Effect of Physalis angulata fraction on seminiferous tubules, Bax, Bcl-2, and SOD1 mRNA expression in testicular diabetic rat model

Muhamad Tolib Rul Afiyah Syarif Dicky Moch Rizal Mae Sri Hartati Wahyuningsih Nur Arfian Ika Rahayu Kim Danasjz Syafeti Frida Septiani Tavia Saddam Muhdi   

Open Access   

Published:  Jun 10, 2025

DOI: 10.7324/JAPS.2025.229171
Abstract

Diabetes mellitus (DM) is a chronic metabolic disease that can lead to infertility due to hypogonadism and erectile dysfunction. The increase in apoptosis caused by hyperglycemia is the main driver behind testicle weight reduction and histological changes in the testicle. Previous research showed that the administration of fraction I of Physalis angulata (Pa) had the best glucose-reducing activity compared to the other fractions on myoblast cells. This study investigated the effects of fraction I of Pa on damaged testicles in DM condition. This study used Wistar rats as an animal model of DM. Animals were induced by a single dose of streptozotocin (STZ) 60 mg/kgBW. Fractions of Pa were given once a day for 2 months at a dose of 8.5 (Pa 1), 34 (Pa 2), and 136 mg/kgBW (Pa 3). Testicular histology images were viewed using histology preparations with Hematoxylin and Eosin staining, whereas Bax, Bcl- 2, and superoxide dismutase (SOD1) mRNA expression was tested using real-time polymerase chain reaction. The results showed that the fraction of Pa improved seminiferous tubule’s diameter and its epithelial thickness in DM model animals. Administration of Pa fraction in the treatment group showed an increase in seminiferous epithelial thickness, mRNA expression of Bcl-2, and SOD1 and decreased luminal diameter of the seminiferous tubules and Bax mRNA expression compared to the DM group. This study shows that the administration of a fraction of Pa at a dose of 136 mg/kgBW provides an optimal protective effect on testicular repair caused by hyperglycemia conditions compared to other doses. There is no preceding study on the effects of a fraction of Pa extract on damaged testicles in DM condition, making this study a valuable contribution to the field.


Keyword:     Active fraction apoptosis oxidative stress Physalis angulata


Citation:

Tolib M, Syarif RA, Rizal DM, Wahyuningsih MSH, Arfian N, Syafeti KD, Tavia FS, Muhdi S. Effect of Physalis angulata fraction on seminiferous tubules, Bax, Bcl-2 and SOD1 mRNA expression in testicular diabetic rat model. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.229171

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. International Diabetes Federation (IDF). Diabetes atlas. 7th ed. Brussels, Belgium: International Diabetes Federation; 2015.

2. Ministry of Health Republic of Indonesia. National basic health research finding report (RISKESDAS) 2018. Jakarta, Indonesia: The National Institute of Health Research and Development; 2019. 123–43 pp.

3. Prattichizzo F, De Nigris V, Mancuso E, Spiga R, Giuliani A, Matacchione G, et al. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biol. 2018;15:170–81. doi: https://doi.org/10.1016/j.redox.2017.12.001

4. Ding GL, Liu Y, Liu ME, Pan JX, Guo MX, Sheng JZ, et al. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. J Androl. 2015;17(6):948–53. doi: https://doi.org/10.4103/1008-682X.150844

5. Turner TT, Jeffrey JL. Stress oxidative: a common factor in testicular dysfuction. J Androl. 2008;29(5):488–98. doi: https://doi.org/10.2164/jandrol.108.005132

6. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2008;28(1-2):1–10. doi: https://doi.org/10.1071/RD15325

7. Dalama B, Mesa J. New oral hypoglycemic agents and cardiovascular risk. Crossing the metabolic border. Rev Esp Cardiol. 2016;69(11):1088–97. doi: https://doi.org/10.1016/j.rec.2016.07.008

8. Wahyuningsih MSH, Wiwekananda KSS, Putri APR, Nugrahaningsih DAA, Yunianti MM. Bioassay guided fractionation of ciplukan (Physalis angulata L.) monitored by glucose consumption assay and thin layer chromatography on myoblast cells. Trad Med J. 2023;28(1):22–30. doi: https://doi.org/10.22146/mot.79783

9. Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?. Cell Death Differ. 2018;25(1):104–13. doi: https://doi.org/10.1038/cdd.2017.169

10. Asadi N, Bahmani M, Kheradmand A, Kopaei MR. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res. 2017;11(5):1–5. doi: https://doi.org/10.7860/JCDR/2017/23927.9886

11. Amaral S, Oliveira PJ, Ramalho-Santos J. Diabetes and the impairment of reproductive function: possible role of mitochondria and reactive oxygen species. Curr Diabetes Rev. 2008;4(1):46–54. doi: https://doi.org/10.2174/15733990 8783502398

12. Davila MP, Munoz PM, Tapia JA, Ferrusola CO, da Silva CCB, Pena FJ. Inhibition of mitochondrial complex I leads to decreased motility and membrane integrity related to increased hydrogen peroxide and reduced ATP production, while the inhibition of glycolysis has less impact on sperm motility. PLoS One. 2015;10(9):1–21. doi: https://doi.org/10.1371/journal.pone.0138777

13. Minas A, Talebi H, Ray MT, Eisalou MGA, Razi M. Insulin treatment to type 1 male diabetic rats protects fertility by avoiding testicular apoptosis and cell cycle arrest. Gene. 2021;799(145847):1–10. doi: https://doi.org/10.1016/j.gene.2021.145847

14. Eleutherio ECA, Magalhães RSS, de Araújo Brasil A, Neto JRM, Holanda Paranhos L. SOD1, more than just an antioxidant. Arch Biochem Biophys. 2021;697(108701):1–16. doi: https://doi.org/10.1016/j.abb.2020.108701

15. Sutjiatmo AB, Sukandar EY, Ratnawati Y, Kusmaningati S, Wulandari A, Narvikasari S. Antidiabetic effect of ciplukan herb (Physalis angulata Linn.) in alloxan-induced diabetic mice. J Farm Indones. 2021;5(4):166–71.

16. Dewi S, Isbagio H, Purwaningsih EH, Kertia N, Setiabudy R, Setiati S. A double-blind, randomized controlled trial of ciplukan (Physalis angulata Linn.) extract on skin fibrosis, inflammatory, immunology, and fibrosis biomarkers in scleroderma patients. Acta Med Indones Indones J Intern Med. 2019;51(4):303–10.

17. Iwansyah AC, Luthfiyanti R, Ardiansyah RCE, Rahman N, Andriana Y, Hamid HA. Antidiabetic activity of Physalis angulata L. fruit juice on streptozotocin-induced diabetic rats. S Afr J Bot. 2022;145:313–9. doi: https://doi.org/10.1016/j.sajb.2021.08.045

18. Ukwubile CA, Bingari MS, Angyu AE, Galba LC. Physalis angulata Linn. (Solanaceae) leaf extract boosts fertility, sperm production and haematological parameters in swiss male albino rats. Int J Med Plants Nat Prod. 2018;4(3):1–10. doi: https://doi.org/10.20431/2454-7999.0403001

19. Maliangkay HP, Rumondor R, Kantohe M. Phytochemical screening and antidiabetic potential of ethanol extract of ciplukan herb (Physalis angulata l.) in alloxan-induced white rats (Rattus norvegicus). Bio-Edu. 2019;4(3):98–107.

20. Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes. 2015;8:181–8. doi: https://doi.org/10.2147/DMSO.S82272

21. Jiang S, Xu L, Xu Y, Guo Y, Wei L, Li X, et al. Antidiabetic effect of Momordica charantia saponins in rats induced by high-fat diet combined with STZ. Electron J Biotechnol. 2020;43:41–7. doi: https://doi.org/10.1016/j.ejbt.2019. 12.001

22. Dzydzan O, Bila, I, Kucharska AZ, Brodyak I, Sybirna N. Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus. Food Funct. 2019;10(10):6459–72. doi: https://doi.org/10.1039/c9fo00515c

23. Furman BL, Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015;70:5.47.1–20. doi: https://doi.org/10.1002/0471141755.ph0547 s70

24. Kadhim ZH. Effect of flavonoids on thickness and diameter of testicular seminiferous tubules in adult males wistar rates exposed to oxidative stress by lead acetate. MINAR Int J Appl Sci Technol. 2022;4(1):291–308. doi: https://doi.org/10.47832/2717-8234.12.30

