka B, Langhans W. Effect of hydroxycitrate on food intake and body weight regain after a period of restrictive feeding in male rats. Physiol Behav. 2001;74(1–2):191–6. doi: https://doi.org/10.1016/s0031-9384(01)00547-9

55. Chuah LO, Ho WY, Beh BK, Yeap SK. Updates on antiobesity effect of Garcinia Origin (-)-HCA. Evid Based Complement Alternat Med. 2013;2013:751658. doi: https://doi.org/10.1155/2013/751658

56. Torres-Villarreal D, Camacho A, Castro H, Ortiz-Lopez R, de la Garza AL. Anti-obesity effects of kaempferol by inhibiting adipogenesis and increasing lipolysis in 3T3-L1 cells. J Physiol Biochem. 2019;75(1):83–8. doi: https://doi.org/10.1007/s13105-018-0659-4

57. Xu C, Zhang X, Wang Y, Wang Y, Zhou Y, Li F, et al. Dietary kaempferol exerts anti-obesity effects by inducing the browing of white adipocytes via the AMPK/SIRT1/PGC-1α signaling pathway. Curr Res Food Sci. 2024;8:100728. doi: https://doi.org/10.1016/j.crfs.2024.100728

58. Jung UJ, Cho YY, Choi MS. Apigenin ameliorates dyslipidemia, hepatic steatosis and insulin resistance by modulating metabolic and transcriptional profiles in the liver of high-fat diet-induced obese mice. Nutrients. 2016;8(5):305. doi: https://doi.org/10.3390/nu8050305

59. Su T, Huang C, Yang C, Jiang T, Su J, Chen M, et al. Apigenin inhibits STAT3/CD36 signaling axis and reduces visceral obesity. Pharmacol Res. 2020;152:104586. doi: https://doi.org/10.1016/j.phrs.2019.104586

60. Lin Y, Ren N, Li S, Chen M, Pu P. Novel anti-obesity effect of scutellarein and potential underlying mechanism of actions. Biomed Pharmacother. 2019;117:109042. doi: https://doi.org/10.1016/j.biopha.2019.109042

61. Su HM, Feng LN, Zheng XD, Chen W. Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice. J Zhejiang Univ Sci B. 2016;17(6):437–46. doi: https://doi.org/10.1631/jzus.B1600074

62. Wang Q, Wang ST, Yang X, You PP, Zhang W. Myricetin suppresses differentiation of 3 T3-L1 preadipocytes and enhances lipolysis in adipocytes. Nutr Res. 2015;35(4):317–27. doi: https://doi.org/10.1016/j.nutres.2014.12.009

63. Kwon EY, Choi MS. Dietary eriodictyol alleviates adiposity, hepatic steatosis, insulin resistance, and inflammation in diet-induced obese mice. Int J Mol Sci. 2019;20(5):1227. doi: https://doi.org/10.3390/ijms20051227

64. Jung CH, Cho I, Ahn J, Jeon TI, Ha TY. Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism genes. Phytother Res. 2013;27(1):139–43. doi: https://doi.org/10.1002/ptr.4687

65. Kobori M, Masumoto S, Akimoto Y, Oike H. Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice. Mol Nutr Food Res. 2011;55(4):530–40. doi: https://doi.org/10.1002/mnfr.201000392

66. Chen G, Han Y, He W, Liang F. Amentoflavone protects against high fat-induced metabolic dysfunction: possible role of the regulation of adipogenic differentiation. Int J Mol Med. 2016;38(6):1759–67. doi: https://doi.org/10.3892/ijmm.2016.2772

Article Metrics
18 Views 2 Downloads 20 Total

Year

Month

Related Search

By author names