25. Utomo B, Daningtia NR, Yuliani GA, Yuniarti WM. Effects of a standardized 40% ellagic acid pomegranate (Punica granatum L.) extract on seminiferous tubule histopathology, diameter, and epithelium thickness in albino Wistar rats after heat exposure. Vet World. 2019;12(8):1261–65. doi: https://doi.org/10.14202/vetworld.2019.1261-1265

26. Zhang Q, Yang W, Liu J, Liu H, Lv Z, Zhang C, et al. Identification of six flavonoids as novel cellular antioxidants and their structure-activity relationship. Oxidative Med Cell Longev. 2020;2020(4150897):1–12. doi: https://doi.org/10.1155/2020/4150897

27. Chen Y, Jiao N, Jiang M, Liu L, Zhu Y, Wu H, et al. Loganin alleviates testicular damage and germ cell apoptosis induced by AGEs upon diabetes mellitus by suppressing the RAGE/p38MAPK/NF-κB pathway. J Cell Mol Med. 2020;24(11):6083–95. doi: https://doi.org/10.1111/jcmm.15198

28. Sisman AR, Kiray M, Camsari UM, Evren M, Ates M, Baykara B, et al. Potential novel biomarkers for diabetic testicular damage in streptozotocin-induced diabetic rats: nerve growth factor Beta and vascular endothelial factor. Dis Markers. 2014;2014(108106):1–7. doi: https://doi.org/10.1155/2014/108106

29. Mohamed AAR, Khater SI, Arisha AH, Metwally MMM, Hedeab GM, El-shetry ES. Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway. Gene. 2024:768(145288):1–13. doi: https://doi.org/10.1016/j.gene.2020.145288

30. Solgi T, Amiri I, Asl SS, Saidijam M, Seresht BM, Artimani T. Antiapoptotic and antioxidative effects of cerium oxide nanoparticles on the testicular tissues of streptozotocin-induced diabetic rats: an experimental study. Int J Reprod Biomed. 2021;19(7):589–98. doi: https://doi.org/10.18502/ijrm.v19i7.9465

31. Hussain T, Kandeel M, Metwally E, Murtaza G, Kalhoro DH, Yin Y, et al. Unraveling the harmful effect of oxidative stress on male fertility: a mechanistic insight. Front Endocrinol. 2023;14(:1070692):1–13. doi: https://doi.org/10.3389/fendo.2023.107069

32. Kangralkar VA, Patil SD, Bandivadekar RM. Oxidative stress and diabetes: a review. Int J Pharm Appl. 2010;1(1):38–45.

33. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5(e47):1–15. doi: https://doi.org/10.1017/jns.2016.41

34. Banjarnahor SD, Artanti N. Antioxidant properties of flavonoids. Med J Indones. 2014;23(4):239–44. doi: https://doi.org/10.13181/mji.v23i4.1015

35. Nile SH, Keum YS, Nile AS, Jalde SS, Patel RV. Antioxidant, anti-inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives. J Biochem Mol Toxicol. 2018;32(1):1–8. doi: https://doi.org/10.1002/jbt.22002

36. Arisha AH, Ahmed MM, Kamel MA, Attia YA, Hussein MMA. Morin ameliorates the testicular apoptosis, oxidative stress, and impact on blood-testis barrier induced by photo-extracellularly synthesized silver nanoparticles. Environ Sci Pollut Res Int. 2019;26(28):28749–62. doi: https://doi.org/10.1007/s11356-019- 06066-1

37. Shokoohi M, Khaki A, Shoorei H, Khaki AA, Moghimian M, Abtahi- Eivary SH. Hesperidin attenuated apoptotic-related genes in testicle of a male rat model of varicocoele. Andrology. 2020;1:249–58. doi: https://doi.org/10.1111/andr.12681

38. Samie A, Edaghat R, Baluchnejadmojarad T, Roghani M. Hesperetin, a citrus flavonoid, attenuates testicular damage in diabetic rats via inhibition of oxidative stress, inflammation, and apoptosis. Life Sci. 2018;210:132–9. doi: https://doi.org/10.1016/j.lfs.2018.08.074

Article Metrics
8 Views 0 Downloads 8 Total

Year

Month

Related Search

By author names